xref: /openbmc/qemu/target/arm/kvm64.c (revision ca61e750)
1 /*
2  * ARM implementation of KVM hooks, 64 bit specific code
3  *
4  * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
5  * Copyright Alex Bennée 2014, Linaro
6  *
7  * This work is licensed under the terms of the GNU GPL, version 2 or later.
8  * See the COPYING file in the top-level directory.
9  *
10  */
11 
12 #include "qemu/osdep.h"
13 #include <sys/ioctl.h>
14 #include <sys/ptrace.h>
15 
16 #include <linux/elf.h>
17 #include <linux/kvm.h>
18 
19 #include "qapi/error.h"
20 #include "cpu.h"
21 #include "qemu/timer.h"
22 #include "qemu/error-report.h"
23 #include "qemu/host-utils.h"
24 #include "qemu/main-loop.h"
25 #include "exec/gdbstub.h"
26 #include "sysemu/runstate.h"
27 #include "sysemu/kvm.h"
28 #include "sysemu/kvm_int.h"
29 #include "kvm_arm.h"
30 #include "internals.h"
31 #include "hw/acpi/acpi.h"
32 #include "hw/acpi/ghes.h"
33 #include "hw/arm/virt.h"
34 
35 static bool have_guest_debug;
36 
37 /*
38  * Although the ARM implementation of hardware assisted debugging
39  * allows for different breakpoints per-core, the current GDB
40  * interface treats them as a global pool of registers (which seems to
41  * be the case for x86, ppc and s390). As a result we store one copy
42  * of registers which is used for all active cores.
43  *
44  * Write access is serialised by virtue of the GDB protocol which
45  * updates things. Read access (i.e. when the values are copied to the
46  * vCPU) is also gated by GDB's run control.
47  *
48  * This is not unreasonable as most of the time debugging kernels you
49  * never know which core will eventually execute your function.
50  */
51 
52 typedef struct {
53     uint64_t bcr;
54     uint64_t bvr;
55 } HWBreakpoint;
56 
57 /* The watchpoint registers can cover more area than the requested
58  * watchpoint so we need to store the additional information
59  * somewhere. We also need to supply a CPUWatchpoint to the GDB stub
60  * when the watchpoint is hit.
61  */
62 typedef struct {
63     uint64_t wcr;
64     uint64_t wvr;
65     CPUWatchpoint details;
66 } HWWatchpoint;
67 
68 /* Maximum and current break/watch point counts */
69 int max_hw_bps, max_hw_wps;
70 GArray *hw_breakpoints, *hw_watchpoints;
71 
72 #define cur_hw_wps      (hw_watchpoints->len)
73 #define cur_hw_bps      (hw_breakpoints->len)
74 #define get_hw_bp(i)    (&g_array_index(hw_breakpoints, HWBreakpoint, i))
75 #define get_hw_wp(i)    (&g_array_index(hw_watchpoints, HWWatchpoint, i))
76 
77 /**
78  * kvm_arm_init_debug() - check for guest debug capabilities
79  * @cs: CPUState
80  *
81  * kvm_check_extension returns the number of debug registers we have
82  * or 0 if we have none.
83  *
84  */
85 static void kvm_arm_init_debug(CPUState *cs)
86 {
87     have_guest_debug = kvm_check_extension(cs->kvm_state,
88                                            KVM_CAP_SET_GUEST_DEBUG);
89 
90     max_hw_wps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_WPS);
91     hw_watchpoints = g_array_sized_new(true, true,
92                                        sizeof(HWWatchpoint), max_hw_wps);
93 
94     max_hw_bps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_BPS);
95     hw_breakpoints = g_array_sized_new(true, true,
96                                        sizeof(HWBreakpoint), max_hw_bps);
97     return;
98 }
99 
100 /**
101  * insert_hw_breakpoint()
102  * @addr: address of breakpoint
103  *
104  * See ARM ARM D2.9.1 for details but here we are only going to create
105  * simple un-linked breakpoints (i.e. we don't chain breakpoints
106  * together to match address and context or vmid). The hardware is
107  * capable of fancier matching but that will require exposing that
108  * fanciness to GDB's interface
109  *
110  * DBGBCR<n>_EL1, Debug Breakpoint Control Registers
111  *
112  *  31  24 23  20 19   16 15 14  13  12   9 8   5 4    3 2   1  0
113  * +------+------+-------+-----+----+------+-----+------+-----+---+
114  * | RES0 |  BT  |  LBN  | SSC | HMC| RES0 | BAS | RES0 | PMC | E |
115  * +------+------+-------+-----+----+------+-----+------+-----+---+
116  *
117  * BT: Breakpoint type (0 = unlinked address match)
118  * LBN: Linked BP number (0 = unused)
119  * SSC/HMC/PMC: Security, Higher and Priv access control (Table D-12)
120  * BAS: Byte Address Select (RES1 for AArch64)
121  * E: Enable bit
122  *
123  * DBGBVR<n>_EL1, Debug Breakpoint Value Registers
124  *
125  *  63  53 52       49 48       2  1 0
126  * +------+-----------+----------+-----+
127  * | RESS | VA[52:49] | VA[48:2] | 0 0 |
128  * +------+-----------+----------+-----+
129  *
130  * Depending on the addressing mode bits the top bits of the register
131  * are a sign extension of the highest applicable VA bit. Some
132  * versions of GDB don't do it correctly so we ensure they are correct
133  * here so future PC comparisons will work properly.
134  */
135 
136 static int insert_hw_breakpoint(target_ulong addr)
137 {
138     HWBreakpoint brk = {
139         .bcr = 0x1,                             /* BCR E=1, enable */
140         .bvr = sextract64(addr, 0, 53)
141     };
142 
143     if (cur_hw_bps >= max_hw_bps) {
144         return -ENOBUFS;
145     }
146 
147     brk.bcr = deposit32(brk.bcr, 1, 2, 0x3);   /* PMC = 11 */
148     brk.bcr = deposit32(brk.bcr, 5, 4, 0xf);   /* BAS = RES1 */
149 
150     g_array_append_val(hw_breakpoints, brk);
151 
152     return 0;
153 }
154 
155 /**
156  * delete_hw_breakpoint()
157  * @pc: address of breakpoint
158  *
159  * Delete a breakpoint and shuffle any above down
160  */
161 
162 static int delete_hw_breakpoint(target_ulong pc)
163 {
164     int i;
165     for (i = 0; i < hw_breakpoints->len; i++) {
166         HWBreakpoint *brk = get_hw_bp(i);
167         if (brk->bvr == pc) {
168             g_array_remove_index(hw_breakpoints, i);
169             return 0;
170         }
171     }
172     return -ENOENT;
173 }
174 
175 /**
176  * insert_hw_watchpoint()
177  * @addr: address of watch point
178  * @len: size of area
179  * @type: type of watch point
180  *
181  * See ARM ARM D2.10. As with the breakpoints we can do some advanced
182  * stuff if we want to. The watch points can be linked with the break
183  * points above to make them context aware. However for simplicity
184  * currently we only deal with simple read/write watch points.
185  *
186  * D7.3.11 DBGWCR<n>_EL1, Debug Watchpoint Control Registers
187  *
188  *  31  29 28   24 23  21  20  19 16 15 14  13   12  5 4   3 2   1  0
189  * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
190  * | RES0 |  MASK | RES0 | WT | LBN | SSC | HMC | BAS | LSC | PAC | E |
191  * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
192  *
193  * MASK: num bits addr mask (0=none,01/10=res,11=3 bits (8 bytes))
194  * WT: 0 - unlinked, 1 - linked (not currently used)
195  * LBN: Linked BP number (not currently used)
196  * SSC/HMC/PAC: Security, Higher and Priv access control (Table D2-11)
197  * BAS: Byte Address Select
198  * LSC: Load/Store control (01: load, 10: store, 11: both)
199  * E: Enable
200  *
201  * The bottom 2 bits of the value register are masked. Therefore to
202  * break on any sizes smaller than an unaligned word you need to set
203  * MASK=0, BAS=bit per byte in question. For larger regions (^2) you
204  * need to ensure you mask the address as required and set BAS=0xff
205  */
206 
207 static int insert_hw_watchpoint(target_ulong addr,
208                                 target_ulong len, int type)
209 {
210     HWWatchpoint wp = {
211         .wcr = R_DBGWCR_E_MASK, /* E=1, enable */
212         .wvr = addr & (~0x7ULL),
213         .details = { .vaddr = addr, .len = len }
214     };
215 
216     if (cur_hw_wps >= max_hw_wps) {
217         return -ENOBUFS;
218     }
219 
220     /*
221      * HMC=0 SSC=0 PAC=3 will hit EL0 or EL1, any security state,
222      * valid whether EL3 is implemented or not
223      */
224     wp.wcr = FIELD_DP64(wp.wcr, DBGWCR, PAC, 3);
225 
226     switch (type) {
227     case GDB_WATCHPOINT_READ:
228         wp.wcr = FIELD_DP64(wp.wcr, DBGWCR, LSC, 1);
229         wp.details.flags = BP_MEM_READ;
230         break;
231     case GDB_WATCHPOINT_WRITE:
232         wp.wcr = FIELD_DP64(wp.wcr, DBGWCR, LSC, 2);
233         wp.details.flags = BP_MEM_WRITE;
234         break;
235     case GDB_WATCHPOINT_ACCESS:
236         wp.wcr = FIELD_DP64(wp.wcr, DBGWCR, LSC, 3);
237         wp.details.flags = BP_MEM_ACCESS;
238         break;
239     default:
240         g_assert_not_reached();
241         break;
242     }
243     if (len <= 8) {
244         /* we align the address and set the bits in BAS */
245         int off = addr & 0x7;
246         int bas = (1 << len) - 1;
247 
248         wp.wcr = deposit32(wp.wcr, 5 + off, 8 - off, bas);
249     } else {
250         /* For ranges above 8 bytes we need to be a power of 2 */
251         if (is_power_of_2(len)) {
252             int bits = ctz64(len);
253 
254             wp.wvr &= ~((1 << bits) - 1);
255             wp.wcr = FIELD_DP64(wp.wcr, DBGWCR, MASK, bits);
256             wp.wcr = FIELD_DP64(wp.wcr, DBGWCR, BAS, 0xff);
257         } else {
258             return -ENOBUFS;
259         }
260     }
261 
262     g_array_append_val(hw_watchpoints, wp);
263     return 0;
264 }
265 
266 
267 static bool check_watchpoint_in_range(int i, target_ulong addr)
268 {
269     HWWatchpoint *wp = get_hw_wp(i);
270     uint64_t addr_top, addr_bottom = wp->wvr;
271     int bas = extract32(wp->wcr, 5, 8);
272     int mask = extract32(wp->wcr, 24, 4);
273 
274     if (mask) {
275         addr_top = addr_bottom + (1 << mask);
276     } else {
277         /* BAS must be contiguous but can offset against the base
278          * address in DBGWVR */
279         addr_bottom = addr_bottom + ctz32(bas);
280         addr_top = addr_bottom + clo32(bas);
281     }
282 
283     if (addr >= addr_bottom && addr <= addr_top) {
284         return true;
285     }
286 
287     return false;
288 }
289 
290 /**
291  * delete_hw_watchpoint()
292  * @addr: address of breakpoint
293  *
294  * Delete a breakpoint and shuffle any above down
295  */
296 
297 static int delete_hw_watchpoint(target_ulong addr,
298                                 target_ulong len, int type)
299 {
300     int i;
301     for (i = 0; i < cur_hw_wps; i++) {
302         if (check_watchpoint_in_range(i, addr)) {
303             g_array_remove_index(hw_watchpoints, i);
304             return 0;
305         }
306     }
307     return -ENOENT;
308 }
309 
310 
311 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
312                                   target_ulong len, int type)
313 {
314     switch (type) {
315     case GDB_BREAKPOINT_HW:
316         return insert_hw_breakpoint(addr);
317         break;
318     case GDB_WATCHPOINT_READ:
319     case GDB_WATCHPOINT_WRITE:
320     case GDB_WATCHPOINT_ACCESS:
321         return insert_hw_watchpoint(addr, len, type);
322     default:
323         return -ENOSYS;
324     }
325 }
326 
327 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
328                                   target_ulong len, int type)
329 {
330     switch (type) {
331     case GDB_BREAKPOINT_HW:
332         return delete_hw_breakpoint(addr);
333     case GDB_WATCHPOINT_READ:
334     case GDB_WATCHPOINT_WRITE:
335     case GDB_WATCHPOINT_ACCESS:
336         return delete_hw_watchpoint(addr, len, type);
337     default:
338         return -ENOSYS;
339     }
340 }
341 
342 
343 void kvm_arch_remove_all_hw_breakpoints(void)
344 {
345     if (cur_hw_wps > 0) {
346         g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
347     }
348     if (cur_hw_bps > 0) {
349         g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
350     }
351 }
352 
353 void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
354 {
355     int i;
356     memset(ptr, 0, sizeof(struct kvm_guest_debug_arch));
357 
358     for (i = 0; i < max_hw_wps; i++) {
359         HWWatchpoint *wp = get_hw_wp(i);
360         ptr->dbg_wcr[i] = wp->wcr;
361         ptr->dbg_wvr[i] = wp->wvr;
362     }
363     for (i = 0; i < max_hw_bps; i++) {
364         HWBreakpoint *bp = get_hw_bp(i);
365         ptr->dbg_bcr[i] = bp->bcr;
366         ptr->dbg_bvr[i] = bp->bvr;
367     }
368 }
369 
370 bool kvm_arm_hw_debug_active(CPUState *cs)
371 {
372     return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
373 }
374 
375 static bool find_hw_breakpoint(CPUState *cpu, target_ulong pc)
376 {
377     int i;
378 
379     for (i = 0; i < cur_hw_bps; i++) {
380         HWBreakpoint *bp = get_hw_bp(i);
381         if (bp->bvr == pc) {
382             return true;
383         }
384     }
385     return false;
386 }
387 
388 static CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr)
389 {
390     int i;
391 
392     for (i = 0; i < cur_hw_wps; i++) {
393         if (check_watchpoint_in_range(i, addr)) {
394             return &get_hw_wp(i)->details;
395         }
396     }
397     return NULL;
398 }
399 
400 static bool kvm_arm_set_device_attr(CPUState *cs, struct kvm_device_attr *attr,
401                                     const char *name)
402 {
403     int err;
404 
405     err = kvm_vcpu_ioctl(cs, KVM_HAS_DEVICE_ATTR, attr);
406     if (err != 0) {
407         error_report("%s: KVM_HAS_DEVICE_ATTR: %s", name, strerror(-err));
408         return false;
409     }
410 
411     err = kvm_vcpu_ioctl(cs, KVM_SET_DEVICE_ATTR, attr);
412     if (err != 0) {
413         error_report("%s: KVM_SET_DEVICE_ATTR: %s", name, strerror(-err));
414         return false;
415     }
416 
417     return true;
418 }
419 
420 void kvm_arm_pmu_init(CPUState *cs)
421 {
422     struct kvm_device_attr attr = {
423         .group = KVM_ARM_VCPU_PMU_V3_CTRL,
424         .attr = KVM_ARM_VCPU_PMU_V3_INIT,
425     };
426 
427     if (!ARM_CPU(cs)->has_pmu) {
428         return;
429     }
430     if (!kvm_arm_set_device_attr(cs, &attr, "PMU")) {
431         error_report("failed to init PMU");
432         abort();
433     }
434 }
435 
436 void kvm_arm_pmu_set_irq(CPUState *cs, int irq)
437 {
438     struct kvm_device_attr attr = {
439         .group = KVM_ARM_VCPU_PMU_V3_CTRL,
440         .addr = (intptr_t)&irq,
441         .attr = KVM_ARM_VCPU_PMU_V3_IRQ,
442     };
443 
444     if (!ARM_CPU(cs)->has_pmu) {
445         return;
446     }
447     if (!kvm_arm_set_device_attr(cs, &attr, "PMU")) {
448         error_report("failed to set irq for PMU");
449         abort();
450     }
451 }
452 
453 void kvm_arm_pvtime_init(CPUState *cs, uint64_t ipa)
454 {
455     struct kvm_device_attr attr = {
456         .group = KVM_ARM_VCPU_PVTIME_CTRL,
457         .attr = KVM_ARM_VCPU_PVTIME_IPA,
458         .addr = (uint64_t)&ipa,
459     };
460 
461     if (ARM_CPU(cs)->kvm_steal_time == ON_OFF_AUTO_OFF) {
462         return;
463     }
464     if (!kvm_arm_set_device_attr(cs, &attr, "PVTIME IPA")) {
465         error_report("failed to init PVTIME IPA");
466         abort();
467     }
468 }
469 
470 static int read_sys_reg32(int fd, uint32_t *pret, uint64_t id)
471 {
472     uint64_t ret;
473     struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)&ret };
474     int err;
475 
476     assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
477     err = ioctl(fd, KVM_GET_ONE_REG, &idreg);
478     if (err < 0) {
479         return -1;
480     }
481     *pret = ret;
482     return 0;
483 }
484 
485 static int read_sys_reg64(int fd, uint64_t *pret, uint64_t id)
486 {
487     struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)pret };
488 
489     assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
490     return ioctl(fd, KVM_GET_ONE_REG, &idreg);
491 }
492 
493 static bool kvm_arm_pauth_supported(void)
494 {
495     return (kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_ADDRESS) &&
496             kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_GENERIC));
497 }
498 
499 bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
500 {
501     /* Identify the feature bits corresponding to the host CPU, and
502      * fill out the ARMHostCPUClass fields accordingly. To do this
503      * we have to create a scratch VM, create a single CPU inside it,
504      * and then query that CPU for the relevant ID registers.
505      */
506     int fdarray[3];
507     bool sve_supported;
508     bool pmu_supported = false;
509     uint64_t features = 0;
510     uint64_t t;
511     int err;
512 
513     /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
514      * we know these will only support creating one kind of guest CPU,
515      * which is its preferred CPU type. Fortunately these old kernels
516      * support only a very limited number of CPUs.
517      */
518     static const uint32_t cpus_to_try[] = {
519         KVM_ARM_TARGET_AEM_V8,
520         KVM_ARM_TARGET_FOUNDATION_V8,
521         KVM_ARM_TARGET_CORTEX_A57,
522         QEMU_KVM_ARM_TARGET_NONE
523     };
524     /*
525      * target = -1 informs kvm_arm_create_scratch_host_vcpu()
526      * to use the preferred target
527      */
528     struct kvm_vcpu_init init = { .target = -1, };
529 
530     /*
531      * Ask for Pointer Authentication if supported. We can't play the
532      * SVE trick of synthesising the ID reg as KVM won't tell us
533      * whether we have the architected or IMPDEF version of PAuth, so
534      * we have to use the actual ID regs.
535      */
536     if (kvm_arm_pauth_supported()) {
537         init.features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
538                              1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
539     }
540 
541     if (kvm_arm_pmu_supported()) {
542         init.features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
543         pmu_supported = true;
544     }
545 
546     if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
547         return false;
548     }
549 
550     ahcf->target = init.target;
551     ahcf->dtb_compatible = "arm,arm-v8";
552 
553     err = read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr0,
554                          ARM64_SYS_REG(3, 0, 0, 4, 0));
555     if (unlikely(err < 0)) {
556         /*
557          * Before v4.15, the kernel only exposed a limited number of system
558          * registers, not including any of the interesting AArch64 ID regs.
559          * For the most part we could leave these fields as zero with minimal
560          * effect, since this does not affect the values seen by the guest.
561          *
562          * However, it could cause problems down the line for QEMU,
563          * so provide a minimal v8.0 default.
564          *
565          * ??? Could read MIDR and use knowledge from cpu64.c.
566          * ??? Could map a page of memory into our temp guest and
567          *     run the tiniest of hand-crafted kernels to extract
568          *     the values seen by the guest.
569          * ??? Either of these sounds like too much effort just
570          *     to work around running a modern host kernel.
571          */
572         ahcf->isar.id_aa64pfr0 = 0x00000011; /* EL1&0, AArch64 only */
573         err = 0;
574     } else {
575         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr1,
576                               ARM64_SYS_REG(3, 0, 0, 4, 1));
577         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr0,
578                               ARM64_SYS_REG(3, 0, 0, 5, 0));
579         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr1,
580                               ARM64_SYS_REG(3, 0, 0, 5, 1));
581         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar0,
582                               ARM64_SYS_REG(3, 0, 0, 6, 0));
583         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar1,
584                               ARM64_SYS_REG(3, 0, 0, 6, 1));
585         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr0,
586                               ARM64_SYS_REG(3, 0, 0, 7, 0));
587         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr1,
588                               ARM64_SYS_REG(3, 0, 0, 7, 1));
589         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr2,
590                               ARM64_SYS_REG(3, 0, 0, 7, 2));
591 
592         /*
593          * Note that if AArch32 support is not present in the host,
594          * the AArch32 sysregs are present to be read, but will
595          * return UNKNOWN values.  This is neither better nor worse
596          * than skipping the reads and leaving 0, as we must avoid
597          * considering the values in every case.
598          */
599         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr0,
600                               ARM64_SYS_REG(3, 0, 0, 1, 0));
601         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr1,
602                               ARM64_SYS_REG(3, 0, 0, 1, 1));
603         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr2,
604                               ARM64_SYS_REG(3, 0, 0, 3, 4));
605         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr0,
606                               ARM64_SYS_REG(3, 0, 0, 1, 2));
607         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr0,
608                               ARM64_SYS_REG(3, 0, 0, 1, 4));
609         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr1,
610                               ARM64_SYS_REG(3, 0, 0, 1, 5));
611         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr2,
612                               ARM64_SYS_REG(3, 0, 0, 1, 6));
613         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr3,
614                               ARM64_SYS_REG(3, 0, 0, 1, 7));
615         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar0,
616                               ARM64_SYS_REG(3, 0, 0, 2, 0));
617         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar1,
618                               ARM64_SYS_REG(3, 0, 0, 2, 1));
619         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar2,
620                               ARM64_SYS_REG(3, 0, 0, 2, 2));
621         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar3,
622                               ARM64_SYS_REG(3, 0, 0, 2, 3));
623         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar4,
624                               ARM64_SYS_REG(3, 0, 0, 2, 4));
625         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar5,
626                               ARM64_SYS_REG(3, 0, 0, 2, 5));
627         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr4,
628                               ARM64_SYS_REG(3, 0, 0, 2, 6));
629         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar6,
630                               ARM64_SYS_REG(3, 0, 0, 2, 7));
631 
632         err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr0,
633                               ARM64_SYS_REG(3, 0, 0, 3, 0));
634         err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr1,
635                               ARM64_SYS_REG(3, 0, 0, 3, 1));
636         err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr2,
637                               ARM64_SYS_REG(3, 0, 0, 3, 2));
638 
639         /*
640          * DBGDIDR is a bit complicated because the kernel doesn't
641          * provide an accessor for it in 64-bit mode, which is what this
642          * scratch VM is in, and there's no architected "64-bit sysreg
643          * which reads the same as the 32-bit register" the way there is
644          * for other ID registers. Instead we synthesize a value from the
645          * AArch64 ID_AA64DFR0, the same way the kernel code in
646          * arch/arm64/kvm/sys_regs.c:trap_dbgidr() does.
647          * We only do this if the CPU supports AArch32 at EL1.
648          */
649         if (FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL1) >= 2) {
650             int wrps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, WRPS);
651             int brps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, BRPS);
652             int ctx_cmps =
653                 FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS);
654             int version = 6; /* ARMv8 debug architecture */
655             bool has_el3 =
656                 !!FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL3);
657             uint32_t dbgdidr = 0;
658 
659             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, WRPS, wrps);
660             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, BRPS, brps);
661             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, CTX_CMPS, ctx_cmps);
662             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, VERSION, version);
663             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, NSUHD_IMP, has_el3);
664             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, SE_IMP, has_el3);
665             dbgdidr |= (1 << 15); /* RES1 bit */
666             ahcf->isar.dbgdidr = dbgdidr;
667         }
668 
669         if (pmu_supported) {
670             /* PMCR_EL0 is only accessible if the vCPU has feature PMU_V3 */
671             err |= read_sys_reg64(fdarray[2], &ahcf->isar.reset_pmcr_el0,
672                                   ARM64_SYS_REG(3, 3, 9, 12, 0));
673         }
674     }
675 
676     sve_supported = ioctl(fdarray[0], KVM_CHECK_EXTENSION, KVM_CAP_ARM_SVE) > 0;
677 
678     /* Add feature bits that can't appear until after VCPU init. */
679     if (sve_supported) {
680         t = ahcf->isar.id_aa64pfr0;
681         t = FIELD_DP64(t, ID_AA64PFR0, SVE, 1);
682         ahcf->isar.id_aa64pfr0 = t;
683 
684         /*
685          * Before v5.1, KVM did not support SVE and did not expose
686          * ID_AA64ZFR0_EL1 even as RAZ.  After v5.1, KVM still does
687          * not expose the register to "user" requests like this
688          * unless the host supports SVE.
689          */
690         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64zfr0,
691                               ARM64_SYS_REG(3, 0, 0, 4, 4));
692     }
693 
694     kvm_arm_destroy_scratch_host_vcpu(fdarray);
695 
696     if (err < 0) {
697         return false;
698     }
699 
700     /*
701      * We can assume any KVM supporting CPU is at least a v8
702      * with VFPv4+Neon; this in turn implies most of the other
703      * feature bits.
704      */
705     features |= 1ULL << ARM_FEATURE_V8;
706     features |= 1ULL << ARM_FEATURE_NEON;
707     features |= 1ULL << ARM_FEATURE_AARCH64;
708     features |= 1ULL << ARM_FEATURE_PMU;
709     features |= 1ULL << ARM_FEATURE_GENERIC_TIMER;
710 
711     ahcf->features = features;
712 
713     return true;
714 }
715 
716 void kvm_arm_steal_time_finalize(ARMCPU *cpu, Error **errp)
717 {
718     bool has_steal_time = kvm_arm_steal_time_supported();
719 
720     if (cpu->kvm_steal_time == ON_OFF_AUTO_AUTO) {
721         if (!has_steal_time || !arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
722             cpu->kvm_steal_time = ON_OFF_AUTO_OFF;
723         } else {
724             cpu->kvm_steal_time = ON_OFF_AUTO_ON;
725         }
726     } else if (cpu->kvm_steal_time == ON_OFF_AUTO_ON) {
727         if (!has_steal_time) {
728             error_setg(errp, "'kvm-steal-time' cannot be enabled "
729                              "on this host");
730             return;
731         } else if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
732             /*
733              * DEN0057A chapter 2 says "This specification only covers
734              * systems in which the Execution state of the hypervisor
735              * as well as EL1 of virtual machines is AArch64.". And,
736              * to ensure that, the smc/hvc calls are only specified as
737              * smc64/hvc64.
738              */
739             error_setg(errp, "'kvm-steal-time' cannot be enabled "
740                              "for AArch32 guests");
741             return;
742         }
743     }
744 }
745 
746 bool kvm_arm_aarch32_supported(void)
747 {
748     return kvm_check_extension(kvm_state, KVM_CAP_ARM_EL1_32BIT);
749 }
750 
751 bool kvm_arm_sve_supported(void)
752 {
753     return kvm_check_extension(kvm_state, KVM_CAP_ARM_SVE);
754 }
755 
756 bool kvm_arm_steal_time_supported(void)
757 {
758     return kvm_check_extension(kvm_state, KVM_CAP_STEAL_TIME);
759 }
760 
761 QEMU_BUILD_BUG_ON(KVM_ARM64_SVE_VQ_MIN != 1);
762 
763 void kvm_arm_sve_get_vls(CPUState *cs, unsigned long *map)
764 {
765     /* Only call this function if kvm_arm_sve_supported() returns true. */
766     static uint64_t vls[KVM_ARM64_SVE_VLS_WORDS];
767     static bool probed;
768     uint32_t vq = 0;
769     int i, j;
770 
771     bitmap_zero(map, ARM_MAX_VQ);
772 
773     /*
774      * KVM ensures all host CPUs support the same set of vector lengths.
775      * So we only need to create the scratch VCPUs once and then cache
776      * the results.
777      */
778     if (!probed) {
779         struct kvm_vcpu_init init = {
780             .target = -1,
781             .features[0] = (1 << KVM_ARM_VCPU_SVE),
782         };
783         struct kvm_one_reg reg = {
784             .id = KVM_REG_ARM64_SVE_VLS,
785             .addr = (uint64_t)&vls[0],
786         };
787         int fdarray[3], ret;
788 
789         probed = true;
790 
791         if (!kvm_arm_create_scratch_host_vcpu(NULL, fdarray, &init)) {
792             error_report("failed to create scratch VCPU with SVE enabled");
793             abort();
794         }
795         ret = ioctl(fdarray[2], KVM_GET_ONE_REG, &reg);
796         kvm_arm_destroy_scratch_host_vcpu(fdarray);
797         if (ret) {
798             error_report("failed to get KVM_REG_ARM64_SVE_VLS: %s",
799                          strerror(errno));
800             abort();
801         }
802 
803         for (i = KVM_ARM64_SVE_VLS_WORDS - 1; i >= 0; --i) {
804             if (vls[i]) {
805                 vq = 64 - clz64(vls[i]) + i * 64;
806                 break;
807             }
808         }
809         if (vq > ARM_MAX_VQ) {
810             warn_report("KVM supports vector lengths larger than "
811                         "QEMU can enable");
812         }
813     }
814 
815     for (i = 0; i < KVM_ARM64_SVE_VLS_WORDS; ++i) {
816         if (!vls[i]) {
817             continue;
818         }
819         for (j = 1; j <= 64; ++j) {
820             vq = j + i * 64;
821             if (vq > ARM_MAX_VQ) {
822                 return;
823             }
824             if (vls[i] & (1UL << (j - 1))) {
825                 set_bit(vq - 1, map);
826             }
827         }
828     }
829 }
830 
831 static int kvm_arm_sve_set_vls(CPUState *cs)
832 {
833     uint64_t vls[KVM_ARM64_SVE_VLS_WORDS] = {0};
834     struct kvm_one_reg reg = {
835         .id = KVM_REG_ARM64_SVE_VLS,
836         .addr = (uint64_t)&vls[0],
837     };
838     ARMCPU *cpu = ARM_CPU(cs);
839     uint32_t vq;
840     int i, j;
841 
842     assert(cpu->sve_max_vq <= KVM_ARM64_SVE_VQ_MAX);
843 
844     for (vq = 1; vq <= cpu->sve_max_vq; ++vq) {
845         if (test_bit(vq - 1, cpu->sve_vq_map)) {
846             i = (vq - 1) / 64;
847             j = (vq - 1) % 64;
848             vls[i] |= 1UL << j;
849         }
850     }
851 
852     return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
853 }
854 
855 #define ARM_CPU_ID_MPIDR       3, 0, 0, 0, 5
856 
857 int kvm_arch_init_vcpu(CPUState *cs)
858 {
859     int ret;
860     uint64_t mpidr;
861     ARMCPU *cpu = ARM_CPU(cs);
862     CPUARMState *env = &cpu->env;
863     uint64_t psciver;
864 
865     if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
866         !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
867         error_report("KVM is not supported for this guest CPU type");
868         return -EINVAL;
869     }
870 
871     qemu_add_vm_change_state_handler(kvm_arm_vm_state_change, cs);
872 
873     /* Determine init features for this CPU */
874     memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
875     if (cs->start_powered_off) {
876         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
877     }
878     if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
879         cpu->psci_version = QEMU_PSCI_VERSION_0_2;
880         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
881     }
882     if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
883         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
884     }
885     if (!kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PMU_V3)) {
886         cpu->has_pmu = false;
887     }
888     if (cpu->has_pmu) {
889         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
890     } else {
891         env->features &= ~(1ULL << ARM_FEATURE_PMU);
892     }
893     if (cpu_isar_feature(aa64_sve, cpu)) {
894         assert(kvm_arm_sve_supported());
895         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_SVE;
896     }
897     if (cpu_isar_feature(aa64_pauth, cpu)) {
898         cpu->kvm_init_features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
899                                       1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
900     }
901 
902     /* Do KVM_ARM_VCPU_INIT ioctl */
903     ret = kvm_arm_vcpu_init(cs);
904     if (ret) {
905         return ret;
906     }
907 
908     if (cpu_isar_feature(aa64_sve, cpu)) {
909         ret = kvm_arm_sve_set_vls(cs);
910         if (ret) {
911             return ret;
912         }
913         ret = kvm_arm_vcpu_finalize(cs, KVM_ARM_VCPU_SVE);
914         if (ret) {
915             return ret;
916         }
917     }
918 
919     /*
920      * KVM reports the exact PSCI version it is implementing via a
921      * special sysreg. If it is present, use its contents to determine
922      * what to report to the guest in the dtb (it is the PSCI version,
923      * in the same 15-bits major 16-bits minor format that PSCI_VERSION
924      * returns).
925      */
926     if (!kvm_get_one_reg(cs, KVM_REG_ARM_PSCI_VERSION, &psciver)) {
927         cpu->psci_version = psciver;
928     }
929 
930     /*
931      * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
932      * Currently KVM has its own idea about MPIDR assignment, so we
933      * override our defaults with what we get from KVM.
934      */
935     ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
936     if (ret) {
937         return ret;
938     }
939     cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
940 
941     kvm_arm_init_debug(cs);
942 
943     /* Check whether user space can specify guest syndrome value */
944     kvm_arm_init_serror_injection(cs);
945 
946     return kvm_arm_init_cpreg_list(cpu);
947 }
948 
949 int kvm_arch_destroy_vcpu(CPUState *cs)
950 {
951     return 0;
952 }
953 
954 bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
955 {
956     /* Return true if the regidx is a register we should synchronize
957      * via the cpreg_tuples array (ie is not a core or sve reg that
958      * we sync by hand in kvm_arch_get/put_registers())
959      */
960     switch (regidx & KVM_REG_ARM_COPROC_MASK) {
961     case KVM_REG_ARM_CORE:
962     case KVM_REG_ARM64_SVE:
963         return false;
964     default:
965         return true;
966     }
967 }
968 
969 typedef struct CPRegStateLevel {
970     uint64_t regidx;
971     int level;
972 } CPRegStateLevel;
973 
974 /* All system registers not listed in the following table are assumed to be
975  * of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
976  * often, you must add it to this table with a state of either
977  * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
978  */
979 static const CPRegStateLevel non_runtime_cpregs[] = {
980     { KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE },
981 };
982 
983 int kvm_arm_cpreg_level(uint64_t regidx)
984 {
985     int i;
986 
987     for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) {
988         const CPRegStateLevel *l = &non_runtime_cpregs[i];
989         if (l->regidx == regidx) {
990             return l->level;
991         }
992     }
993 
994     return KVM_PUT_RUNTIME_STATE;
995 }
996 
997 /* Callers must hold the iothread mutex lock */
998 static void kvm_inject_arm_sea(CPUState *c)
999 {
1000     ARMCPU *cpu = ARM_CPU(c);
1001     CPUARMState *env = &cpu->env;
1002     uint32_t esr;
1003     bool same_el;
1004 
1005     c->exception_index = EXCP_DATA_ABORT;
1006     env->exception.target_el = 1;
1007 
1008     /*
1009      * Set the DFSC to synchronous external abort and set FnV to not valid,
1010      * this will tell guest the FAR_ELx is UNKNOWN for this abort.
1011      */
1012     same_el = arm_current_el(env) == env->exception.target_el;
1013     esr = syn_data_abort_no_iss(same_el, 1, 0, 0, 0, 0, 0x10);
1014 
1015     env->exception.syndrome = esr;
1016 
1017     arm_cpu_do_interrupt(c);
1018 }
1019 
1020 #define AARCH64_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
1021                  KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1022 
1023 #define AARCH64_SIMD_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
1024                  KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1025 
1026 #define AARCH64_SIMD_CTRL_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
1027                  KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1028 
1029 static int kvm_arch_put_fpsimd(CPUState *cs)
1030 {
1031     CPUARMState *env = &ARM_CPU(cs)->env;
1032     struct kvm_one_reg reg;
1033     int i, ret;
1034 
1035     for (i = 0; i < 32; i++) {
1036         uint64_t *q = aa64_vfp_qreg(env, i);
1037 #if HOST_BIG_ENDIAN
1038         uint64_t fp_val[2] = { q[1], q[0] };
1039         reg.addr = (uintptr_t)fp_val;
1040 #else
1041         reg.addr = (uintptr_t)q;
1042 #endif
1043         reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
1044         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1045         if (ret) {
1046             return ret;
1047         }
1048     }
1049 
1050     return 0;
1051 }
1052 
1053 /*
1054  * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
1055  * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
1056  * code the slice index to zero for now as it's unlikely we'll need more than
1057  * one slice for quite some time.
1058  */
1059 static int kvm_arch_put_sve(CPUState *cs)
1060 {
1061     ARMCPU *cpu = ARM_CPU(cs);
1062     CPUARMState *env = &cpu->env;
1063     uint64_t tmp[ARM_MAX_VQ * 2];
1064     uint64_t *r;
1065     struct kvm_one_reg reg;
1066     int n, ret;
1067 
1068     for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
1069         r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2);
1070         reg.addr = (uintptr_t)r;
1071         reg.id = KVM_REG_ARM64_SVE_ZREG(n, 0);
1072         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1073         if (ret) {
1074             return ret;
1075         }
1076     }
1077 
1078     for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
1079         r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0],
1080                         DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
1081         reg.addr = (uintptr_t)r;
1082         reg.id = KVM_REG_ARM64_SVE_PREG(n, 0);
1083         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1084         if (ret) {
1085             return ret;
1086         }
1087     }
1088 
1089     r = sve_bswap64(tmp, &env->vfp.pregs[FFR_PRED_NUM].p[0],
1090                     DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
1091     reg.addr = (uintptr_t)r;
1092     reg.id = KVM_REG_ARM64_SVE_FFR(0);
1093     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1094     if (ret) {
1095         return ret;
1096     }
1097 
1098     return 0;
1099 }
1100 
1101 int kvm_arch_put_registers(CPUState *cs, int level)
1102 {
1103     struct kvm_one_reg reg;
1104     uint64_t val;
1105     uint32_t fpr;
1106     int i, ret;
1107     unsigned int el;
1108 
1109     ARMCPU *cpu = ARM_CPU(cs);
1110     CPUARMState *env = &cpu->env;
1111 
1112     /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
1113      * AArch64 registers before pushing them out to 64-bit KVM.
1114      */
1115     if (!is_a64(env)) {
1116         aarch64_sync_32_to_64(env);
1117     }
1118 
1119     for (i = 0; i < 31; i++) {
1120         reg.id = AARCH64_CORE_REG(regs.regs[i]);
1121         reg.addr = (uintptr_t) &env->xregs[i];
1122         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1123         if (ret) {
1124             return ret;
1125         }
1126     }
1127 
1128     /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
1129      * QEMU side we keep the current SP in xregs[31] as well.
1130      */
1131     aarch64_save_sp(env, 1);
1132 
1133     reg.id = AARCH64_CORE_REG(regs.sp);
1134     reg.addr = (uintptr_t) &env->sp_el[0];
1135     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1136     if (ret) {
1137         return ret;
1138     }
1139 
1140     reg.id = AARCH64_CORE_REG(sp_el1);
1141     reg.addr = (uintptr_t) &env->sp_el[1];
1142     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1143     if (ret) {
1144         return ret;
1145     }
1146 
1147     /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
1148     if (is_a64(env)) {
1149         val = pstate_read(env);
1150     } else {
1151         val = cpsr_read(env);
1152     }
1153     reg.id = AARCH64_CORE_REG(regs.pstate);
1154     reg.addr = (uintptr_t) &val;
1155     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1156     if (ret) {
1157         return ret;
1158     }
1159 
1160     reg.id = AARCH64_CORE_REG(regs.pc);
1161     reg.addr = (uintptr_t) &env->pc;
1162     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1163     if (ret) {
1164         return ret;
1165     }
1166 
1167     reg.id = AARCH64_CORE_REG(elr_el1);
1168     reg.addr = (uintptr_t) &env->elr_el[1];
1169     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1170     if (ret) {
1171         return ret;
1172     }
1173 
1174     /* Saved Program State Registers
1175      *
1176      * Before we restore from the banked_spsr[] array we need to
1177      * ensure that any modifications to env->spsr are correctly
1178      * reflected in the banks.
1179      */
1180     el = arm_current_el(env);
1181     if (el > 0 && !is_a64(env)) {
1182         i = bank_number(env->uncached_cpsr & CPSR_M);
1183         env->banked_spsr[i] = env->spsr;
1184     }
1185 
1186     /* KVM 0-4 map to QEMU banks 1-5 */
1187     for (i = 0; i < KVM_NR_SPSR; i++) {
1188         reg.id = AARCH64_CORE_REG(spsr[i]);
1189         reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
1190         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1191         if (ret) {
1192             return ret;
1193         }
1194     }
1195 
1196     if (cpu_isar_feature(aa64_sve, cpu)) {
1197         ret = kvm_arch_put_sve(cs);
1198     } else {
1199         ret = kvm_arch_put_fpsimd(cs);
1200     }
1201     if (ret) {
1202         return ret;
1203     }
1204 
1205     reg.addr = (uintptr_t)(&fpr);
1206     fpr = vfp_get_fpsr(env);
1207     reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
1208     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1209     if (ret) {
1210         return ret;
1211     }
1212 
1213     reg.addr = (uintptr_t)(&fpr);
1214     fpr = vfp_get_fpcr(env);
1215     reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
1216     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1217     if (ret) {
1218         return ret;
1219     }
1220 
1221     write_cpustate_to_list(cpu, true);
1222 
1223     if (!write_list_to_kvmstate(cpu, level)) {
1224         return -EINVAL;
1225     }
1226 
1227    /*
1228     * Setting VCPU events should be triggered after syncing the registers
1229     * to avoid overwriting potential changes made by KVM upon calling
1230     * KVM_SET_VCPU_EVENTS ioctl
1231     */
1232     ret = kvm_put_vcpu_events(cpu);
1233     if (ret) {
1234         return ret;
1235     }
1236 
1237     kvm_arm_sync_mpstate_to_kvm(cpu);
1238 
1239     return ret;
1240 }
1241 
1242 static int kvm_arch_get_fpsimd(CPUState *cs)
1243 {
1244     CPUARMState *env = &ARM_CPU(cs)->env;
1245     struct kvm_one_reg reg;
1246     int i, ret;
1247 
1248     for (i = 0; i < 32; i++) {
1249         uint64_t *q = aa64_vfp_qreg(env, i);
1250         reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
1251         reg.addr = (uintptr_t)q;
1252         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1253         if (ret) {
1254             return ret;
1255         } else {
1256 #if HOST_BIG_ENDIAN
1257             uint64_t t;
1258             t = q[0], q[0] = q[1], q[1] = t;
1259 #endif
1260         }
1261     }
1262 
1263     return 0;
1264 }
1265 
1266 /*
1267  * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
1268  * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
1269  * code the slice index to zero for now as it's unlikely we'll need more than
1270  * one slice for quite some time.
1271  */
1272 static int kvm_arch_get_sve(CPUState *cs)
1273 {
1274     ARMCPU *cpu = ARM_CPU(cs);
1275     CPUARMState *env = &cpu->env;
1276     struct kvm_one_reg reg;
1277     uint64_t *r;
1278     int n, ret;
1279 
1280     for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
1281         r = &env->vfp.zregs[n].d[0];
1282         reg.addr = (uintptr_t)r;
1283         reg.id = KVM_REG_ARM64_SVE_ZREG(n, 0);
1284         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1285         if (ret) {
1286             return ret;
1287         }
1288         sve_bswap64(r, r, cpu->sve_max_vq * 2);
1289     }
1290 
1291     for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
1292         r = &env->vfp.pregs[n].p[0];
1293         reg.addr = (uintptr_t)r;
1294         reg.id = KVM_REG_ARM64_SVE_PREG(n, 0);
1295         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1296         if (ret) {
1297             return ret;
1298         }
1299         sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
1300     }
1301 
1302     r = &env->vfp.pregs[FFR_PRED_NUM].p[0];
1303     reg.addr = (uintptr_t)r;
1304     reg.id = KVM_REG_ARM64_SVE_FFR(0);
1305     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1306     if (ret) {
1307         return ret;
1308     }
1309     sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
1310 
1311     return 0;
1312 }
1313 
1314 int kvm_arch_get_registers(CPUState *cs)
1315 {
1316     struct kvm_one_reg reg;
1317     uint64_t val;
1318     unsigned int el;
1319     uint32_t fpr;
1320     int i, ret;
1321 
1322     ARMCPU *cpu = ARM_CPU(cs);
1323     CPUARMState *env = &cpu->env;
1324 
1325     for (i = 0; i < 31; i++) {
1326         reg.id = AARCH64_CORE_REG(regs.regs[i]);
1327         reg.addr = (uintptr_t) &env->xregs[i];
1328         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1329         if (ret) {
1330             return ret;
1331         }
1332     }
1333 
1334     reg.id = AARCH64_CORE_REG(regs.sp);
1335     reg.addr = (uintptr_t) &env->sp_el[0];
1336     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1337     if (ret) {
1338         return ret;
1339     }
1340 
1341     reg.id = AARCH64_CORE_REG(sp_el1);
1342     reg.addr = (uintptr_t) &env->sp_el[1];
1343     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1344     if (ret) {
1345         return ret;
1346     }
1347 
1348     reg.id = AARCH64_CORE_REG(regs.pstate);
1349     reg.addr = (uintptr_t) &val;
1350     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1351     if (ret) {
1352         return ret;
1353     }
1354 
1355     env->aarch64 = ((val & PSTATE_nRW) == 0);
1356     if (is_a64(env)) {
1357         pstate_write(env, val);
1358     } else {
1359         cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
1360     }
1361 
1362     /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
1363      * QEMU side we keep the current SP in xregs[31] as well.
1364      */
1365     aarch64_restore_sp(env, 1);
1366 
1367     reg.id = AARCH64_CORE_REG(regs.pc);
1368     reg.addr = (uintptr_t) &env->pc;
1369     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1370     if (ret) {
1371         return ret;
1372     }
1373 
1374     /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
1375      * incoming AArch64 regs received from 64-bit KVM.
1376      * We must perform this after all of the registers have been acquired from
1377      * the kernel.
1378      */
1379     if (!is_a64(env)) {
1380         aarch64_sync_64_to_32(env);
1381     }
1382 
1383     reg.id = AARCH64_CORE_REG(elr_el1);
1384     reg.addr = (uintptr_t) &env->elr_el[1];
1385     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1386     if (ret) {
1387         return ret;
1388     }
1389 
1390     /* Fetch the SPSR registers
1391      *
1392      * KVM SPSRs 0-4 map to QEMU banks 1-5
1393      */
1394     for (i = 0; i < KVM_NR_SPSR; i++) {
1395         reg.id = AARCH64_CORE_REG(spsr[i]);
1396         reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
1397         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1398         if (ret) {
1399             return ret;
1400         }
1401     }
1402 
1403     el = arm_current_el(env);
1404     if (el > 0 && !is_a64(env)) {
1405         i = bank_number(env->uncached_cpsr & CPSR_M);
1406         env->spsr = env->banked_spsr[i];
1407     }
1408 
1409     if (cpu_isar_feature(aa64_sve, cpu)) {
1410         ret = kvm_arch_get_sve(cs);
1411     } else {
1412         ret = kvm_arch_get_fpsimd(cs);
1413     }
1414     if (ret) {
1415         return ret;
1416     }
1417 
1418     reg.addr = (uintptr_t)(&fpr);
1419     reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
1420     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1421     if (ret) {
1422         return ret;
1423     }
1424     vfp_set_fpsr(env, fpr);
1425 
1426     reg.addr = (uintptr_t)(&fpr);
1427     reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
1428     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1429     if (ret) {
1430         return ret;
1431     }
1432     vfp_set_fpcr(env, fpr);
1433 
1434     ret = kvm_get_vcpu_events(cpu);
1435     if (ret) {
1436         return ret;
1437     }
1438 
1439     if (!write_kvmstate_to_list(cpu)) {
1440         return -EINVAL;
1441     }
1442     /* Note that it's OK to have registers which aren't in CPUState,
1443      * so we can ignore a failure return here.
1444      */
1445     write_list_to_cpustate(cpu);
1446 
1447     kvm_arm_sync_mpstate_to_qemu(cpu);
1448 
1449     /* TODO: other registers */
1450     return ret;
1451 }
1452 
1453 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
1454 {
1455     ram_addr_t ram_addr;
1456     hwaddr paddr;
1457 
1458     assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
1459 
1460     if (acpi_ghes_present() && addr) {
1461         ram_addr = qemu_ram_addr_from_host(addr);
1462         if (ram_addr != RAM_ADDR_INVALID &&
1463             kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
1464             kvm_hwpoison_page_add(ram_addr);
1465             /*
1466              * If this is a BUS_MCEERR_AR, we know we have been called
1467              * synchronously from the vCPU thread, so we can easily
1468              * synchronize the state and inject an error.
1469              *
1470              * TODO: we currently don't tell the guest at all about
1471              * BUS_MCEERR_AO. In that case we might either be being
1472              * called synchronously from the vCPU thread, or a bit
1473              * later from the main thread, so doing the injection of
1474              * the error would be more complicated.
1475              */
1476             if (code == BUS_MCEERR_AR) {
1477                 kvm_cpu_synchronize_state(c);
1478                 if (!acpi_ghes_record_errors(ACPI_HEST_SRC_ID_SEA, paddr)) {
1479                     kvm_inject_arm_sea(c);
1480                 } else {
1481                     error_report("failed to record the error");
1482                     abort();
1483                 }
1484             }
1485             return;
1486         }
1487         if (code == BUS_MCEERR_AO) {
1488             error_report("Hardware memory error at addr %p for memory used by "
1489                 "QEMU itself instead of guest system!", addr);
1490         }
1491     }
1492 
1493     if (code == BUS_MCEERR_AR) {
1494         error_report("Hardware memory error!");
1495         exit(1);
1496     }
1497 }
1498 
1499 /* C6.6.29 BRK instruction */
1500 static const uint32_t brk_insn = 0xd4200000;
1501 
1502 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1503 {
1504     if (have_guest_debug) {
1505         if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
1506             cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
1507             return -EINVAL;
1508         }
1509         return 0;
1510     } else {
1511         error_report("guest debug not supported on this kernel");
1512         return -EINVAL;
1513     }
1514 }
1515 
1516 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1517 {
1518     static uint32_t brk;
1519 
1520     if (have_guest_debug) {
1521         if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
1522             brk != brk_insn ||
1523             cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
1524             return -EINVAL;
1525         }
1526         return 0;
1527     } else {
1528         error_report("guest debug not supported on this kernel");
1529         return -EINVAL;
1530     }
1531 }
1532 
1533 /* See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register
1534  *
1535  * To minimise translating between kernel and user-space the kernel
1536  * ABI just provides user-space with the full exception syndrome
1537  * register value to be decoded in QEMU.
1538  */
1539 
1540 bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit)
1541 {
1542     int hsr_ec = syn_get_ec(debug_exit->hsr);
1543     ARMCPU *cpu = ARM_CPU(cs);
1544     CPUARMState *env = &cpu->env;
1545 
1546     /* Ensure PC is synchronised */
1547     kvm_cpu_synchronize_state(cs);
1548 
1549     switch (hsr_ec) {
1550     case EC_SOFTWARESTEP:
1551         if (cs->singlestep_enabled) {
1552             return true;
1553         } else {
1554             /*
1555              * The kernel should have suppressed the guest's ability to
1556              * single step at this point so something has gone wrong.
1557              */
1558             error_report("%s: guest single-step while debugging unsupported"
1559                          " (%"PRIx64", %"PRIx32")",
1560                          __func__, env->pc, debug_exit->hsr);
1561             return false;
1562         }
1563         break;
1564     case EC_AA64_BKPT:
1565         if (kvm_find_sw_breakpoint(cs, env->pc)) {
1566             return true;
1567         }
1568         break;
1569     case EC_BREAKPOINT:
1570         if (find_hw_breakpoint(cs, env->pc)) {
1571             return true;
1572         }
1573         break;
1574     case EC_WATCHPOINT:
1575     {
1576         CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far);
1577         if (wp) {
1578             cs->watchpoint_hit = wp;
1579             return true;
1580         }
1581         break;
1582     }
1583     default:
1584         error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")",
1585                      __func__, debug_exit->hsr, env->pc);
1586     }
1587 
1588     /* If we are not handling the debug exception it must belong to
1589      * the guest. Let's re-use the existing TCG interrupt code to set
1590      * everything up properly.
1591      */
1592     cs->exception_index = EXCP_BKPT;
1593     env->exception.syndrome = debug_exit->hsr;
1594     env->exception.vaddress = debug_exit->far;
1595     env->exception.target_el = 1;
1596     qemu_mutex_lock_iothread();
1597     arm_cpu_do_interrupt(cs);
1598     qemu_mutex_unlock_iothread();
1599 
1600     return false;
1601 }
1602 
1603 #define ARM64_REG_ESR_EL1 ARM64_SYS_REG(3, 0, 5, 2, 0)
1604 #define ARM64_REG_TCR_EL1 ARM64_SYS_REG(3, 0, 2, 0, 2)
1605 
1606 /*
1607  * ESR_EL1
1608  * ISS encoding
1609  * AARCH64: DFSC,   bits [5:0]
1610  * AARCH32:
1611  *      TTBCR.EAE == 0
1612  *          FS[4]   - DFSR[10]
1613  *          FS[3:0] - DFSR[3:0]
1614  *      TTBCR.EAE == 1
1615  *          FS, bits [5:0]
1616  */
1617 #define ESR_DFSC(aarch64, lpae, v)        \
1618     ((aarch64 || (lpae)) ? ((v) & 0x3F)   \
1619                : (((v) >> 6) | ((v) & 0x1F)))
1620 
1621 #define ESR_DFSC_EXTABT(aarch64, lpae) \
1622     ((aarch64) ? 0x10 : (lpae) ? 0x10 : 0x8)
1623 
1624 bool kvm_arm_verify_ext_dabt_pending(CPUState *cs)
1625 {
1626     uint64_t dfsr_val;
1627 
1628     if (!kvm_get_one_reg(cs, ARM64_REG_ESR_EL1, &dfsr_val)) {
1629         ARMCPU *cpu = ARM_CPU(cs);
1630         CPUARMState *env = &cpu->env;
1631         int aarch64_mode = arm_feature(env, ARM_FEATURE_AARCH64);
1632         int lpae = 0;
1633 
1634         if (!aarch64_mode) {
1635             uint64_t ttbcr;
1636 
1637             if (!kvm_get_one_reg(cs, ARM64_REG_TCR_EL1, &ttbcr)) {
1638                 lpae = arm_feature(env, ARM_FEATURE_LPAE)
1639                         && (ttbcr & TTBCR_EAE);
1640             }
1641         }
1642         /*
1643          * The verification here is based on the DFSC bits
1644          * of the ESR_EL1 reg only
1645          */
1646          return (ESR_DFSC(aarch64_mode, lpae, dfsr_val) ==
1647                 ESR_DFSC_EXTABT(aarch64_mode, lpae));
1648     }
1649     return false;
1650 }
1651