xref: /openbmc/qemu/target/arm/machine.c (revision 62c58ee0b24eafb44c06402fe059fbd7972eb409)
1 #include "qemu/osdep.h"
2 #include "qemu-common.h"
3 #include "cpu.h"
4 #include "hw/hw.h"
5 #include "hw/boards.h"
6 #include "qemu/error-report.h"
7 #include "sysemu/kvm.h"
8 #include "kvm_arm.h"
9 #include "internals.h"
10 #include "migration/cpu.h"
11 
12 static bool vfp_needed(void *opaque)
13 {
14     ARMCPU *cpu = opaque;
15     CPUARMState *env = &cpu->env;
16 
17     return arm_feature(env, ARM_FEATURE_VFP);
18 }
19 
20 static int get_fpscr(QEMUFile *f, void *opaque, size_t size,
21                      VMStateField *field)
22 {
23     ARMCPU *cpu = opaque;
24     CPUARMState *env = &cpu->env;
25     uint32_t val = qemu_get_be32(f);
26 
27     vfp_set_fpscr(env, val);
28     return 0;
29 }
30 
31 static int put_fpscr(QEMUFile *f, void *opaque, size_t size,
32                      VMStateField *field, QJSON *vmdesc)
33 {
34     ARMCPU *cpu = opaque;
35     CPUARMState *env = &cpu->env;
36 
37     qemu_put_be32(f, vfp_get_fpscr(env));
38     return 0;
39 }
40 
41 static const VMStateInfo vmstate_fpscr = {
42     .name = "fpscr",
43     .get = get_fpscr,
44     .put = put_fpscr,
45 };
46 
47 static const VMStateDescription vmstate_vfp = {
48     .name = "cpu/vfp",
49     .version_id = 3,
50     .minimum_version_id = 3,
51     .needed = vfp_needed,
52     .fields = (VMStateField[]) {
53         VMSTATE_FLOAT64_ARRAY(env.vfp.regs, ARMCPU, 64),
54         /* The xregs array is a little awkward because element 1 (FPSCR)
55          * requires a specific accessor, so we have to split it up in
56          * the vmstate:
57          */
58         VMSTATE_UINT32(env.vfp.xregs[0], ARMCPU),
59         VMSTATE_UINT32_SUB_ARRAY(env.vfp.xregs, ARMCPU, 2, 14),
60         {
61             .name = "fpscr",
62             .version_id = 0,
63             .size = sizeof(uint32_t),
64             .info = &vmstate_fpscr,
65             .flags = VMS_SINGLE,
66             .offset = 0,
67         },
68         VMSTATE_END_OF_LIST()
69     }
70 };
71 
72 static bool iwmmxt_needed(void *opaque)
73 {
74     ARMCPU *cpu = opaque;
75     CPUARMState *env = &cpu->env;
76 
77     return arm_feature(env, ARM_FEATURE_IWMMXT);
78 }
79 
80 static const VMStateDescription vmstate_iwmmxt = {
81     .name = "cpu/iwmmxt",
82     .version_id = 1,
83     .minimum_version_id = 1,
84     .needed = iwmmxt_needed,
85     .fields = (VMStateField[]) {
86         VMSTATE_UINT64_ARRAY(env.iwmmxt.regs, ARMCPU, 16),
87         VMSTATE_UINT32_ARRAY(env.iwmmxt.cregs, ARMCPU, 16),
88         VMSTATE_END_OF_LIST()
89     }
90 };
91 
92 static bool m_needed(void *opaque)
93 {
94     ARMCPU *cpu = opaque;
95     CPUARMState *env = &cpu->env;
96 
97     return arm_feature(env, ARM_FEATURE_M);
98 }
99 
100 static const VMStateDescription vmstate_m_faultmask_primask = {
101     .name = "cpu/m/faultmask-primask",
102     .version_id = 1,
103     .minimum_version_id = 1,
104     .fields = (VMStateField[]) {
105         VMSTATE_UINT32(env.v7m.faultmask[M_REG_NS], ARMCPU),
106         VMSTATE_UINT32(env.v7m.primask[M_REG_NS], ARMCPU),
107         VMSTATE_END_OF_LIST()
108     }
109 };
110 
111 static const VMStateDescription vmstate_m = {
112     .name = "cpu/m",
113     .version_id = 4,
114     .minimum_version_id = 4,
115     .needed = m_needed,
116     .fields = (VMStateField[]) {
117         VMSTATE_UINT32(env.v7m.vecbase[M_REG_NS], ARMCPU),
118         VMSTATE_UINT32(env.v7m.basepri[M_REG_NS], ARMCPU),
119         VMSTATE_UINT32(env.v7m.control[M_REG_NS], ARMCPU),
120         VMSTATE_UINT32(env.v7m.ccr, ARMCPU),
121         VMSTATE_UINT32(env.v7m.cfsr, ARMCPU),
122         VMSTATE_UINT32(env.v7m.hfsr, ARMCPU),
123         VMSTATE_UINT32(env.v7m.dfsr, ARMCPU),
124         VMSTATE_UINT32(env.v7m.mmfar, ARMCPU),
125         VMSTATE_UINT32(env.v7m.bfar, ARMCPU),
126         VMSTATE_UINT32(env.v7m.mpu_ctrl, ARMCPU),
127         VMSTATE_INT32(env.v7m.exception, ARMCPU),
128         VMSTATE_END_OF_LIST()
129     },
130     .subsections = (const VMStateDescription*[]) {
131         &vmstate_m_faultmask_primask,
132         NULL
133     }
134 };
135 
136 static bool thumb2ee_needed(void *opaque)
137 {
138     ARMCPU *cpu = opaque;
139     CPUARMState *env = &cpu->env;
140 
141     return arm_feature(env, ARM_FEATURE_THUMB2EE);
142 }
143 
144 static const VMStateDescription vmstate_thumb2ee = {
145     .name = "cpu/thumb2ee",
146     .version_id = 1,
147     .minimum_version_id = 1,
148     .needed = thumb2ee_needed,
149     .fields = (VMStateField[]) {
150         VMSTATE_UINT32(env.teecr, ARMCPU),
151         VMSTATE_UINT32(env.teehbr, ARMCPU),
152         VMSTATE_END_OF_LIST()
153     }
154 };
155 
156 static bool pmsav7_needed(void *opaque)
157 {
158     ARMCPU *cpu = opaque;
159     CPUARMState *env = &cpu->env;
160 
161     return arm_feature(env, ARM_FEATURE_PMSA) &&
162            arm_feature(env, ARM_FEATURE_V7) &&
163            !arm_feature(env, ARM_FEATURE_V8);
164 }
165 
166 static bool pmsav7_rgnr_vmstate_validate(void *opaque, int version_id)
167 {
168     ARMCPU *cpu = opaque;
169 
170     return cpu->env.pmsav7.rnr < cpu->pmsav7_dregion;
171 }
172 
173 static const VMStateDescription vmstate_pmsav7 = {
174     .name = "cpu/pmsav7",
175     .version_id = 1,
176     .minimum_version_id = 1,
177     .needed = pmsav7_needed,
178     .fields = (VMStateField[]) {
179         VMSTATE_VARRAY_UINT32(env.pmsav7.drbar, ARMCPU, pmsav7_dregion, 0,
180                               vmstate_info_uint32, uint32_t),
181         VMSTATE_VARRAY_UINT32(env.pmsav7.drsr, ARMCPU, pmsav7_dregion, 0,
182                               vmstate_info_uint32, uint32_t),
183         VMSTATE_VARRAY_UINT32(env.pmsav7.dracr, ARMCPU, pmsav7_dregion, 0,
184                               vmstate_info_uint32, uint32_t),
185         VMSTATE_VALIDATE("rgnr is valid", pmsav7_rgnr_vmstate_validate),
186         VMSTATE_END_OF_LIST()
187     }
188 };
189 
190 static bool pmsav7_rnr_needed(void *opaque)
191 {
192     ARMCPU *cpu = opaque;
193     CPUARMState *env = &cpu->env;
194 
195     /* For R profile cores pmsav7.rnr is migrated via the cpreg
196      * "RGNR" definition in helper.h. For M profile we have to
197      * migrate it separately.
198      */
199     return arm_feature(env, ARM_FEATURE_M);
200 }
201 
202 static const VMStateDescription vmstate_pmsav7_rnr = {
203     .name = "cpu/pmsav7-rnr",
204     .version_id = 1,
205     .minimum_version_id = 1,
206     .needed = pmsav7_rnr_needed,
207     .fields = (VMStateField[]) {
208         VMSTATE_UINT32(env.pmsav7.rnr, ARMCPU),
209         VMSTATE_END_OF_LIST()
210     }
211 };
212 
213 static bool pmsav8_needed(void *opaque)
214 {
215     ARMCPU *cpu = opaque;
216     CPUARMState *env = &cpu->env;
217 
218     return arm_feature(env, ARM_FEATURE_PMSA) &&
219         arm_feature(env, ARM_FEATURE_V8);
220 }
221 
222 static const VMStateDescription vmstate_pmsav8 = {
223     .name = "cpu/pmsav8",
224     .version_id = 1,
225     .minimum_version_id = 1,
226     .needed = pmsav8_needed,
227     .fields = (VMStateField[]) {
228         VMSTATE_VARRAY_UINT32(env.pmsav8.rbar[M_REG_NS], ARMCPU, pmsav7_dregion,
229                               0, vmstate_info_uint32, uint32_t),
230         VMSTATE_VARRAY_UINT32(env.pmsav8.rlar[M_REG_NS], ARMCPU, pmsav7_dregion,
231                               0, vmstate_info_uint32, uint32_t),
232         VMSTATE_UINT32(env.pmsav8.mair0[M_REG_NS], ARMCPU),
233         VMSTATE_UINT32(env.pmsav8.mair1[M_REG_NS], ARMCPU),
234         VMSTATE_END_OF_LIST()
235     }
236 };
237 
238 static bool m_security_needed(void *opaque)
239 {
240     ARMCPU *cpu = opaque;
241     CPUARMState *env = &cpu->env;
242 
243     return arm_feature(env, ARM_FEATURE_M_SECURITY);
244 }
245 
246 static const VMStateDescription vmstate_m_security = {
247     .name = "cpu/m-security",
248     .version_id = 1,
249     .minimum_version_id = 1,
250     .needed = m_security_needed,
251     .fields = (VMStateField[]) {
252         VMSTATE_UINT32(env.v7m.secure, ARMCPU),
253         VMSTATE_UINT32(env.v7m.basepri[M_REG_S], ARMCPU),
254         VMSTATE_UINT32(env.v7m.primask[M_REG_S], ARMCPU),
255         VMSTATE_UINT32(env.v7m.faultmask[M_REG_S], ARMCPU),
256         VMSTATE_UINT32(env.v7m.control[M_REG_S], ARMCPU),
257         VMSTATE_UINT32(env.v7m.vecbase[M_REG_S], ARMCPU),
258         VMSTATE_UINT32(env.pmsav8.mair0[M_REG_S], ARMCPU),
259         VMSTATE_UINT32(env.pmsav8.mair1[M_REG_S], ARMCPU),
260         VMSTATE_VARRAY_UINT32(env.pmsav8.rbar[M_REG_S], ARMCPU, pmsav7_dregion,
261                               0, vmstate_info_uint32, uint32_t),
262         VMSTATE_VARRAY_UINT32(env.pmsav8.rlar[M_REG_S], ARMCPU, pmsav7_dregion,
263                               0, vmstate_info_uint32, uint32_t),
264         VMSTATE_END_OF_LIST()
265     }
266 };
267 
268 static int get_cpsr(QEMUFile *f, void *opaque, size_t size,
269                     VMStateField *field)
270 {
271     ARMCPU *cpu = opaque;
272     CPUARMState *env = &cpu->env;
273     uint32_t val = qemu_get_be32(f);
274 
275     if (arm_feature(env, ARM_FEATURE_M)) {
276         if (val & XPSR_EXCP) {
277             /* This is a CPSR format value from an older QEMU. (We can tell
278              * because values transferred in XPSR format always have zero
279              * for the EXCP field, and CPSR format will always have bit 4
280              * set in CPSR_M.) Rearrange it into XPSR format. The significant
281              * differences are that the T bit is not in the same place, the
282              * primask/faultmask info may be in the CPSR I and F bits, and
283              * we do not want the mode bits.
284              * We know that this cleanup happened before v8M, so there
285              * is no complication with banked primask/faultmask.
286              */
287             uint32_t newval = val;
288 
289             assert(!arm_feature(env, ARM_FEATURE_M_SECURITY));
290 
291             newval &= (CPSR_NZCV | CPSR_Q | CPSR_IT | CPSR_GE);
292             if (val & CPSR_T) {
293                 newval |= XPSR_T;
294             }
295             /* If the I or F bits are set then this is a migration from
296              * an old QEMU which still stored the M profile FAULTMASK
297              * and PRIMASK in env->daif. For a new QEMU, the data is
298              * transferred using the vmstate_m_faultmask_primask subsection.
299              */
300             if (val & CPSR_F) {
301                 env->v7m.faultmask[M_REG_NS] = 1;
302             }
303             if (val & CPSR_I) {
304                 env->v7m.primask[M_REG_NS] = 1;
305             }
306             val = newval;
307         }
308         /* Ignore the low bits, they are handled by vmstate_m. */
309         xpsr_write(env, val, ~XPSR_EXCP);
310         return 0;
311     }
312 
313     env->aarch64 = ((val & PSTATE_nRW) == 0);
314 
315     if (is_a64(env)) {
316         pstate_write(env, val);
317         return 0;
318     }
319 
320     cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
321     return 0;
322 }
323 
324 static int put_cpsr(QEMUFile *f, void *opaque, size_t size,
325                     VMStateField *field, QJSON *vmdesc)
326 {
327     ARMCPU *cpu = opaque;
328     CPUARMState *env = &cpu->env;
329     uint32_t val;
330 
331     if (arm_feature(env, ARM_FEATURE_M)) {
332         /* The low 9 bits are v7m.exception, which is handled by vmstate_m. */
333         val = xpsr_read(env) & ~XPSR_EXCP;
334     } else if (is_a64(env)) {
335         val = pstate_read(env);
336     } else {
337         val = cpsr_read(env);
338     }
339 
340     qemu_put_be32(f, val);
341     return 0;
342 }
343 
344 static const VMStateInfo vmstate_cpsr = {
345     .name = "cpsr",
346     .get = get_cpsr,
347     .put = put_cpsr,
348 };
349 
350 static int get_power(QEMUFile *f, void *opaque, size_t size,
351                     VMStateField *field)
352 {
353     ARMCPU *cpu = opaque;
354     bool powered_off = qemu_get_byte(f);
355     cpu->power_state = powered_off ? PSCI_OFF : PSCI_ON;
356     return 0;
357 }
358 
359 static int put_power(QEMUFile *f, void *opaque, size_t size,
360                     VMStateField *field, QJSON *vmdesc)
361 {
362     ARMCPU *cpu = opaque;
363 
364     /* Migration should never happen while we transition power states */
365 
366     if (cpu->power_state == PSCI_ON ||
367         cpu->power_state == PSCI_OFF) {
368         bool powered_off = (cpu->power_state == PSCI_OFF) ? true : false;
369         qemu_put_byte(f, powered_off);
370         return 0;
371     } else {
372         return 1;
373     }
374 }
375 
376 static const VMStateInfo vmstate_powered_off = {
377     .name = "powered_off",
378     .get = get_power,
379     .put = put_power,
380 };
381 
382 static void cpu_pre_save(void *opaque)
383 {
384     ARMCPU *cpu = opaque;
385 
386     if (kvm_enabled()) {
387         if (!write_kvmstate_to_list(cpu)) {
388             /* This should never fail */
389             abort();
390         }
391     } else {
392         if (!write_cpustate_to_list(cpu)) {
393             /* This should never fail. */
394             abort();
395         }
396     }
397 
398     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
399     memcpy(cpu->cpreg_vmstate_indexes, cpu->cpreg_indexes,
400            cpu->cpreg_array_len * sizeof(uint64_t));
401     memcpy(cpu->cpreg_vmstate_values, cpu->cpreg_values,
402            cpu->cpreg_array_len * sizeof(uint64_t));
403 }
404 
405 static int cpu_post_load(void *opaque, int version_id)
406 {
407     ARMCPU *cpu = opaque;
408     int i, v;
409 
410     /* Update the values list from the incoming migration data.
411      * Anything in the incoming data which we don't know about is
412      * a migration failure; anything we know about but the incoming
413      * data doesn't specify retains its current (reset) value.
414      * The indexes list remains untouched -- we only inspect the
415      * incoming migration index list so we can match the values array
416      * entries with the right slots in our own values array.
417      */
418 
419     for (i = 0, v = 0; i < cpu->cpreg_array_len
420              && v < cpu->cpreg_vmstate_array_len; i++) {
421         if (cpu->cpreg_vmstate_indexes[v] > cpu->cpreg_indexes[i]) {
422             /* register in our list but not incoming : skip it */
423             continue;
424         }
425         if (cpu->cpreg_vmstate_indexes[v] < cpu->cpreg_indexes[i]) {
426             /* register in their list but not ours: fail migration */
427             return -1;
428         }
429         /* matching register, copy the value over */
430         cpu->cpreg_values[i] = cpu->cpreg_vmstate_values[v];
431         v++;
432     }
433 
434     if (kvm_enabled()) {
435         if (!write_list_to_kvmstate(cpu, KVM_PUT_FULL_STATE)) {
436             return -1;
437         }
438         /* Note that it's OK for the TCG side not to know about
439          * every register in the list; KVM is authoritative if
440          * we're using it.
441          */
442         write_list_to_cpustate(cpu);
443     } else {
444         if (!write_list_to_cpustate(cpu)) {
445             return -1;
446         }
447     }
448 
449     hw_breakpoint_update_all(cpu);
450     hw_watchpoint_update_all(cpu);
451 
452     return 0;
453 }
454 
455 const VMStateDescription vmstate_arm_cpu = {
456     .name = "cpu",
457     .version_id = 22,
458     .minimum_version_id = 22,
459     .pre_save = cpu_pre_save,
460     .post_load = cpu_post_load,
461     .fields = (VMStateField[]) {
462         VMSTATE_UINT32_ARRAY(env.regs, ARMCPU, 16),
463         VMSTATE_UINT64_ARRAY(env.xregs, ARMCPU, 32),
464         VMSTATE_UINT64(env.pc, ARMCPU),
465         {
466             .name = "cpsr",
467             .version_id = 0,
468             .size = sizeof(uint32_t),
469             .info = &vmstate_cpsr,
470             .flags = VMS_SINGLE,
471             .offset = 0,
472         },
473         VMSTATE_UINT32(env.spsr, ARMCPU),
474         VMSTATE_UINT64_ARRAY(env.banked_spsr, ARMCPU, 8),
475         VMSTATE_UINT32_ARRAY(env.banked_r13, ARMCPU, 8),
476         VMSTATE_UINT32_ARRAY(env.banked_r14, ARMCPU, 8),
477         VMSTATE_UINT32_ARRAY(env.usr_regs, ARMCPU, 5),
478         VMSTATE_UINT32_ARRAY(env.fiq_regs, ARMCPU, 5),
479         VMSTATE_UINT64_ARRAY(env.elr_el, ARMCPU, 4),
480         VMSTATE_UINT64_ARRAY(env.sp_el, ARMCPU, 4),
481         /* The length-check must come before the arrays to avoid
482          * incoming data possibly overflowing the array.
483          */
484         VMSTATE_INT32_POSITIVE_LE(cpreg_vmstate_array_len, ARMCPU),
485         VMSTATE_VARRAY_INT32(cpreg_vmstate_indexes, ARMCPU,
486                              cpreg_vmstate_array_len,
487                              0, vmstate_info_uint64, uint64_t),
488         VMSTATE_VARRAY_INT32(cpreg_vmstate_values, ARMCPU,
489                              cpreg_vmstate_array_len,
490                              0, vmstate_info_uint64, uint64_t),
491         VMSTATE_UINT64(env.exclusive_addr, ARMCPU),
492         VMSTATE_UINT64(env.exclusive_val, ARMCPU),
493         VMSTATE_UINT64(env.exclusive_high, ARMCPU),
494         VMSTATE_UINT64(env.features, ARMCPU),
495         VMSTATE_UINT32(env.exception.syndrome, ARMCPU),
496         VMSTATE_UINT32(env.exception.fsr, ARMCPU),
497         VMSTATE_UINT64(env.exception.vaddress, ARMCPU),
498         VMSTATE_TIMER_PTR(gt_timer[GTIMER_PHYS], ARMCPU),
499         VMSTATE_TIMER_PTR(gt_timer[GTIMER_VIRT], ARMCPU),
500         {
501             .name = "power_state",
502             .version_id = 0,
503             .size = sizeof(bool),
504             .info = &vmstate_powered_off,
505             .flags = VMS_SINGLE,
506             .offset = 0,
507         },
508         VMSTATE_END_OF_LIST()
509     },
510     .subsections = (const VMStateDescription*[]) {
511         &vmstate_vfp,
512         &vmstate_iwmmxt,
513         &vmstate_m,
514         &vmstate_thumb2ee,
515         /* pmsav7_rnr must come before pmsav7 so that we have the
516          * region number before we test it in the VMSTATE_VALIDATE
517          * in vmstate_pmsav7.
518          */
519         &vmstate_pmsav7_rnr,
520         &vmstate_pmsav7,
521         &vmstate_pmsav8,
522         &vmstate_m_security,
523         NULL
524     }
525 };
526