1 /* 2 * QEMU KVM support -- ARM specific functions. 3 * 4 * Copyright (c) 2012 Linaro Limited 5 * 6 * This work is licensed under the terms of the GNU GPL, version 2 or later. 7 * See the COPYING file in the top-level directory. 8 * 9 */ 10 11 #ifndef QEMU_KVM_ARM_H 12 #define QEMU_KVM_ARM_H 13 14 #include "sysemu/kvm.h" 15 #include "exec/memory.h" 16 #include "qemu/error-report.h" 17 18 #define KVM_ARM_VGIC_V2 (1 << 0) 19 #define KVM_ARM_VGIC_V3 (1 << 1) 20 21 /** 22 * kvm_arm_vcpu_init: 23 * @cs: CPUState 24 * 25 * Initialize (or reinitialize) the VCPU by invoking the 26 * KVM_ARM_VCPU_INIT ioctl with the CPU type and feature 27 * bitmask specified in the CPUState. 28 * 29 * Returns: 0 if success else < 0 error code 30 */ 31 int kvm_arm_vcpu_init(CPUState *cs); 32 33 /** 34 * kvm_arm_vcpu_finalize: 35 * @cs: CPUState 36 * @feature: feature to finalize 37 * 38 * Finalizes the configuration of the specified VCPU feature by 39 * invoking the KVM_ARM_VCPU_FINALIZE ioctl. Features requiring 40 * this are documented in the "KVM_ARM_VCPU_FINALIZE" section of 41 * KVM's API documentation. 42 * 43 * Returns: 0 if success else < 0 error code 44 */ 45 int kvm_arm_vcpu_finalize(CPUState *cs, int feature); 46 47 /** 48 * kvm_arm_register_device: 49 * @mr: memory region for this device 50 * @devid: the KVM device ID 51 * @group: device control API group for setting addresses 52 * @attr: device control API address type 53 * @dev_fd: device control device file descriptor (or -1 if not supported) 54 * @addr_ormask: value to be OR'ed with resolved address 55 * 56 * Remember the memory region @mr, and when it is mapped by the 57 * machine model, tell the kernel that base address using the 58 * KVM_ARM_SET_DEVICE_ADDRESS ioctl or the newer device control API. @devid 59 * should be the ID of the device as defined by KVM_ARM_SET_DEVICE_ADDRESS or 60 * the arm-vgic device in the device control API. 61 * The machine model may map 62 * and unmap the device multiple times; the kernel will only be told the final 63 * address at the point where machine init is complete. 64 */ 65 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group, 66 uint64_t attr, int dev_fd, uint64_t addr_ormask); 67 68 /** 69 * kvm_arm_init_cpreg_list: 70 * @cpu: ARMCPU 71 * 72 * Initialize the ARMCPU cpreg list according to the kernel's 73 * definition of what CPU registers it knows about (and throw away 74 * the previous TCG-created cpreg list). 75 * 76 * Returns: 0 if success, else < 0 error code 77 */ 78 int kvm_arm_init_cpreg_list(ARMCPU *cpu); 79 80 /** 81 * kvm_arm_reg_syncs_via_cpreg_list: 82 * @regidx: KVM register index 83 * 84 * Return true if this KVM register should be synchronized via the 85 * cpreg list of arbitrary system registers, false if it is synchronized 86 * by hand using code in kvm_arch_get/put_registers(). 87 */ 88 bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx); 89 90 /** 91 * kvm_arm_cpreg_level: 92 * @regidx: KVM register index 93 * 94 * Return the level of this coprocessor/system register. Return value is 95 * either KVM_PUT_RUNTIME_STATE, KVM_PUT_RESET_STATE, or KVM_PUT_FULL_STATE. 96 */ 97 int kvm_arm_cpreg_level(uint64_t regidx); 98 99 /** 100 * write_list_to_kvmstate: 101 * @cpu: ARMCPU 102 * @level: the state level to sync 103 * 104 * For each register listed in the ARMCPU cpreg_indexes list, write 105 * its value from the cpreg_values list into the kernel (via ioctl). 106 * This updates KVM's working data structures from TCG data or 107 * from incoming migration state. 108 * 109 * Returns: true if all register values were updated correctly, 110 * false if some register was unknown to the kernel or could not 111 * be written (eg constant register with the wrong value). 112 * Note that we do not stop early on failure -- we will attempt 113 * writing all registers in the list. 114 */ 115 bool write_list_to_kvmstate(ARMCPU *cpu, int level); 116 117 /** 118 * write_kvmstate_to_list: 119 * @cpu: ARMCPU 120 * 121 * For each register listed in the ARMCPU cpreg_indexes list, write 122 * its value from the kernel into the cpreg_values list. This is used to 123 * copy info from KVM's working data structures into TCG or 124 * for outbound migration. 125 * 126 * Returns: true if all register values were read correctly, 127 * false if some register was unknown or could not be read. 128 * Note that we do not stop early on failure -- we will attempt 129 * reading all registers in the list. 130 */ 131 bool write_kvmstate_to_list(ARMCPU *cpu); 132 133 /** 134 * kvm_arm_cpu_pre_save: 135 * @cpu: ARMCPU 136 * 137 * Called after write_kvmstate_to_list() from cpu_pre_save() to update 138 * the cpreg list with KVM CPU state. 139 */ 140 void kvm_arm_cpu_pre_save(ARMCPU *cpu); 141 142 /** 143 * kvm_arm_cpu_post_load: 144 * @cpu: ARMCPU 145 * 146 * Called from cpu_post_load() to update KVM CPU state from the cpreg list. 147 */ 148 void kvm_arm_cpu_post_load(ARMCPU *cpu); 149 150 /** 151 * kvm_arm_reset_vcpu: 152 * @cpu: ARMCPU 153 * 154 * Called at reset time to kernel registers to their initial values. 155 */ 156 void kvm_arm_reset_vcpu(ARMCPU *cpu); 157 158 /** 159 * kvm_arm_init_serror_injection: 160 * @cs: CPUState 161 * 162 * Check whether KVM can set guest SError syndrome. 163 */ 164 void kvm_arm_init_serror_injection(CPUState *cs); 165 166 /** 167 * kvm_get_vcpu_events: 168 * @cpu: ARMCPU 169 * 170 * Get VCPU related state from kvm. 171 * 172 * Returns: 0 if success else < 0 error code 173 */ 174 int kvm_get_vcpu_events(ARMCPU *cpu); 175 176 /** 177 * kvm_put_vcpu_events: 178 * @cpu: ARMCPU 179 * 180 * Put VCPU related state to kvm. 181 * 182 * Returns: 0 if success else < 0 error code 183 */ 184 int kvm_put_vcpu_events(ARMCPU *cpu); 185 186 #ifdef CONFIG_KVM 187 /** 188 * kvm_arm_create_scratch_host_vcpu: 189 * @cpus_to_try: array of QEMU_KVM_ARM_TARGET_* values (terminated with 190 * QEMU_KVM_ARM_TARGET_NONE) to try as fallback if the kernel does not 191 * know the PREFERRED_TARGET ioctl. Passing NULL is the same as passing 192 * an empty array. 193 * @fdarray: filled in with kvmfd, vmfd, cpufd file descriptors in that order 194 * @init: filled in with the necessary values for creating a host 195 * vcpu. If NULL is provided, will not init the vCPU (though the cpufd 196 * will still be set up). 197 * 198 * Create a scratch vcpu in its own VM of the type preferred by the host 199 * kernel (as would be used for '-cpu host'), for purposes of probing it 200 * for capabilities. 201 * 202 * Returns: true on success (and fdarray and init are filled in), 203 * false on failure (and fdarray and init are not valid). 204 */ 205 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try, 206 int *fdarray, 207 struct kvm_vcpu_init *init); 208 209 /** 210 * kvm_arm_destroy_scratch_host_vcpu: 211 * @fdarray: array of fds as set up by kvm_arm_create_scratch_host_vcpu 212 * 213 * Tear down the scratch vcpu created by kvm_arm_create_scratch_host_vcpu. 214 */ 215 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray); 216 217 #define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU 218 219 /** 220 * ARMHostCPUFeatures: information about the host CPU (identified 221 * by asking the host kernel) 222 */ 223 typedef struct ARMHostCPUFeatures { 224 ARMISARegisters isar; 225 uint64_t features; 226 uint32_t target; 227 const char *dtb_compatible; 228 } ARMHostCPUFeatures; 229 230 /** 231 * kvm_arm_get_host_cpu_features: 232 * @ahcf: ARMHostCPUClass to fill in 233 * 234 * Probe the capabilities of the host kernel's preferred CPU and fill 235 * in the ARMHostCPUClass struct accordingly. 236 * 237 * Returns true on success and false otherwise. 238 */ 239 bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf); 240 241 /** 242 * kvm_arm_sve_get_vls: 243 * @cs: CPUState 244 * @map: bitmap to fill in 245 * 246 * Get all the SVE vector lengths supported by the KVM host, setting 247 * the bits corresponding to their length in quadwords minus one 248 * (vq - 1) in @map up to ARM_MAX_VQ. 249 */ 250 void kvm_arm_sve_get_vls(CPUState *cs, unsigned long *map); 251 252 /** 253 * kvm_arm_set_cpu_features_from_host: 254 * @cpu: ARMCPU to set the features for 255 * 256 * Set up the ARMCPU struct fields up to match the information probed 257 * from the host CPU. 258 */ 259 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu); 260 261 /** 262 * kvm_arm_add_vcpu_properties: 263 * @obj: The CPU object to add the properties to 264 * 265 * Add all KVM specific CPU properties to the CPU object. These 266 * are the CPU properties with "kvm-" prefixed names. 267 */ 268 void kvm_arm_add_vcpu_properties(Object *obj); 269 270 /** 271 * kvm_arm_aarch32_supported: 272 * 273 * Returns: true if KVM can enable AArch32 mode 274 * and false otherwise. 275 */ 276 bool kvm_arm_aarch32_supported(void); 277 278 /** 279 * kvm_arm_pmu_supported: 280 * 281 * Returns: true if KVM can enable the PMU 282 * and false otherwise. 283 */ 284 bool kvm_arm_pmu_supported(void); 285 286 /** 287 * kvm_arm_sve_supported: 288 * 289 * Returns true if KVM can enable SVE and false otherwise. 290 */ 291 bool kvm_arm_sve_supported(void); 292 293 /** 294 * kvm_arm_get_max_vm_ipa_size: 295 * @ms: Machine state handle 296 * 297 * Returns the number of bits in the IPA address space supported by KVM 298 */ 299 int kvm_arm_get_max_vm_ipa_size(MachineState *ms); 300 301 /** 302 * kvm_arm_sync_mpstate_to_kvm: 303 * @cpu: ARMCPU 304 * 305 * If supported set the KVM MP_STATE based on QEMU's model. 306 * 307 * Returns 0 on success and -1 on failure. 308 */ 309 int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu); 310 311 /** 312 * kvm_arm_sync_mpstate_to_qemu: 313 * @cpu: ARMCPU 314 * 315 * If supported get the MP_STATE from KVM and store in QEMU's model. 316 * 317 * Returns 0 on success and aborts on failure. 318 */ 319 int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu); 320 321 /** 322 * kvm_arm_get_virtual_time: 323 * @cs: CPUState 324 * 325 * Gets the VCPU's virtual counter and stores it in the KVM CPU state. 326 */ 327 void kvm_arm_get_virtual_time(CPUState *cs); 328 329 /** 330 * kvm_arm_put_virtual_time: 331 * @cs: CPUState 332 * 333 * Sets the VCPU's virtual counter to the value stored in the KVM CPU state. 334 */ 335 void kvm_arm_put_virtual_time(CPUState *cs); 336 337 void kvm_arm_vm_state_change(void *opaque, int running, RunState state); 338 339 int kvm_arm_vgic_probe(void); 340 341 void kvm_arm_pmu_set_irq(CPUState *cs, int irq); 342 void kvm_arm_pmu_init(CPUState *cs); 343 int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level); 344 345 #else 346 347 static inline void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu) 348 { 349 /* 350 * This should never actually be called in the "not KVM" case, 351 * but set up the fields to indicate an error anyway. 352 */ 353 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE; 354 cpu->host_cpu_probe_failed = true; 355 } 356 357 static inline void kvm_arm_add_vcpu_properties(Object *obj) {} 358 359 static inline bool kvm_arm_aarch32_supported(void) 360 { 361 return false; 362 } 363 364 static inline bool kvm_arm_pmu_supported(void) 365 { 366 return false; 367 } 368 369 static inline bool kvm_arm_sve_supported(void) 370 { 371 return false; 372 } 373 374 static inline int kvm_arm_get_max_vm_ipa_size(MachineState *ms) 375 { 376 return -ENOENT; 377 } 378 379 static inline int kvm_arm_vgic_probe(void) 380 { 381 return 0; 382 } 383 384 static inline void kvm_arm_pmu_set_irq(CPUState *cs, int irq) {} 385 static inline void kvm_arm_pmu_init(CPUState *cs) {} 386 387 static inline void kvm_arm_sve_get_vls(CPUState *cs, unsigned long *map) {} 388 389 static inline void kvm_arm_get_virtual_time(CPUState *cs) {} 390 static inline void kvm_arm_put_virtual_time(CPUState *cs) {} 391 #endif 392 393 static inline const char *gic_class_name(void) 394 { 395 return kvm_irqchip_in_kernel() ? "kvm-arm-gic" : "arm_gic"; 396 } 397 398 /** 399 * gicv3_class_name 400 * 401 * Return name of GICv3 class to use depending on whether KVM acceleration is 402 * in use. May throw an error if the chosen implementation is not available. 403 * 404 * Returns: class name to use 405 */ 406 static inline const char *gicv3_class_name(void) 407 { 408 if (kvm_irqchip_in_kernel()) { 409 return "kvm-arm-gicv3"; 410 } else { 411 if (kvm_enabled()) { 412 error_report("Userspace GICv3 is not supported with KVM"); 413 exit(1); 414 } 415 return "arm-gicv3"; 416 } 417 } 418 419 /** 420 * kvm_arm_handle_debug: 421 * @cs: CPUState 422 * @debug_exit: debug part of the KVM exit structure 423 * 424 * Returns: TRUE if the debug exception was handled. 425 */ 426 bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit); 427 428 /** 429 * kvm_arm_hw_debug_active: 430 * @cs: CPU State 431 * 432 * Return: TRUE if any hardware breakpoints in use. 433 */ 434 bool kvm_arm_hw_debug_active(CPUState *cs); 435 436 /** 437 * kvm_arm_copy_hw_debug_data: 438 * @ptr: kvm_guest_debug_arch structure 439 * 440 * Copy the architecture specific debug registers into the 441 * kvm_guest_debug ioctl structure. 442 */ 443 struct kvm_guest_debug_arch; 444 void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr); 445 446 /** 447 * kvm_arm_verify_ext_dabt_pending: 448 * @cs: CPUState 449 * 450 * Verify the fault status code wrt the Ext DABT injection 451 * 452 * Returns: true if the fault status code is as expected, false otherwise 453 */ 454 bool kvm_arm_verify_ext_dabt_pending(CPUState *cs); 455 456 /** 457 * its_class_name: 458 * 459 * Return the ITS class name to use depending on whether KVM acceleration 460 * and KVM CAP_SIGNAL_MSI are supported 461 * 462 * Returns: class name to use or NULL 463 */ 464 static inline const char *its_class_name(void) 465 { 466 if (kvm_irqchip_in_kernel()) { 467 /* KVM implementation requires this capability */ 468 return kvm_direct_msi_enabled() ? "arm-its-kvm" : NULL; 469 } else { 470 /* Software emulation is not implemented yet */ 471 return NULL; 472 } 473 } 474 475 #endif 476