xref: /openbmc/qemu/target/arm/machine.c (revision 36ebc7db)
1 #include "qemu/osdep.h"
2 #include "cpu.h"
3 #include "qemu/error-report.h"
4 #include "sysemu/kvm.h"
5 #include "kvm_arm.h"
6 #include "internals.h"
7 #include "migration/cpu.h"
8 
9 static bool vfp_needed(void *opaque)
10 {
11     ARMCPU *cpu = opaque;
12 
13     return (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
14             ? cpu_isar_feature(aa64_fp_simd, cpu)
15             : cpu_isar_feature(aa32_vfp_simd, cpu));
16 }
17 
18 static int get_fpscr(QEMUFile *f, void *opaque, size_t size,
19                      const VMStateField *field)
20 {
21     ARMCPU *cpu = opaque;
22     CPUARMState *env = &cpu->env;
23     uint32_t val = qemu_get_be32(f);
24 
25     vfp_set_fpscr(env, val);
26     return 0;
27 }
28 
29 static int put_fpscr(QEMUFile *f, void *opaque, size_t size,
30                      const VMStateField *field, JSONWriter *vmdesc)
31 {
32     ARMCPU *cpu = opaque;
33     CPUARMState *env = &cpu->env;
34 
35     qemu_put_be32(f, vfp_get_fpscr(env));
36     return 0;
37 }
38 
39 static const VMStateInfo vmstate_fpscr = {
40     .name = "fpscr",
41     .get = get_fpscr,
42     .put = put_fpscr,
43 };
44 
45 static const VMStateDescription vmstate_vfp = {
46     .name = "cpu/vfp",
47     .version_id = 3,
48     .minimum_version_id = 3,
49     .needed = vfp_needed,
50     .fields = (VMStateField[]) {
51         /* For compatibility, store Qn out of Zn here.  */
52         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[0].d, ARMCPU, 0, 2),
53         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[1].d, ARMCPU, 0, 2),
54         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[2].d, ARMCPU, 0, 2),
55         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[3].d, ARMCPU, 0, 2),
56         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[4].d, ARMCPU, 0, 2),
57         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[5].d, ARMCPU, 0, 2),
58         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[6].d, ARMCPU, 0, 2),
59         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[7].d, ARMCPU, 0, 2),
60         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[8].d, ARMCPU, 0, 2),
61         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[9].d, ARMCPU, 0, 2),
62         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[10].d, ARMCPU, 0, 2),
63         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[11].d, ARMCPU, 0, 2),
64         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[12].d, ARMCPU, 0, 2),
65         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[13].d, ARMCPU, 0, 2),
66         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[14].d, ARMCPU, 0, 2),
67         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[15].d, ARMCPU, 0, 2),
68         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[16].d, ARMCPU, 0, 2),
69         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[17].d, ARMCPU, 0, 2),
70         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[18].d, ARMCPU, 0, 2),
71         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[19].d, ARMCPU, 0, 2),
72         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[20].d, ARMCPU, 0, 2),
73         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[21].d, ARMCPU, 0, 2),
74         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[22].d, ARMCPU, 0, 2),
75         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[23].d, ARMCPU, 0, 2),
76         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[24].d, ARMCPU, 0, 2),
77         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[25].d, ARMCPU, 0, 2),
78         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[26].d, ARMCPU, 0, 2),
79         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[27].d, ARMCPU, 0, 2),
80         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[28].d, ARMCPU, 0, 2),
81         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[29].d, ARMCPU, 0, 2),
82         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[30].d, ARMCPU, 0, 2),
83         VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[31].d, ARMCPU, 0, 2),
84 
85         /* The xregs array is a little awkward because element 1 (FPSCR)
86          * requires a specific accessor, so we have to split it up in
87          * the vmstate:
88          */
89         VMSTATE_UINT32(env.vfp.xregs[0], ARMCPU),
90         VMSTATE_UINT32_SUB_ARRAY(env.vfp.xregs, ARMCPU, 2, 14),
91         {
92             .name = "fpscr",
93             .version_id = 0,
94             .size = sizeof(uint32_t),
95             .info = &vmstate_fpscr,
96             .flags = VMS_SINGLE,
97             .offset = 0,
98         },
99         VMSTATE_END_OF_LIST()
100     }
101 };
102 
103 static bool iwmmxt_needed(void *opaque)
104 {
105     ARMCPU *cpu = opaque;
106     CPUARMState *env = &cpu->env;
107 
108     return arm_feature(env, ARM_FEATURE_IWMMXT);
109 }
110 
111 static const VMStateDescription vmstate_iwmmxt = {
112     .name = "cpu/iwmmxt",
113     .version_id = 1,
114     .minimum_version_id = 1,
115     .needed = iwmmxt_needed,
116     .fields = (VMStateField[]) {
117         VMSTATE_UINT64_ARRAY(env.iwmmxt.regs, ARMCPU, 16),
118         VMSTATE_UINT32_ARRAY(env.iwmmxt.cregs, ARMCPU, 16),
119         VMSTATE_END_OF_LIST()
120     }
121 };
122 
123 #ifdef TARGET_AARCH64
124 /* The expression ARM_MAX_VQ - 2 is 0 for pure AArch32 build,
125  * and ARMPredicateReg is actively empty.  This triggers errors
126  * in the expansion of the VMSTATE macros.
127  */
128 
129 static bool sve_needed(void *opaque)
130 {
131     ARMCPU *cpu = opaque;
132 
133     return cpu_isar_feature(aa64_sve, cpu);
134 }
135 
136 /* The first two words of each Zreg is stored in VFP state.  */
137 static const VMStateDescription vmstate_zreg_hi_reg = {
138     .name = "cpu/sve/zreg_hi",
139     .version_id = 1,
140     .minimum_version_id = 1,
141     .fields = (VMStateField[]) {
142         VMSTATE_UINT64_SUB_ARRAY(d, ARMVectorReg, 2, ARM_MAX_VQ - 2),
143         VMSTATE_END_OF_LIST()
144     }
145 };
146 
147 static const VMStateDescription vmstate_preg_reg = {
148     .name = "cpu/sve/preg",
149     .version_id = 1,
150     .minimum_version_id = 1,
151     .fields = (VMStateField[]) {
152         VMSTATE_UINT64_ARRAY(p, ARMPredicateReg, 2 * ARM_MAX_VQ / 8),
153         VMSTATE_END_OF_LIST()
154     }
155 };
156 
157 static const VMStateDescription vmstate_sve = {
158     .name = "cpu/sve",
159     .version_id = 1,
160     .minimum_version_id = 1,
161     .needed = sve_needed,
162     .fields = (VMStateField[]) {
163         VMSTATE_STRUCT_ARRAY(env.vfp.zregs, ARMCPU, 32, 0,
164                              vmstate_zreg_hi_reg, ARMVectorReg),
165         VMSTATE_STRUCT_ARRAY(env.vfp.pregs, ARMCPU, 17, 0,
166                              vmstate_preg_reg, ARMPredicateReg),
167         VMSTATE_END_OF_LIST()
168     }
169 };
170 
171 static const VMStateDescription vmstate_vreg = {
172     .name = "vreg",
173     .version_id = 1,
174     .minimum_version_id = 1,
175     .fields = (VMStateField[]) {
176         VMSTATE_UINT64_ARRAY(d, ARMVectorReg, ARM_MAX_VQ * 2),
177         VMSTATE_END_OF_LIST()
178     }
179 };
180 
181 static bool za_needed(void *opaque)
182 {
183     ARMCPU *cpu = opaque;
184 
185     /*
186      * When ZA storage is disabled, its contents are discarded.
187      * It will be zeroed when ZA storage is re-enabled.
188      */
189     return FIELD_EX64(cpu->env.svcr, SVCR, ZA);
190 }
191 
192 static const VMStateDescription vmstate_za = {
193     .name = "cpu/sme",
194     .version_id = 1,
195     .minimum_version_id = 1,
196     .needed = za_needed,
197     .fields = (VMStateField[]) {
198         VMSTATE_STRUCT_ARRAY(env.zarray, ARMCPU, ARM_MAX_VQ * 16, 0,
199                              vmstate_vreg, ARMVectorReg),
200         VMSTATE_END_OF_LIST()
201     }
202 };
203 #endif /* AARCH64 */
204 
205 static bool serror_needed(void *opaque)
206 {
207     ARMCPU *cpu = opaque;
208     CPUARMState *env = &cpu->env;
209 
210     return env->serror.pending != 0;
211 }
212 
213 static const VMStateDescription vmstate_serror = {
214     .name = "cpu/serror",
215     .version_id = 1,
216     .minimum_version_id = 1,
217     .needed = serror_needed,
218     .fields = (VMStateField[]) {
219         VMSTATE_UINT8(env.serror.pending, ARMCPU),
220         VMSTATE_UINT8(env.serror.has_esr, ARMCPU),
221         VMSTATE_UINT64(env.serror.esr, ARMCPU),
222         VMSTATE_END_OF_LIST()
223     }
224 };
225 
226 static bool irq_line_state_needed(void *opaque)
227 {
228     return true;
229 }
230 
231 static const VMStateDescription vmstate_irq_line_state = {
232     .name = "cpu/irq-line-state",
233     .version_id = 1,
234     .minimum_version_id = 1,
235     .needed = irq_line_state_needed,
236     .fields = (VMStateField[]) {
237         VMSTATE_UINT32(env.irq_line_state, ARMCPU),
238         VMSTATE_END_OF_LIST()
239     }
240 };
241 
242 static bool m_needed(void *opaque)
243 {
244     ARMCPU *cpu = opaque;
245     CPUARMState *env = &cpu->env;
246 
247     return arm_feature(env, ARM_FEATURE_M);
248 }
249 
250 static const VMStateDescription vmstate_m_faultmask_primask = {
251     .name = "cpu/m/faultmask-primask",
252     .version_id = 1,
253     .minimum_version_id = 1,
254     .needed = m_needed,
255     .fields = (VMStateField[]) {
256         VMSTATE_UINT32(env.v7m.faultmask[M_REG_NS], ARMCPU),
257         VMSTATE_UINT32(env.v7m.primask[M_REG_NS], ARMCPU),
258         VMSTATE_END_OF_LIST()
259     }
260 };
261 
262 /* CSSELR is in a subsection because we didn't implement it previously.
263  * Migration from an old implementation will leave it at zero, which
264  * is OK since the only CPUs in the old implementation make the
265  * register RAZ/WI.
266  * Since there was no version of QEMU which implemented the CSSELR for
267  * just non-secure, we transfer both banks here rather than putting
268  * the secure banked version in the m-security subsection.
269  */
270 static bool csselr_vmstate_validate(void *opaque, int version_id)
271 {
272     ARMCPU *cpu = opaque;
273 
274     return cpu->env.v7m.csselr[M_REG_NS] <= R_V7M_CSSELR_INDEX_MASK
275         && cpu->env.v7m.csselr[M_REG_S] <= R_V7M_CSSELR_INDEX_MASK;
276 }
277 
278 static bool m_csselr_needed(void *opaque)
279 {
280     ARMCPU *cpu = opaque;
281 
282     return !arm_v7m_csselr_razwi(cpu);
283 }
284 
285 static const VMStateDescription vmstate_m_csselr = {
286     .name = "cpu/m/csselr",
287     .version_id = 1,
288     .minimum_version_id = 1,
289     .needed = m_csselr_needed,
290     .fields = (VMStateField[]) {
291         VMSTATE_UINT32_ARRAY(env.v7m.csselr, ARMCPU, M_REG_NUM_BANKS),
292         VMSTATE_VALIDATE("CSSELR is valid", csselr_vmstate_validate),
293         VMSTATE_END_OF_LIST()
294     }
295 };
296 
297 static const VMStateDescription vmstate_m_scr = {
298     .name = "cpu/m/scr",
299     .version_id = 1,
300     .minimum_version_id = 1,
301     .needed = m_needed,
302     .fields = (VMStateField[]) {
303         VMSTATE_UINT32(env.v7m.scr[M_REG_NS], ARMCPU),
304         VMSTATE_END_OF_LIST()
305     }
306 };
307 
308 static const VMStateDescription vmstate_m_other_sp = {
309     .name = "cpu/m/other-sp",
310     .version_id = 1,
311     .minimum_version_id = 1,
312     .needed = m_needed,
313     .fields = (VMStateField[]) {
314         VMSTATE_UINT32(env.v7m.other_sp, ARMCPU),
315         VMSTATE_END_OF_LIST()
316     }
317 };
318 
319 static bool m_v8m_needed(void *opaque)
320 {
321     ARMCPU *cpu = opaque;
322     CPUARMState *env = &cpu->env;
323 
324     return arm_feature(env, ARM_FEATURE_M) && arm_feature(env, ARM_FEATURE_V8);
325 }
326 
327 static const VMStateDescription vmstate_m_v8m = {
328     .name = "cpu/m/v8m",
329     .version_id = 1,
330     .minimum_version_id = 1,
331     .needed = m_v8m_needed,
332     .fields = (VMStateField[]) {
333         VMSTATE_UINT32_ARRAY(env.v7m.msplim, ARMCPU, M_REG_NUM_BANKS),
334         VMSTATE_UINT32_ARRAY(env.v7m.psplim, ARMCPU, M_REG_NUM_BANKS),
335         VMSTATE_END_OF_LIST()
336     }
337 };
338 
339 static const VMStateDescription vmstate_m_fp = {
340     .name = "cpu/m/fp",
341     .version_id = 1,
342     .minimum_version_id = 1,
343     .needed = vfp_needed,
344     .fields = (VMStateField[]) {
345         VMSTATE_UINT32_ARRAY(env.v7m.fpcar, ARMCPU, M_REG_NUM_BANKS),
346         VMSTATE_UINT32_ARRAY(env.v7m.fpccr, ARMCPU, M_REG_NUM_BANKS),
347         VMSTATE_UINT32_ARRAY(env.v7m.fpdscr, ARMCPU, M_REG_NUM_BANKS),
348         VMSTATE_UINT32_ARRAY(env.v7m.cpacr, ARMCPU, M_REG_NUM_BANKS),
349         VMSTATE_UINT32(env.v7m.nsacr, ARMCPU),
350         VMSTATE_END_OF_LIST()
351     }
352 };
353 
354 static bool mve_needed(void *opaque)
355 {
356     ARMCPU *cpu = opaque;
357 
358     return cpu_isar_feature(aa32_mve, cpu);
359 }
360 
361 static const VMStateDescription vmstate_m_mve = {
362     .name = "cpu/m/mve",
363     .version_id = 1,
364     .minimum_version_id = 1,
365     .needed = mve_needed,
366     .fields = (VMStateField[]) {
367         VMSTATE_UINT32(env.v7m.vpr, ARMCPU),
368         VMSTATE_UINT32(env.v7m.ltpsize, ARMCPU),
369         VMSTATE_END_OF_LIST()
370     },
371 };
372 
373 static const VMStateDescription vmstate_m = {
374     .name = "cpu/m",
375     .version_id = 4,
376     .minimum_version_id = 4,
377     .needed = m_needed,
378     .fields = (VMStateField[]) {
379         VMSTATE_UINT32(env.v7m.vecbase[M_REG_NS], ARMCPU),
380         VMSTATE_UINT32(env.v7m.basepri[M_REG_NS], ARMCPU),
381         VMSTATE_UINT32(env.v7m.control[M_REG_NS], ARMCPU),
382         VMSTATE_UINT32(env.v7m.ccr[M_REG_NS], ARMCPU),
383         VMSTATE_UINT32(env.v7m.cfsr[M_REG_NS], ARMCPU),
384         VMSTATE_UINT32(env.v7m.hfsr, ARMCPU),
385         VMSTATE_UINT32(env.v7m.dfsr, ARMCPU),
386         VMSTATE_UINT32(env.v7m.mmfar[M_REG_NS], ARMCPU),
387         VMSTATE_UINT32(env.v7m.bfar, ARMCPU),
388         VMSTATE_UINT32(env.v7m.mpu_ctrl[M_REG_NS], ARMCPU),
389         VMSTATE_INT32(env.v7m.exception, ARMCPU),
390         VMSTATE_END_OF_LIST()
391     },
392     .subsections = (const VMStateDescription*[]) {
393         &vmstate_m_faultmask_primask,
394         &vmstate_m_csselr,
395         &vmstate_m_scr,
396         &vmstate_m_other_sp,
397         &vmstate_m_v8m,
398         &vmstate_m_fp,
399         &vmstate_m_mve,
400         NULL
401     }
402 };
403 
404 static bool thumb2ee_needed(void *opaque)
405 {
406     ARMCPU *cpu = opaque;
407     CPUARMState *env = &cpu->env;
408 
409     return arm_feature(env, ARM_FEATURE_THUMB2EE);
410 }
411 
412 static const VMStateDescription vmstate_thumb2ee = {
413     .name = "cpu/thumb2ee",
414     .version_id = 1,
415     .minimum_version_id = 1,
416     .needed = thumb2ee_needed,
417     .fields = (VMStateField[]) {
418         VMSTATE_UINT32(env.teecr, ARMCPU),
419         VMSTATE_UINT32(env.teehbr, ARMCPU),
420         VMSTATE_END_OF_LIST()
421     }
422 };
423 
424 static bool pmsav7_needed(void *opaque)
425 {
426     ARMCPU *cpu = opaque;
427     CPUARMState *env = &cpu->env;
428 
429     return arm_feature(env, ARM_FEATURE_PMSA) &&
430            arm_feature(env, ARM_FEATURE_V7) &&
431            !arm_feature(env, ARM_FEATURE_V8);
432 }
433 
434 static bool pmsav7_rgnr_vmstate_validate(void *opaque, int version_id)
435 {
436     ARMCPU *cpu = opaque;
437 
438     return cpu->env.pmsav7.rnr[M_REG_NS] < cpu->pmsav7_dregion;
439 }
440 
441 static const VMStateDescription vmstate_pmsav7 = {
442     .name = "cpu/pmsav7",
443     .version_id = 1,
444     .minimum_version_id = 1,
445     .needed = pmsav7_needed,
446     .fields = (VMStateField[]) {
447         VMSTATE_VARRAY_UINT32(env.pmsav7.drbar, ARMCPU, pmsav7_dregion, 0,
448                               vmstate_info_uint32, uint32_t),
449         VMSTATE_VARRAY_UINT32(env.pmsav7.drsr, ARMCPU, pmsav7_dregion, 0,
450                               vmstate_info_uint32, uint32_t),
451         VMSTATE_VARRAY_UINT32(env.pmsav7.dracr, ARMCPU, pmsav7_dregion, 0,
452                               vmstate_info_uint32, uint32_t),
453         VMSTATE_VALIDATE("rgnr is valid", pmsav7_rgnr_vmstate_validate),
454         VMSTATE_END_OF_LIST()
455     }
456 };
457 
458 static bool pmsav7_rnr_needed(void *opaque)
459 {
460     ARMCPU *cpu = opaque;
461     CPUARMState *env = &cpu->env;
462 
463     /* For R profile cores pmsav7.rnr is migrated via the cpreg
464      * "RGNR" definition in helper.h. For M profile we have to
465      * migrate it separately.
466      */
467     return arm_feature(env, ARM_FEATURE_M);
468 }
469 
470 static const VMStateDescription vmstate_pmsav7_rnr = {
471     .name = "cpu/pmsav7-rnr",
472     .version_id = 1,
473     .minimum_version_id = 1,
474     .needed = pmsav7_rnr_needed,
475     .fields = (VMStateField[]) {
476         VMSTATE_UINT32(env.pmsav7.rnr[M_REG_NS], ARMCPU),
477         VMSTATE_END_OF_LIST()
478     }
479 };
480 
481 static bool pmsav8_needed(void *opaque)
482 {
483     ARMCPU *cpu = opaque;
484     CPUARMState *env = &cpu->env;
485 
486     return arm_feature(env, ARM_FEATURE_PMSA) &&
487         arm_feature(env, ARM_FEATURE_V8);
488 }
489 
490 static bool pmsav8r_needed(void *opaque)
491 {
492     ARMCPU *cpu = opaque;
493     CPUARMState *env = &cpu->env;
494 
495     return arm_feature(env, ARM_FEATURE_PMSA) &&
496         arm_feature(env, ARM_FEATURE_V8) &&
497         !arm_feature(env, ARM_FEATURE_M);
498 }
499 
500 static const VMStateDescription vmstate_pmsav8r = {
501     .name = "cpu/pmsav8/pmsav8r",
502     .version_id = 1,
503     .minimum_version_id = 1,
504     .needed = pmsav8r_needed,
505     .fields = (VMStateField[]) {
506         VMSTATE_VARRAY_UINT32(env.pmsav8.hprbar, ARMCPU,
507                         pmsav8r_hdregion, 0, vmstate_info_uint32, uint32_t),
508         VMSTATE_VARRAY_UINT32(env.pmsav8.hprlar, ARMCPU,
509                         pmsav8r_hdregion, 0, vmstate_info_uint32, uint32_t),
510         VMSTATE_END_OF_LIST()
511     },
512 };
513 
514 static const VMStateDescription vmstate_pmsav8 = {
515     .name = "cpu/pmsav8",
516     .version_id = 1,
517     .minimum_version_id = 1,
518     .needed = pmsav8_needed,
519     .fields = (VMStateField[]) {
520         VMSTATE_VARRAY_UINT32(env.pmsav8.rbar[M_REG_NS], ARMCPU, pmsav7_dregion,
521                               0, vmstate_info_uint32, uint32_t),
522         VMSTATE_VARRAY_UINT32(env.pmsav8.rlar[M_REG_NS], ARMCPU, pmsav7_dregion,
523                               0, vmstate_info_uint32, uint32_t),
524         VMSTATE_UINT32(env.pmsav8.mair0[M_REG_NS], ARMCPU),
525         VMSTATE_UINT32(env.pmsav8.mair1[M_REG_NS], ARMCPU),
526         VMSTATE_END_OF_LIST()
527     },
528     .subsections = (const VMStateDescription * []) {
529         &vmstate_pmsav8r,
530         NULL
531     }
532 };
533 
534 static bool s_rnr_vmstate_validate(void *opaque, int version_id)
535 {
536     ARMCPU *cpu = opaque;
537 
538     return cpu->env.pmsav7.rnr[M_REG_S] < cpu->pmsav7_dregion;
539 }
540 
541 static bool sau_rnr_vmstate_validate(void *opaque, int version_id)
542 {
543     ARMCPU *cpu = opaque;
544 
545     return cpu->env.sau.rnr < cpu->sau_sregion;
546 }
547 
548 static bool m_security_needed(void *opaque)
549 {
550     ARMCPU *cpu = opaque;
551     CPUARMState *env = &cpu->env;
552 
553     return arm_feature(env, ARM_FEATURE_M_SECURITY);
554 }
555 
556 static const VMStateDescription vmstate_m_security = {
557     .name = "cpu/m-security",
558     .version_id = 1,
559     .minimum_version_id = 1,
560     .needed = m_security_needed,
561     .fields = (VMStateField[]) {
562         VMSTATE_UINT32(env.v7m.secure, ARMCPU),
563         VMSTATE_UINT32(env.v7m.other_ss_msp, ARMCPU),
564         VMSTATE_UINT32(env.v7m.other_ss_psp, ARMCPU),
565         VMSTATE_UINT32(env.v7m.basepri[M_REG_S], ARMCPU),
566         VMSTATE_UINT32(env.v7m.primask[M_REG_S], ARMCPU),
567         VMSTATE_UINT32(env.v7m.faultmask[M_REG_S], ARMCPU),
568         VMSTATE_UINT32(env.v7m.control[M_REG_S], ARMCPU),
569         VMSTATE_UINT32(env.v7m.vecbase[M_REG_S], ARMCPU),
570         VMSTATE_UINT32(env.pmsav8.mair0[M_REG_S], ARMCPU),
571         VMSTATE_UINT32(env.pmsav8.mair1[M_REG_S], ARMCPU),
572         VMSTATE_VARRAY_UINT32(env.pmsav8.rbar[M_REG_S], ARMCPU, pmsav7_dregion,
573                               0, vmstate_info_uint32, uint32_t),
574         VMSTATE_VARRAY_UINT32(env.pmsav8.rlar[M_REG_S], ARMCPU, pmsav7_dregion,
575                               0, vmstate_info_uint32, uint32_t),
576         VMSTATE_UINT32(env.pmsav7.rnr[M_REG_S], ARMCPU),
577         VMSTATE_VALIDATE("secure MPU_RNR is valid", s_rnr_vmstate_validate),
578         VMSTATE_UINT32(env.v7m.mpu_ctrl[M_REG_S], ARMCPU),
579         VMSTATE_UINT32(env.v7m.ccr[M_REG_S], ARMCPU),
580         VMSTATE_UINT32(env.v7m.mmfar[M_REG_S], ARMCPU),
581         VMSTATE_UINT32(env.v7m.cfsr[M_REG_S], ARMCPU),
582         VMSTATE_UINT32(env.v7m.sfsr, ARMCPU),
583         VMSTATE_UINT32(env.v7m.sfar, ARMCPU),
584         VMSTATE_VARRAY_UINT32(env.sau.rbar, ARMCPU, sau_sregion, 0,
585                               vmstate_info_uint32, uint32_t),
586         VMSTATE_VARRAY_UINT32(env.sau.rlar, ARMCPU, sau_sregion, 0,
587                               vmstate_info_uint32, uint32_t),
588         VMSTATE_UINT32(env.sau.rnr, ARMCPU),
589         VMSTATE_VALIDATE("SAU_RNR is valid", sau_rnr_vmstate_validate),
590         VMSTATE_UINT32(env.sau.ctrl, ARMCPU),
591         VMSTATE_UINT32(env.v7m.scr[M_REG_S], ARMCPU),
592         /* AIRCR is not secure-only, but our implementation is R/O if the
593          * security extension is unimplemented, so we migrate it here.
594          */
595         VMSTATE_UINT32(env.v7m.aircr, ARMCPU),
596         VMSTATE_END_OF_LIST()
597     }
598 };
599 
600 static int get_cpsr(QEMUFile *f, void *opaque, size_t size,
601                     const VMStateField *field)
602 {
603     ARMCPU *cpu = opaque;
604     CPUARMState *env = &cpu->env;
605     uint32_t val = qemu_get_be32(f);
606 
607     if (arm_feature(env, ARM_FEATURE_M)) {
608         if (val & XPSR_EXCP) {
609             /* This is a CPSR format value from an older QEMU. (We can tell
610              * because values transferred in XPSR format always have zero
611              * for the EXCP field, and CPSR format will always have bit 4
612              * set in CPSR_M.) Rearrange it into XPSR format. The significant
613              * differences are that the T bit is not in the same place, the
614              * primask/faultmask info may be in the CPSR I and F bits, and
615              * we do not want the mode bits.
616              * We know that this cleanup happened before v8M, so there
617              * is no complication with banked primask/faultmask.
618              */
619             uint32_t newval = val;
620 
621             assert(!arm_feature(env, ARM_FEATURE_M_SECURITY));
622 
623             newval &= (CPSR_NZCV | CPSR_Q | CPSR_IT | CPSR_GE);
624             if (val & CPSR_T) {
625                 newval |= XPSR_T;
626             }
627             /* If the I or F bits are set then this is a migration from
628              * an old QEMU which still stored the M profile FAULTMASK
629              * and PRIMASK in env->daif. For a new QEMU, the data is
630              * transferred using the vmstate_m_faultmask_primask subsection.
631              */
632             if (val & CPSR_F) {
633                 env->v7m.faultmask[M_REG_NS] = 1;
634             }
635             if (val & CPSR_I) {
636                 env->v7m.primask[M_REG_NS] = 1;
637             }
638             val = newval;
639         }
640         /* Ignore the low bits, they are handled by vmstate_m. */
641         xpsr_write(env, val, ~XPSR_EXCP);
642         return 0;
643     }
644 
645     env->aarch64 = ((val & PSTATE_nRW) == 0);
646 
647     if (is_a64(env)) {
648         pstate_write(env, val);
649         return 0;
650     }
651 
652     cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
653     return 0;
654 }
655 
656 static int put_cpsr(QEMUFile *f, void *opaque, size_t size,
657                     const VMStateField *field, JSONWriter *vmdesc)
658 {
659     ARMCPU *cpu = opaque;
660     CPUARMState *env = &cpu->env;
661     uint32_t val;
662 
663     if (arm_feature(env, ARM_FEATURE_M)) {
664         /* The low 9 bits are v7m.exception, which is handled by vmstate_m. */
665         val = xpsr_read(env) & ~XPSR_EXCP;
666     } else if (is_a64(env)) {
667         val = pstate_read(env);
668     } else {
669         val = cpsr_read(env);
670     }
671 
672     qemu_put_be32(f, val);
673     return 0;
674 }
675 
676 static const VMStateInfo vmstate_cpsr = {
677     .name = "cpsr",
678     .get = get_cpsr,
679     .put = put_cpsr,
680 };
681 
682 static int get_power(QEMUFile *f, void *opaque, size_t size,
683                     const VMStateField *field)
684 {
685     ARMCPU *cpu = opaque;
686     bool powered_off = qemu_get_byte(f);
687     cpu->power_state = powered_off ? PSCI_OFF : PSCI_ON;
688     return 0;
689 }
690 
691 static int put_power(QEMUFile *f, void *opaque, size_t size,
692                     const VMStateField *field, JSONWriter *vmdesc)
693 {
694     ARMCPU *cpu = opaque;
695 
696     /* Migration should never happen while we transition power states */
697 
698     if (cpu->power_state == PSCI_ON ||
699         cpu->power_state == PSCI_OFF) {
700         bool powered_off = (cpu->power_state == PSCI_OFF) ? true : false;
701         qemu_put_byte(f, powered_off);
702         return 0;
703     } else {
704         return 1;
705     }
706 }
707 
708 static const VMStateInfo vmstate_powered_off = {
709     .name = "powered_off",
710     .get = get_power,
711     .put = put_power,
712 };
713 
714 static int cpu_pre_save(void *opaque)
715 {
716     ARMCPU *cpu = opaque;
717 
718     if (!kvm_enabled()) {
719         pmu_op_start(&cpu->env);
720     }
721 
722     if (kvm_enabled()) {
723         if (!write_kvmstate_to_list(cpu)) {
724             /* This should never fail */
725             g_assert_not_reached();
726         }
727 
728         /*
729          * kvm_arm_cpu_pre_save() must be called after
730          * write_kvmstate_to_list()
731          */
732         kvm_arm_cpu_pre_save(cpu);
733     } else {
734         if (!write_cpustate_to_list(cpu, false)) {
735             /* This should never fail. */
736             g_assert_not_reached();
737         }
738     }
739 
740     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
741     memcpy(cpu->cpreg_vmstate_indexes, cpu->cpreg_indexes,
742            cpu->cpreg_array_len * sizeof(uint64_t));
743     memcpy(cpu->cpreg_vmstate_values, cpu->cpreg_values,
744            cpu->cpreg_array_len * sizeof(uint64_t));
745 
746     return 0;
747 }
748 
749 static int cpu_post_save(void *opaque)
750 {
751     ARMCPU *cpu = opaque;
752 
753     if (!kvm_enabled()) {
754         pmu_op_finish(&cpu->env);
755     }
756 
757     return 0;
758 }
759 
760 static int cpu_pre_load(void *opaque)
761 {
762     ARMCPU *cpu = opaque;
763     CPUARMState *env = &cpu->env;
764 
765     /*
766      * Pre-initialize irq_line_state to a value that's never valid as
767      * real data, so cpu_post_load() can tell whether we've seen the
768      * irq-line-state subsection in the incoming migration state.
769      */
770     env->irq_line_state = UINT32_MAX;
771 
772     if (!kvm_enabled()) {
773         pmu_op_start(&cpu->env);
774     }
775 
776     return 0;
777 }
778 
779 static int cpu_post_load(void *opaque, int version_id)
780 {
781     ARMCPU *cpu = opaque;
782     CPUARMState *env = &cpu->env;
783     int i, v;
784 
785     /*
786      * Handle migration compatibility from old QEMU which didn't
787      * send the irq-line-state subsection. A QEMU without it did not
788      * implement the HCR_EL2.{VI,VF} bits as generating interrupts,
789      * so for TCG the line state matches the bits set in cs->interrupt_request.
790      * For KVM the line state is not stored in cs->interrupt_request
791      * and so this will leave irq_line_state as 0, but this is OK because
792      * we only need to care about it for TCG.
793      */
794     if (env->irq_line_state == UINT32_MAX) {
795         CPUState *cs = CPU(cpu);
796 
797         env->irq_line_state = cs->interrupt_request &
798             (CPU_INTERRUPT_HARD | CPU_INTERRUPT_FIQ |
799              CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VFIQ);
800     }
801 
802     /* Update the values list from the incoming migration data.
803      * Anything in the incoming data which we don't know about is
804      * a migration failure; anything we know about but the incoming
805      * data doesn't specify retains its current (reset) value.
806      * The indexes list remains untouched -- we only inspect the
807      * incoming migration index list so we can match the values array
808      * entries with the right slots in our own values array.
809      */
810 
811     for (i = 0, v = 0; i < cpu->cpreg_array_len
812              && v < cpu->cpreg_vmstate_array_len; i++) {
813         if (cpu->cpreg_vmstate_indexes[v] > cpu->cpreg_indexes[i]) {
814             /* register in our list but not incoming : skip it */
815             continue;
816         }
817         if (cpu->cpreg_vmstate_indexes[v] < cpu->cpreg_indexes[i]) {
818             /* register in their list but not ours: fail migration */
819             return -1;
820         }
821         /* matching register, copy the value over */
822         cpu->cpreg_values[i] = cpu->cpreg_vmstate_values[v];
823         v++;
824     }
825 
826     if (kvm_enabled()) {
827         if (!write_list_to_kvmstate(cpu, KVM_PUT_FULL_STATE)) {
828             return -1;
829         }
830         /* Note that it's OK for the TCG side not to know about
831          * every register in the list; KVM is authoritative if
832          * we're using it.
833          */
834         write_list_to_cpustate(cpu);
835         kvm_arm_cpu_post_load(cpu);
836     } else {
837         if (!write_list_to_cpustate(cpu)) {
838             return -1;
839         }
840     }
841 
842     /*
843      * Misaligned thumb pc is architecturally impossible. Fail the
844      * incoming migration. For TCG it would trigger the assert in
845      * thumb_tr_translate_insn().
846      */
847     if (!is_a64(env) && env->thumb && (env->regs[15] & 1)) {
848         return -1;
849     }
850 
851     hw_breakpoint_update_all(cpu);
852     hw_watchpoint_update_all(cpu);
853 
854     /*
855      * TCG gen_update_fp_context() relies on the invariant that
856      * FPDSCR.LTPSIZE is constant 4 for M-profile with the LOB extension;
857      * forbid bogus incoming data with some other value.
858      */
859     if (arm_feature(env, ARM_FEATURE_M) && cpu_isar_feature(aa32_lob, cpu)) {
860         if (extract32(env->v7m.fpdscr[M_REG_NS],
861                       FPCR_LTPSIZE_SHIFT, FPCR_LTPSIZE_LENGTH) != 4 ||
862             extract32(env->v7m.fpdscr[M_REG_S],
863                       FPCR_LTPSIZE_SHIFT, FPCR_LTPSIZE_LENGTH) != 4) {
864             return -1;
865         }
866     }
867 
868     if (!kvm_enabled()) {
869         pmu_op_finish(&cpu->env);
870     }
871     arm_rebuild_hflags(&cpu->env);
872 
873     return 0;
874 }
875 
876 const VMStateDescription vmstate_arm_cpu = {
877     .name = "cpu",
878     .version_id = 22,
879     .minimum_version_id = 22,
880     .pre_save = cpu_pre_save,
881     .post_save = cpu_post_save,
882     .pre_load = cpu_pre_load,
883     .post_load = cpu_post_load,
884     .fields = (VMStateField[]) {
885         VMSTATE_UINT32_ARRAY(env.regs, ARMCPU, 16),
886         VMSTATE_UINT64_ARRAY(env.xregs, ARMCPU, 32),
887         VMSTATE_UINT64(env.pc, ARMCPU),
888         {
889             .name = "cpsr",
890             .version_id = 0,
891             .size = sizeof(uint32_t),
892             .info = &vmstate_cpsr,
893             .flags = VMS_SINGLE,
894             .offset = 0,
895         },
896         VMSTATE_UINT32(env.spsr, ARMCPU),
897         VMSTATE_UINT64_ARRAY(env.banked_spsr, ARMCPU, 8),
898         VMSTATE_UINT32_ARRAY(env.banked_r13, ARMCPU, 8),
899         VMSTATE_UINT32_ARRAY(env.banked_r14, ARMCPU, 8),
900         VMSTATE_UINT32_ARRAY(env.usr_regs, ARMCPU, 5),
901         VMSTATE_UINT32_ARRAY(env.fiq_regs, ARMCPU, 5),
902         VMSTATE_UINT64_ARRAY(env.elr_el, ARMCPU, 4),
903         VMSTATE_UINT64_ARRAY(env.sp_el, ARMCPU, 4),
904         /* The length-check must come before the arrays to avoid
905          * incoming data possibly overflowing the array.
906          */
907         VMSTATE_INT32_POSITIVE_LE(cpreg_vmstate_array_len, ARMCPU),
908         VMSTATE_VARRAY_INT32(cpreg_vmstate_indexes, ARMCPU,
909                              cpreg_vmstate_array_len,
910                              0, vmstate_info_uint64, uint64_t),
911         VMSTATE_VARRAY_INT32(cpreg_vmstate_values, ARMCPU,
912                              cpreg_vmstate_array_len,
913                              0, vmstate_info_uint64, uint64_t),
914         VMSTATE_UINT64(env.exclusive_addr, ARMCPU),
915         VMSTATE_UINT64(env.exclusive_val, ARMCPU),
916         VMSTATE_UINT64(env.exclusive_high, ARMCPU),
917         VMSTATE_UNUSED(sizeof(uint64_t)),
918         VMSTATE_UINT32(env.exception.syndrome, ARMCPU),
919         VMSTATE_UINT32(env.exception.fsr, ARMCPU),
920         VMSTATE_UINT64(env.exception.vaddress, ARMCPU),
921         VMSTATE_TIMER_PTR(gt_timer[GTIMER_PHYS], ARMCPU),
922         VMSTATE_TIMER_PTR(gt_timer[GTIMER_VIRT], ARMCPU),
923         {
924             .name = "power_state",
925             .version_id = 0,
926             .size = sizeof(bool),
927             .info = &vmstate_powered_off,
928             .flags = VMS_SINGLE,
929             .offset = 0,
930         },
931         VMSTATE_END_OF_LIST()
932     },
933     .subsections = (const VMStateDescription*[]) {
934         &vmstate_vfp,
935         &vmstate_iwmmxt,
936         &vmstate_m,
937         &vmstate_thumb2ee,
938         /* pmsav7_rnr must come before pmsav7 so that we have the
939          * region number before we test it in the VMSTATE_VALIDATE
940          * in vmstate_pmsav7.
941          */
942         &vmstate_pmsav7_rnr,
943         &vmstate_pmsav7,
944         &vmstate_pmsav8,
945         &vmstate_m_security,
946 #ifdef TARGET_AARCH64
947         &vmstate_sve,
948         &vmstate_za,
949 #endif
950         &vmstate_serror,
951         &vmstate_irq_line_state,
952         NULL
953     }
954 };
955