xref: /openbmc/qemu/target/arm/kvm_arm.h (revision ee2e67da)
1 /*
2  * QEMU KVM support -- ARM specific functions.
3  *
4  * Copyright (c) 2012 Linaro Limited
5  *
6  * This work is licensed under the terms of the GNU GPL, version 2 or later.
7  * See the COPYING file in the top-level directory.
8  *
9  */
10 
11 #ifndef QEMU_KVM_ARM_H
12 #define QEMU_KVM_ARM_H
13 
14 #include "sysemu/kvm.h"
15 #include "exec/memory.h"
16 #include "qemu/error-report.h"
17 
18 #define KVM_ARM_VGIC_V2   (1 << 0)
19 #define KVM_ARM_VGIC_V3   (1 << 1)
20 
21 /**
22  * kvm_arm_vcpu_init:
23  * @cs: CPUState
24  *
25  * Initialize (or reinitialize) the VCPU by invoking the
26  * KVM_ARM_VCPU_INIT ioctl with the CPU type and feature
27  * bitmask specified in the CPUState.
28  *
29  * Returns: 0 if success else < 0 error code
30  */
31 int kvm_arm_vcpu_init(CPUState *cs);
32 
33 /**
34  * kvm_arm_vcpu_finalize:
35  * @cs: CPUState
36  * @feature: feature to finalize
37  *
38  * Finalizes the configuration of the specified VCPU feature by
39  * invoking the KVM_ARM_VCPU_FINALIZE ioctl. Features requiring
40  * this are documented in the "KVM_ARM_VCPU_FINALIZE" section of
41  * KVM's API documentation.
42  *
43  * Returns: 0 if success else < 0 error code
44  */
45 int kvm_arm_vcpu_finalize(CPUState *cs, int feature);
46 
47 /**
48  * kvm_arm_register_device:
49  * @mr: memory region for this device
50  * @devid: the KVM device ID
51  * @group: device control API group for setting addresses
52  * @attr: device control API address type
53  * @dev_fd: device control device file descriptor (or -1 if not supported)
54  * @addr_ormask: value to be OR'ed with resolved address
55  *
56  * Remember the memory region @mr, and when it is mapped by the
57  * machine model, tell the kernel that base address using the
58  * KVM_ARM_SET_DEVICE_ADDRESS ioctl or the newer device control API.  @devid
59  * should be the ID of the device as defined by KVM_ARM_SET_DEVICE_ADDRESS or
60  * the arm-vgic device in the device control API.
61  * The machine model may map
62  * and unmap the device multiple times; the kernel will only be told the final
63  * address at the point where machine init is complete.
64  */
65 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
66                              uint64_t attr, int dev_fd, uint64_t addr_ormask);
67 
68 /**
69  * kvm_arm_init_cpreg_list:
70  * @cpu: ARMCPU
71  *
72  * Initialize the ARMCPU cpreg list according to the kernel's
73  * definition of what CPU registers it knows about (and throw away
74  * the previous TCG-created cpreg list).
75  *
76  * Returns: 0 if success, else < 0 error code
77  */
78 int kvm_arm_init_cpreg_list(ARMCPU *cpu);
79 
80 /**
81  * kvm_arm_reg_syncs_via_cpreg_list:
82  * @regidx: KVM register index
83  *
84  * Return true if this KVM register should be synchronized via the
85  * cpreg list of arbitrary system registers, false if it is synchronized
86  * by hand using code in kvm_arch_get/put_registers().
87  */
88 bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx);
89 
90 /**
91  * kvm_arm_cpreg_level:
92  * @regidx: KVM register index
93  *
94  * Return the level of this coprocessor/system register.  Return value is
95  * either KVM_PUT_RUNTIME_STATE, KVM_PUT_RESET_STATE, or KVM_PUT_FULL_STATE.
96  */
97 int kvm_arm_cpreg_level(uint64_t regidx);
98 
99 /**
100  * write_list_to_kvmstate:
101  * @cpu: ARMCPU
102  * @level: the state level to sync
103  *
104  * For each register listed in the ARMCPU cpreg_indexes list, write
105  * its value from the cpreg_values list into the kernel (via ioctl).
106  * This updates KVM's working data structures from TCG data or
107  * from incoming migration state.
108  *
109  * Returns: true if all register values were updated correctly,
110  * false if some register was unknown to the kernel or could not
111  * be written (eg constant register with the wrong value).
112  * Note that we do not stop early on failure -- we will attempt
113  * writing all registers in the list.
114  */
115 bool write_list_to_kvmstate(ARMCPU *cpu, int level);
116 
117 /**
118  * write_kvmstate_to_list:
119  * @cpu: ARMCPU
120  *
121  * For each register listed in the ARMCPU cpreg_indexes list, write
122  * its value from the kernel into the cpreg_values list. This is used to
123  * copy info from KVM's working data structures into TCG or
124  * for outbound migration.
125  *
126  * Returns: true if all register values were read correctly,
127  * false if some register was unknown or could not be read.
128  * Note that we do not stop early on failure -- we will attempt
129  * reading all registers in the list.
130  */
131 bool write_kvmstate_to_list(ARMCPU *cpu);
132 
133 /**
134  * kvm_arm_cpu_pre_save:
135  * @cpu: ARMCPU
136  *
137  * Called after write_kvmstate_to_list() from cpu_pre_save() to update
138  * the cpreg list with KVM CPU state.
139  */
140 void kvm_arm_cpu_pre_save(ARMCPU *cpu);
141 
142 /**
143  * kvm_arm_cpu_post_load:
144  * @cpu: ARMCPU
145  *
146  * Called from cpu_post_load() to update KVM CPU state from the cpreg list.
147  */
148 void kvm_arm_cpu_post_load(ARMCPU *cpu);
149 
150 /**
151  * kvm_arm_reset_vcpu:
152  * @cpu: ARMCPU
153  *
154  * Called at reset time to kernel registers to their initial values.
155  */
156 void kvm_arm_reset_vcpu(ARMCPU *cpu);
157 
158 /**
159  * kvm_arm_init_serror_injection:
160  * @cs: CPUState
161  *
162  * Check whether KVM can set guest SError syndrome.
163  */
164 void kvm_arm_init_serror_injection(CPUState *cs);
165 
166 /**
167  * kvm_get_vcpu_events:
168  * @cpu: ARMCPU
169  *
170  * Get VCPU related state from kvm.
171  *
172  * Returns: 0 if success else < 0 error code
173  */
174 int kvm_get_vcpu_events(ARMCPU *cpu);
175 
176 /**
177  * kvm_put_vcpu_events:
178  * @cpu: ARMCPU
179  *
180  * Put VCPU related state to kvm.
181  *
182  * Returns: 0 if success else < 0 error code
183  */
184 int kvm_put_vcpu_events(ARMCPU *cpu);
185 
186 #ifdef CONFIG_KVM
187 /**
188  * kvm_arm_create_scratch_host_vcpu:
189  * @cpus_to_try: array of QEMU_KVM_ARM_TARGET_* values (terminated with
190  * QEMU_KVM_ARM_TARGET_NONE) to try as fallback if the kernel does not
191  * know the PREFERRED_TARGET ioctl. Passing NULL is the same as passing
192  * an empty array.
193  * @fdarray: filled in with kvmfd, vmfd, cpufd file descriptors in that order
194  * @init: filled in with the necessary values for creating a host
195  * vcpu. If NULL is provided, will not init the vCPU (though the cpufd
196  * will still be set up).
197  *
198  * Create a scratch vcpu in its own VM of the type preferred by the host
199  * kernel (as would be used for '-cpu host'), for purposes of probing it
200  * for capabilities.
201  *
202  * Returns: true on success (and fdarray and init are filled in),
203  * false on failure (and fdarray and init are not valid).
204  */
205 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
206                                       int *fdarray,
207                                       struct kvm_vcpu_init *init);
208 
209 /**
210  * kvm_arm_destroy_scratch_host_vcpu:
211  * @fdarray: array of fds as set up by kvm_arm_create_scratch_host_vcpu
212  *
213  * Tear down the scratch vcpu created by kvm_arm_create_scratch_host_vcpu.
214  */
215 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray);
216 
217 #define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
218 
219 /**
220  * ARMHostCPUFeatures: information about the host CPU (identified
221  * by asking the host kernel)
222  */
223 typedef struct ARMHostCPUFeatures {
224     ARMISARegisters isar;
225     uint64_t features;
226     uint32_t target;
227     const char *dtb_compatible;
228 } ARMHostCPUFeatures;
229 
230 /**
231  * kvm_arm_get_host_cpu_features:
232  * @ahcf: ARMHostCPUClass to fill in
233  *
234  * Probe the capabilities of the host kernel's preferred CPU and fill
235  * in the ARMHostCPUClass struct accordingly.
236  *
237  * Returns true on success and false otherwise.
238  */
239 bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf);
240 
241 /**
242  * kvm_arm_sve_get_vls:
243  * @cs: CPUState
244  * @map: bitmap to fill in
245  *
246  * Get all the SVE vector lengths supported by the KVM host, setting
247  * the bits corresponding to their length in quadwords minus one
248  * (vq - 1) in @map up to ARM_MAX_VQ.
249  */
250 void kvm_arm_sve_get_vls(CPUState *cs, unsigned long *map);
251 
252 /**
253  * kvm_arm_set_cpu_features_from_host:
254  * @cpu: ARMCPU to set the features for
255  *
256  * Set up the ARMCPU struct fields up to match the information probed
257  * from the host CPU.
258  */
259 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu);
260 
261 /**
262  * kvm_arm_add_vcpu_properties:
263  * @obj: The CPU object to add the properties to
264  *
265  * Add all KVM specific CPU properties to the CPU object. These
266  * are the CPU properties with "kvm-" prefixed names.
267  */
268 void kvm_arm_add_vcpu_properties(Object *obj);
269 
270 /**
271  * kvm_arm_steal_time_finalize:
272  * @cpu: ARMCPU for which to finalize kvm-steal-time
273  * @errp: Pointer to Error* for error propagation
274  *
275  * Validate the kvm-steal-time property selection and set its default
276  * based on KVM support and guest configuration.
277  */
278 void kvm_arm_steal_time_finalize(ARMCPU *cpu, Error **errp);
279 
280 /**
281  * kvm_arm_steal_time_supported:
282  *
283  * Returns: true if KVM can enable steal time reporting
284  * and false otherwise.
285  */
286 bool kvm_arm_steal_time_supported(void);
287 
288 /**
289  * kvm_arm_aarch32_supported:
290  *
291  * Returns: true if KVM can enable AArch32 mode
292  * and false otherwise.
293  */
294 bool kvm_arm_aarch32_supported(void);
295 
296 /**
297  * kvm_arm_pmu_supported:
298  *
299  * Returns: true if KVM can enable the PMU
300  * and false otherwise.
301  */
302 bool kvm_arm_pmu_supported(void);
303 
304 /**
305  * kvm_arm_sve_supported:
306  *
307  * Returns true if KVM can enable SVE and false otherwise.
308  */
309 bool kvm_arm_sve_supported(void);
310 
311 /**
312  * kvm_arm_get_max_vm_ipa_size:
313  * @ms: Machine state handle
314  * @fixed_ipa: True when the IPA limit is fixed at 40. This is the case
315  * for legacy KVM.
316  *
317  * Returns the number of bits in the IPA address space supported by KVM
318  */
319 int kvm_arm_get_max_vm_ipa_size(MachineState *ms, bool *fixed_ipa);
320 
321 /**
322  * kvm_arm_sync_mpstate_to_kvm:
323  * @cpu: ARMCPU
324  *
325  * If supported set the KVM MP_STATE based on QEMU's model.
326  *
327  * Returns 0 on success and -1 on failure.
328  */
329 int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu);
330 
331 /**
332  * kvm_arm_sync_mpstate_to_qemu:
333  * @cpu: ARMCPU
334  *
335  * If supported get the MP_STATE from KVM and store in QEMU's model.
336  *
337  * Returns 0 on success and aborts on failure.
338  */
339 int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu);
340 
341 /**
342  * kvm_arm_get_virtual_time:
343  * @cs: CPUState
344  *
345  * Gets the VCPU's virtual counter and stores it in the KVM CPU state.
346  */
347 void kvm_arm_get_virtual_time(CPUState *cs);
348 
349 /**
350  * kvm_arm_put_virtual_time:
351  * @cs: CPUState
352  *
353  * Sets the VCPU's virtual counter to the value stored in the KVM CPU state.
354  */
355 void kvm_arm_put_virtual_time(CPUState *cs);
356 
357 void kvm_arm_vm_state_change(void *opaque, bool running, RunState state);
358 
359 int kvm_arm_vgic_probe(void);
360 
361 void kvm_arm_pmu_set_irq(CPUState *cs, int irq);
362 void kvm_arm_pmu_init(CPUState *cs);
363 
364 /**
365  * kvm_arm_pvtime_init:
366  * @cs: CPUState
367  * @ipa: Per-vcpu guest physical base address of the pvtime structures
368  *
369  * Initializes PVTIME for the VCPU, setting the PVTIME IPA to @ipa.
370  */
371 void kvm_arm_pvtime_init(CPUState *cs, uint64_t ipa);
372 
373 int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level);
374 
375 #else
376 
377 /*
378  * It's safe to call these functions without KVM support.
379  * They should either do nothing or return "not supported".
380  */
381 static inline bool kvm_arm_aarch32_supported(void)
382 {
383     return false;
384 }
385 
386 static inline bool kvm_arm_pmu_supported(void)
387 {
388     return false;
389 }
390 
391 static inline bool kvm_arm_sve_supported(void)
392 {
393     return false;
394 }
395 
396 static inline bool kvm_arm_steal_time_supported(void)
397 {
398     return false;
399 }
400 
401 /*
402  * These functions should never actually be called without KVM support.
403  */
404 static inline void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
405 {
406     g_assert_not_reached();
407 }
408 
409 static inline void kvm_arm_add_vcpu_properties(Object *obj)
410 {
411     g_assert_not_reached();
412 }
413 
414 static inline int kvm_arm_get_max_vm_ipa_size(MachineState *ms, bool *fixed_ipa)
415 {
416     g_assert_not_reached();
417 }
418 
419 static inline int kvm_arm_vgic_probe(void)
420 {
421     g_assert_not_reached();
422 }
423 
424 static inline void kvm_arm_pmu_set_irq(CPUState *cs, int irq)
425 {
426     g_assert_not_reached();
427 }
428 
429 static inline void kvm_arm_pmu_init(CPUState *cs)
430 {
431     g_assert_not_reached();
432 }
433 
434 static inline void kvm_arm_pvtime_init(CPUState *cs, uint64_t ipa)
435 {
436     g_assert_not_reached();
437 }
438 
439 static inline void kvm_arm_steal_time_finalize(ARMCPU *cpu, Error **errp)
440 {
441     g_assert_not_reached();
442 }
443 
444 static inline void kvm_arm_sve_get_vls(CPUState *cs, unsigned long *map)
445 {
446     g_assert_not_reached();
447 }
448 
449 #endif
450 
451 static inline const char *gic_class_name(void)
452 {
453     return kvm_irqchip_in_kernel() ? "kvm-arm-gic" : "arm_gic";
454 }
455 
456 /**
457  * gicv3_class_name
458  *
459  * Return name of GICv3 class to use depending on whether KVM acceleration is
460  * in use. May throw an error if the chosen implementation is not available.
461  *
462  * Returns: class name to use
463  */
464 static inline const char *gicv3_class_name(void)
465 {
466     if (kvm_irqchip_in_kernel()) {
467         return "kvm-arm-gicv3";
468     } else {
469         if (kvm_enabled()) {
470             error_report("Userspace GICv3 is not supported with KVM");
471             exit(1);
472         }
473         return "arm-gicv3";
474     }
475 }
476 
477 /**
478  * kvm_arm_handle_debug:
479  * @cs: CPUState
480  * @debug_exit: debug part of the KVM exit structure
481  *
482  * Returns: TRUE if the debug exception was handled.
483  */
484 bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit);
485 
486 /**
487  * kvm_arm_hw_debug_active:
488  * @cs: CPU State
489  *
490  * Return: TRUE if any hardware breakpoints in use.
491  */
492 bool kvm_arm_hw_debug_active(CPUState *cs);
493 
494 /**
495  * kvm_arm_copy_hw_debug_data:
496  * @ptr: kvm_guest_debug_arch structure
497  *
498  * Copy the architecture specific debug registers into the
499  * kvm_guest_debug ioctl structure.
500  */
501 struct kvm_guest_debug_arch;
502 void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr);
503 
504 /**
505  * kvm_arm_verify_ext_dabt_pending:
506  * @cs: CPUState
507  *
508  * Verify the fault status code wrt the Ext DABT injection
509  *
510  * Returns: true if the fault status code is as expected, false otherwise
511  */
512 bool kvm_arm_verify_ext_dabt_pending(CPUState *cs);
513 
514 /**
515  * its_class_name:
516  *
517  * Return the ITS class name to use depending on whether KVM acceleration
518  * and KVM CAP_SIGNAL_MSI are supported
519  *
520  * Returns: class name to use or NULL
521  */
522 static inline const char *its_class_name(void)
523 {
524     if (kvm_irqchip_in_kernel()) {
525         /* KVM implementation requires this capability */
526         return kvm_direct_msi_enabled() ? "arm-its-kvm" : NULL;
527     } else {
528         /* Software emulation is not implemented yet */
529         return NULL;
530     }
531 }
532 
533 #endif
534