xref: /openbmc/qemu/target/arm/kvm64.c (revision ab9056ff)
1 /*
2  * ARM implementation of KVM hooks, 64 bit specific code
3  *
4  * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
5  * Copyright Alex Bennée 2014, Linaro
6  *
7  * This work is licensed under the terms of the GNU GPL, version 2 or later.
8  * See the COPYING file in the top-level directory.
9  *
10  */
11 
12 #include "qemu/osdep.h"
13 #include <sys/ioctl.h>
14 #include <sys/ptrace.h>
15 
16 #include <linux/elf.h>
17 #include <linux/kvm.h>
18 
19 #include "qemu-common.h"
20 #include "cpu.h"
21 #include "qemu/timer.h"
22 #include "qemu/error-report.h"
23 #include "qemu/host-utils.h"
24 #include "qemu/main-loop.h"
25 #include "exec/gdbstub.h"
26 #include "sysemu/kvm.h"
27 #include "sysemu/kvm_int.h"
28 #include "kvm_arm.h"
29 #include "hw/boards.h"
30 #include "internals.h"
31 
32 static bool have_guest_debug;
33 
34 /*
35  * Although the ARM implementation of hardware assisted debugging
36  * allows for different breakpoints per-core, the current GDB
37  * interface treats them as a global pool of registers (which seems to
38  * be the case for x86, ppc and s390). As a result we store one copy
39  * of registers which is used for all active cores.
40  *
41  * Write access is serialised by virtue of the GDB protocol which
42  * updates things. Read access (i.e. when the values are copied to the
43  * vCPU) is also gated by GDB's run control.
44  *
45  * This is not unreasonable as most of the time debugging kernels you
46  * never know which core will eventually execute your function.
47  */
48 
49 typedef struct {
50     uint64_t bcr;
51     uint64_t bvr;
52 } HWBreakpoint;
53 
54 /* The watchpoint registers can cover more area than the requested
55  * watchpoint so we need to store the additional information
56  * somewhere. We also need to supply a CPUWatchpoint to the GDB stub
57  * when the watchpoint is hit.
58  */
59 typedef struct {
60     uint64_t wcr;
61     uint64_t wvr;
62     CPUWatchpoint details;
63 } HWWatchpoint;
64 
65 /* Maximum and current break/watch point counts */
66 int max_hw_bps, max_hw_wps;
67 GArray *hw_breakpoints, *hw_watchpoints;
68 
69 #define cur_hw_wps      (hw_watchpoints->len)
70 #define cur_hw_bps      (hw_breakpoints->len)
71 #define get_hw_bp(i)    (&g_array_index(hw_breakpoints, HWBreakpoint, i))
72 #define get_hw_wp(i)    (&g_array_index(hw_watchpoints, HWWatchpoint, i))
73 
74 /**
75  * kvm_arm_init_debug() - check for guest debug capabilities
76  * @cs: CPUState
77  *
78  * kvm_check_extension returns the number of debug registers we have
79  * or 0 if we have none.
80  *
81  */
82 static void kvm_arm_init_debug(CPUState *cs)
83 {
84     have_guest_debug = kvm_check_extension(cs->kvm_state,
85                                            KVM_CAP_SET_GUEST_DEBUG);
86 
87     max_hw_wps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_WPS);
88     hw_watchpoints = g_array_sized_new(true, true,
89                                        sizeof(HWWatchpoint), max_hw_wps);
90 
91     max_hw_bps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_BPS);
92     hw_breakpoints = g_array_sized_new(true, true,
93                                        sizeof(HWBreakpoint), max_hw_bps);
94     return;
95 }
96 
97 /**
98  * insert_hw_breakpoint()
99  * @addr: address of breakpoint
100  *
101  * See ARM ARM D2.9.1 for details but here we are only going to create
102  * simple un-linked breakpoints (i.e. we don't chain breakpoints
103  * together to match address and context or vmid). The hardware is
104  * capable of fancier matching but that will require exposing that
105  * fanciness to GDB's interface
106  *
107  * DBGBCR<n>_EL1, Debug Breakpoint Control Registers
108  *
109  *  31  24 23  20 19   16 15 14  13  12   9 8   5 4    3 2   1  0
110  * +------+------+-------+-----+----+------+-----+------+-----+---+
111  * | RES0 |  BT  |  LBN  | SSC | HMC| RES0 | BAS | RES0 | PMC | E |
112  * +------+------+-------+-----+----+------+-----+------+-----+---+
113  *
114  * BT: Breakpoint type (0 = unlinked address match)
115  * LBN: Linked BP number (0 = unused)
116  * SSC/HMC/PMC: Security, Higher and Priv access control (Table D-12)
117  * BAS: Byte Address Select (RES1 for AArch64)
118  * E: Enable bit
119  *
120  * DBGBVR<n>_EL1, Debug Breakpoint Value Registers
121  *
122  *  63  53 52       49 48       2  1 0
123  * +------+-----------+----------+-----+
124  * | RESS | VA[52:49] | VA[48:2] | 0 0 |
125  * +------+-----------+----------+-----+
126  *
127  * Depending on the addressing mode bits the top bits of the register
128  * are a sign extension of the highest applicable VA bit. Some
129  * versions of GDB don't do it correctly so we ensure they are correct
130  * here so future PC comparisons will work properly.
131  */
132 
133 static int insert_hw_breakpoint(target_ulong addr)
134 {
135     HWBreakpoint brk = {
136         .bcr = 0x1,                             /* BCR E=1, enable */
137         .bvr = sextract64(addr, 0, 53)
138     };
139 
140     if (cur_hw_bps >= max_hw_bps) {
141         return -ENOBUFS;
142     }
143 
144     brk.bcr = deposit32(brk.bcr, 1, 2, 0x3);   /* PMC = 11 */
145     brk.bcr = deposit32(brk.bcr, 5, 4, 0xf);   /* BAS = RES1 */
146 
147     g_array_append_val(hw_breakpoints, brk);
148 
149     return 0;
150 }
151 
152 /**
153  * delete_hw_breakpoint()
154  * @pc: address of breakpoint
155  *
156  * Delete a breakpoint and shuffle any above down
157  */
158 
159 static int delete_hw_breakpoint(target_ulong pc)
160 {
161     int i;
162     for (i = 0; i < hw_breakpoints->len; i++) {
163         HWBreakpoint *brk = get_hw_bp(i);
164         if (brk->bvr == pc) {
165             g_array_remove_index(hw_breakpoints, i);
166             return 0;
167         }
168     }
169     return -ENOENT;
170 }
171 
172 /**
173  * insert_hw_watchpoint()
174  * @addr: address of watch point
175  * @len: size of area
176  * @type: type of watch point
177  *
178  * See ARM ARM D2.10. As with the breakpoints we can do some advanced
179  * stuff if we want to. The watch points can be linked with the break
180  * points above to make them context aware. However for simplicity
181  * currently we only deal with simple read/write watch points.
182  *
183  * D7.3.11 DBGWCR<n>_EL1, Debug Watchpoint Control Registers
184  *
185  *  31  29 28   24 23  21  20  19 16 15 14  13   12  5 4   3 2   1  0
186  * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
187  * | RES0 |  MASK | RES0 | WT | LBN | SSC | HMC | BAS | LSC | PAC | E |
188  * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
189  *
190  * MASK: num bits addr mask (0=none,01/10=res,11=3 bits (8 bytes))
191  * WT: 0 - unlinked, 1 - linked (not currently used)
192  * LBN: Linked BP number (not currently used)
193  * SSC/HMC/PAC: Security, Higher and Priv access control (Table D2-11)
194  * BAS: Byte Address Select
195  * LSC: Load/Store control (01: load, 10: store, 11: both)
196  * E: Enable
197  *
198  * The bottom 2 bits of the value register are masked. Therefore to
199  * break on any sizes smaller than an unaligned word you need to set
200  * MASK=0, BAS=bit per byte in question. For larger regions (^2) you
201  * need to ensure you mask the address as required and set BAS=0xff
202  */
203 
204 static int insert_hw_watchpoint(target_ulong addr,
205                                 target_ulong len, int type)
206 {
207     HWWatchpoint wp = {
208         .wcr = 1, /* E=1, enable */
209         .wvr = addr & (~0x7ULL),
210         .details = { .vaddr = addr, .len = len }
211     };
212 
213     if (cur_hw_wps >= max_hw_wps) {
214         return -ENOBUFS;
215     }
216 
217     /*
218      * HMC=0 SSC=0 PAC=3 will hit EL0 or EL1, any security state,
219      * valid whether EL3 is implemented or not
220      */
221     wp.wcr = deposit32(wp.wcr, 1, 2, 3);
222 
223     switch (type) {
224     case GDB_WATCHPOINT_READ:
225         wp.wcr = deposit32(wp.wcr, 3, 2, 1);
226         wp.details.flags = BP_MEM_READ;
227         break;
228     case GDB_WATCHPOINT_WRITE:
229         wp.wcr = deposit32(wp.wcr, 3, 2, 2);
230         wp.details.flags = BP_MEM_WRITE;
231         break;
232     case GDB_WATCHPOINT_ACCESS:
233         wp.wcr = deposit32(wp.wcr, 3, 2, 3);
234         wp.details.flags = BP_MEM_ACCESS;
235         break;
236     default:
237         g_assert_not_reached();
238         break;
239     }
240     if (len <= 8) {
241         /* we align the address and set the bits in BAS */
242         int off = addr & 0x7;
243         int bas = (1 << len) - 1;
244 
245         wp.wcr = deposit32(wp.wcr, 5 + off, 8 - off, bas);
246     } else {
247         /* For ranges above 8 bytes we need to be a power of 2 */
248         if (is_power_of_2(len)) {
249             int bits = ctz64(len);
250 
251             wp.wvr &= ~((1 << bits) - 1);
252             wp.wcr = deposit32(wp.wcr, 24, 4, bits);
253             wp.wcr = deposit32(wp.wcr, 5, 8, 0xff);
254         } else {
255             return -ENOBUFS;
256         }
257     }
258 
259     g_array_append_val(hw_watchpoints, wp);
260     return 0;
261 }
262 
263 
264 static bool check_watchpoint_in_range(int i, target_ulong addr)
265 {
266     HWWatchpoint *wp = get_hw_wp(i);
267     uint64_t addr_top, addr_bottom = wp->wvr;
268     int bas = extract32(wp->wcr, 5, 8);
269     int mask = extract32(wp->wcr, 24, 4);
270 
271     if (mask) {
272         addr_top = addr_bottom + (1 << mask);
273     } else {
274         /* BAS must be contiguous but can offset against the base
275          * address in DBGWVR */
276         addr_bottom = addr_bottom + ctz32(bas);
277         addr_top = addr_bottom + clo32(bas);
278     }
279 
280     if (addr >= addr_bottom && addr <= addr_top) {
281         return true;
282     }
283 
284     return false;
285 }
286 
287 /**
288  * delete_hw_watchpoint()
289  * @addr: address of breakpoint
290  *
291  * Delete a breakpoint and shuffle any above down
292  */
293 
294 static int delete_hw_watchpoint(target_ulong addr,
295                                 target_ulong len, int type)
296 {
297     int i;
298     for (i = 0; i < cur_hw_wps; i++) {
299         if (check_watchpoint_in_range(i, addr)) {
300             g_array_remove_index(hw_watchpoints, i);
301             return 0;
302         }
303     }
304     return -ENOENT;
305 }
306 
307 
308 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
309                                   target_ulong len, int type)
310 {
311     switch (type) {
312     case GDB_BREAKPOINT_HW:
313         return insert_hw_breakpoint(addr);
314         break;
315     case GDB_WATCHPOINT_READ:
316     case GDB_WATCHPOINT_WRITE:
317     case GDB_WATCHPOINT_ACCESS:
318         return insert_hw_watchpoint(addr, len, type);
319     default:
320         return -ENOSYS;
321     }
322 }
323 
324 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
325                                   target_ulong len, int type)
326 {
327     switch (type) {
328     case GDB_BREAKPOINT_HW:
329         return delete_hw_breakpoint(addr);
330         break;
331     case GDB_WATCHPOINT_READ:
332     case GDB_WATCHPOINT_WRITE:
333     case GDB_WATCHPOINT_ACCESS:
334         return delete_hw_watchpoint(addr, len, type);
335     default:
336         return -ENOSYS;
337     }
338 }
339 
340 
341 void kvm_arch_remove_all_hw_breakpoints(void)
342 {
343     if (cur_hw_wps > 0) {
344         g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
345     }
346     if (cur_hw_bps > 0) {
347         g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
348     }
349 }
350 
351 void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
352 {
353     int i;
354     memset(ptr, 0, sizeof(struct kvm_guest_debug_arch));
355 
356     for (i = 0; i < max_hw_wps; i++) {
357         HWWatchpoint *wp = get_hw_wp(i);
358         ptr->dbg_wcr[i] = wp->wcr;
359         ptr->dbg_wvr[i] = wp->wvr;
360     }
361     for (i = 0; i < max_hw_bps; i++) {
362         HWBreakpoint *bp = get_hw_bp(i);
363         ptr->dbg_bcr[i] = bp->bcr;
364         ptr->dbg_bvr[i] = bp->bvr;
365     }
366 }
367 
368 bool kvm_arm_hw_debug_active(CPUState *cs)
369 {
370     return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
371 }
372 
373 static bool find_hw_breakpoint(CPUState *cpu, target_ulong pc)
374 {
375     int i;
376 
377     for (i = 0; i < cur_hw_bps; i++) {
378         HWBreakpoint *bp = get_hw_bp(i);
379         if (bp->bvr == pc) {
380             return true;
381         }
382     }
383     return false;
384 }
385 
386 static CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr)
387 {
388     int i;
389 
390     for (i = 0; i < cur_hw_wps; i++) {
391         if (check_watchpoint_in_range(i, addr)) {
392             return &get_hw_wp(i)->details;
393         }
394     }
395     return NULL;
396 }
397 
398 static bool kvm_arm_pmu_set_attr(CPUState *cs, struct kvm_device_attr *attr)
399 {
400     int err;
401 
402     err = kvm_vcpu_ioctl(cs, KVM_HAS_DEVICE_ATTR, attr);
403     if (err != 0) {
404         error_report("PMU: KVM_HAS_DEVICE_ATTR: %s", strerror(-err));
405         return false;
406     }
407 
408     err = kvm_vcpu_ioctl(cs, KVM_SET_DEVICE_ATTR, attr);
409     if (err != 0) {
410         error_report("PMU: KVM_SET_DEVICE_ATTR: %s", strerror(-err));
411         return false;
412     }
413 
414     return true;
415 }
416 
417 void kvm_arm_pmu_init(CPUState *cs)
418 {
419     struct kvm_device_attr attr = {
420         .group = KVM_ARM_VCPU_PMU_V3_CTRL,
421         .attr = KVM_ARM_VCPU_PMU_V3_INIT,
422     };
423 
424     if (!ARM_CPU(cs)->has_pmu) {
425         return;
426     }
427     if (!kvm_arm_pmu_set_attr(cs, &attr)) {
428         error_report("failed to init PMU");
429         abort();
430     }
431 }
432 
433 void kvm_arm_pmu_set_irq(CPUState *cs, int irq)
434 {
435     struct kvm_device_attr attr = {
436         .group = KVM_ARM_VCPU_PMU_V3_CTRL,
437         .addr = (intptr_t)&irq,
438         .attr = KVM_ARM_VCPU_PMU_V3_IRQ,
439     };
440 
441     if (!ARM_CPU(cs)->has_pmu) {
442         return;
443     }
444     if (!kvm_arm_pmu_set_attr(cs, &attr)) {
445         error_report("failed to set irq for PMU");
446         abort();
447     }
448 }
449 
450 static inline void set_feature(uint64_t *features, int feature)
451 {
452     *features |= 1ULL << feature;
453 }
454 
455 static inline void unset_feature(uint64_t *features, int feature)
456 {
457     *features &= ~(1ULL << feature);
458 }
459 
460 static int read_sys_reg32(int fd, uint32_t *pret, uint64_t id)
461 {
462     uint64_t ret;
463     struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)&ret };
464     int err;
465 
466     assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
467     err = ioctl(fd, KVM_GET_ONE_REG, &idreg);
468     if (err < 0) {
469         return -1;
470     }
471     *pret = ret;
472     return 0;
473 }
474 
475 static int read_sys_reg64(int fd, uint64_t *pret, uint64_t id)
476 {
477     struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)pret };
478 
479     assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
480     return ioctl(fd, KVM_GET_ONE_REG, &idreg);
481 }
482 
483 bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
484 {
485     /* Identify the feature bits corresponding to the host CPU, and
486      * fill out the ARMHostCPUClass fields accordingly. To do this
487      * we have to create a scratch VM, create a single CPU inside it,
488      * and then query that CPU for the relevant ID registers.
489      */
490     int fdarray[3];
491     uint64_t features = 0;
492     int err;
493 
494     /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
495      * we know these will only support creating one kind of guest CPU,
496      * which is its preferred CPU type. Fortunately these old kernels
497      * support only a very limited number of CPUs.
498      */
499     static const uint32_t cpus_to_try[] = {
500         KVM_ARM_TARGET_AEM_V8,
501         KVM_ARM_TARGET_FOUNDATION_V8,
502         KVM_ARM_TARGET_CORTEX_A57,
503         QEMU_KVM_ARM_TARGET_NONE
504     };
505     struct kvm_vcpu_init init;
506 
507     if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
508         return false;
509     }
510 
511     ahcf->target = init.target;
512     ahcf->dtb_compatible = "arm,arm-v8";
513 
514     err = read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr0,
515                          ARM64_SYS_REG(3, 0, 0, 4, 0));
516     if (unlikely(err < 0)) {
517         /*
518          * Before v4.15, the kernel only exposed a limited number of system
519          * registers, not including any of the interesting AArch64 ID regs.
520          * For the most part we could leave these fields as zero with minimal
521          * effect, since this does not affect the values seen by the guest.
522          *
523          * However, it could cause problems down the line for QEMU,
524          * so provide a minimal v8.0 default.
525          *
526          * ??? Could read MIDR and use knowledge from cpu64.c.
527          * ??? Could map a page of memory into our temp guest and
528          *     run the tiniest of hand-crafted kernels to extract
529          *     the values seen by the guest.
530          * ??? Either of these sounds like too much effort just
531          *     to work around running a modern host kernel.
532          */
533         ahcf->isar.id_aa64pfr0 = 0x00000011; /* EL1&0, AArch64 only */
534         err = 0;
535     } else {
536         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr1,
537                               ARM64_SYS_REG(3, 0, 0, 4, 1));
538         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar0,
539                               ARM64_SYS_REG(3, 0, 0, 6, 0));
540         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar1,
541                               ARM64_SYS_REG(3, 0, 0, 6, 1));
542         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr0,
543                               ARM64_SYS_REG(3, 0, 0, 7, 0));
544         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr1,
545                               ARM64_SYS_REG(3, 0, 0, 7, 1));
546 
547         /*
548          * Note that if AArch32 support is not present in the host,
549          * the AArch32 sysregs are present to be read, but will
550          * return UNKNOWN values.  This is neither better nor worse
551          * than skipping the reads and leaving 0, as we must avoid
552          * considering the values in every case.
553          */
554         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar0,
555                               ARM64_SYS_REG(3, 0, 0, 2, 0));
556         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar1,
557                               ARM64_SYS_REG(3, 0, 0, 2, 1));
558         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar2,
559                               ARM64_SYS_REG(3, 0, 0, 2, 2));
560         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar3,
561                               ARM64_SYS_REG(3, 0, 0, 2, 3));
562         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar4,
563                               ARM64_SYS_REG(3, 0, 0, 2, 4));
564         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar5,
565                               ARM64_SYS_REG(3, 0, 0, 2, 5));
566         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar6,
567                               ARM64_SYS_REG(3, 0, 0, 2, 7));
568 
569         err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr0,
570                               ARM64_SYS_REG(3, 0, 0, 3, 0));
571         err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr1,
572                               ARM64_SYS_REG(3, 0, 0, 3, 1));
573         err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr2,
574                               ARM64_SYS_REG(3, 0, 0, 3, 2));
575     }
576 
577     kvm_arm_destroy_scratch_host_vcpu(fdarray);
578 
579     if (err < 0) {
580         return false;
581     }
582 
583    /* We can assume any KVM supporting CPU is at least a v8
584      * with VFPv4+Neon; this in turn implies most of the other
585      * feature bits.
586      */
587     set_feature(&features, ARM_FEATURE_V8);
588     set_feature(&features, ARM_FEATURE_VFP4);
589     set_feature(&features, ARM_FEATURE_NEON);
590     set_feature(&features, ARM_FEATURE_AARCH64);
591     set_feature(&features, ARM_FEATURE_PMU);
592 
593     ahcf->features = features;
594 
595     return true;
596 }
597 
598 bool kvm_arm_aarch32_supported(CPUState *cpu)
599 {
600     KVMState *s = KVM_STATE(current_machine->accelerator);
601 
602     return kvm_check_extension(s, KVM_CAP_ARM_EL1_32BIT);
603 }
604 
605 #define ARM_CPU_ID_MPIDR       3, 0, 0, 0, 5
606 
607 int kvm_arch_init_vcpu(CPUState *cs)
608 {
609     int ret;
610     uint64_t mpidr;
611     ARMCPU *cpu = ARM_CPU(cs);
612     CPUARMState *env = &cpu->env;
613 
614     if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
615         !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
616         fprintf(stderr, "KVM is not supported for this guest CPU type\n");
617         return -EINVAL;
618     }
619 
620     /* Determine init features for this CPU */
621     memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
622     if (cpu->start_powered_off) {
623         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
624     }
625     if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
626         cpu->psci_version = 2;
627         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
628     }
629     if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
630         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
631     }
632     if (!kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PMU_V3)) {
633             cpu->has_pmu = false;
634     }
635     if (cpu->has_pmu) {
636         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
637     } else {
638         unset_feature(&env->features, ARM_FEATURE_PMU);
639     }
640 
641     /* Do KVM_ARM_VCPU_INIT ioctl */
642     ret = kvm_arm_vcpu_init(cs);
643     if (ret) {
644         return ret;
645     }
646 
647     /*
648      * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
649      * Currently KVM has its own idea about MPIDR assignment, so we
650      * override our defaults with what we get from KVM.
651      */
652     ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
653     if (ret) {
654         return ret;
655     }
656     cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
657 
658     kvm_arm_init_debug(cs);
659 
660     /* Check whether user space can specify guest syndrome value */
661     kvm_arm_init_serror_injection(cs);
662 
663     return kvm_arm_init_cpreg_list(cpu);
664 }
665 
666 int kvm_arch_destroy_vcpu(CPUState *cs)
667 {
668     return 0;
669 }
670 
671 bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
672 {
673     /* Return true if the regidx is a register we should synchronize
674      * via the cpreg_tuples array (ie is not a core reg we sync by
675      * hand in kvm_arch_get/put_registers())
676      */
677     switch (regidx & KVM_REG_ARM_COPROC_MASK) {
678     case KVM_REG_ARM_CORE:
679         return false;
680     default:
681         return true;
682     }
683 }
684 
685 typedef struct CPRegStateLevel {
686     uint64_t regidx;
687     int level;
688 } CPRegStateLevel;
689 
690 /* All system registers not listed in the following table are assumed to be
691  * of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
692  * often, you must add it to this table with a state of either
693  * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
694  */
695 static const CPRegStateLevel non_runtime_cpregs[] = {
696     { KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE },
697 };
698 
699 int kvm_arm_cpreg_level(uint64_t regidx)
700 {
701     int i;
702 
703     for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) {
704         const CPRegStateLevel *l = &non_runtime_cpregs[i];
705         if (l->regidx == regidx) {
706             return l->level;
707         }
708     }
709 
710     return KVM_PUT_RUNTIME_STATE;
711 }
712 
713 #define AARCH64_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
714                  KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
715 
716 #define AARCH64_SIMD_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
717                  KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
718 
719 #define AARCH64_SIMD_CTRL_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
720                  KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
721 
722 static int kvm_arch_put_fpsimd(CPUState *cs)
723 {
724     ARMCPU *cpu = ARM_CPU(cs);
725     CPUARMState *env = &cpu->env;
726     struct kvm_one_reg reg;
727     uint32_t fpr;
728     int i, ret;
729 
730     for (i = 0; i < 32; i++) {
731         uint64_t *q = aa64_vfp_qreg(env, i);
732 #ifdef HOST_WORDS_BIGENDIAN
733         uint64_t fp_val[2] = { q[1], q[0] };
734         reg.addr = (uintptr_t)fp_val;
735 #else
736         reg.addr = (uintptr_t)q;
737 #endif
738         reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
739         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
740         if (ret) {
741             return ret;
742         }
743     }
744 
745     reg.addr = (uintptr_t)(&fpr);
746     fpr = vfp_get_fpsr(env);
747     reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
748     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
749     if (ret) {
750         return ret;
751     }
752 
753     reg.addr = (uintptr_t)(&fpr);
754     fpr = vfp_get_fpcr(env);
755     reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
756     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
757     if (ret) {
758         return ret;
759     }
760 
761     return 0;
762 }
763 
764 int kvm_arch_put_registers(CPUState *cs, int level)
765 {
766     struct kvm_one_reg reg;
767     uint64_t val;
768     int i, ret;
769     unsigned int el;
770 
771     ARMCPU *cpu = ARM_CPU(cs);
772     CPUARMState *env = &cpu->env;
773 
774     /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
775      * AArch64 registers before pushing them out to 64-bit KVM.
776      */
777     if (!is_a64(env)) {
778         aarch64_sync_32_to_64(env);
779     }
780 
781     for (i = 0; i < 31; i++) {
782         reg.id = AARCH64_CORE_REG(regs.regs[i]);
783         reg.addr = (uintptr_t) &env->xregs[i];
784         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
785         if (ret) {
786             return ret;
787         }
788     }
789 
790     /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
791      * QEMU side we keep the current SP in xregs[31] as well.
792      */
793     aarch64_save_sp(env, 1);
794 
795     reg.id = AARCH64_CORE_REG(regs.sp);
796     reg.addr = (uintptr_t) &env->sp_el[0];
797     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
798     if (ret) {
799         return ret;
800     }
801 
802     reg.id = AARCH64_CORE_REG(sp_el1);
803     reg.addr = (uintptr_t) &env->sp_el[1];
804     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
805     if (ret) {
806         return ret;
807     }
808 
809     /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
810     if (is_a64(env)) {
811         val = pstate_read(env);
812     } else {
813         val = cpsr_read(env);
814     }
815     reg.id = AARCH64_CORE_REG(regs.pstate);
816     reg.addr = (uintptr_t) &val;
817     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
818     if (ret) {
819         return ret;
820     }
821 
822     reg.id = AARCH64_CORE_REG(regs.pc);
823     reg.addr = (uintptr_t) &env->pc;
824     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
825     if (ret) {
826         return ret;
827     }
828 
829     reg.id = AARCH64_CORE_REG(elr_el1);
830     reg.addr = (uintptr_t) &env->elr_el[1];
831     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
832     if (ret) {
833         return ret;
834     }
835 
836     /* Saved Program State Registers
837      *
838      * Before we restore from the banked_spsr[] array we need to
839      * ensure that any modifications to env->spsr are correctly
840      * reflected in the banks.
841      */
842     el = arm_current_el(env);
843     if (el > 0 && !is_a64(env)) {
844         i = bank_number(env->uncached_cpsr & CPSR_M);
845         env->banked_spsr[i] = env->spsr;
846     }
847 
848     /* KVM 0-4 map to QEMU banks 1-5 */
849     for (i = 0; i < KVM_NR_SPSR; i++) {
850         reg.id = AARCH64_CORE_REG(spsr[i]);
851         reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
852         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
853         if (ret) {
854             return ret;
855         }
856     }
857 
858     ret = kvm_arch_put_fpsimd(cs);
859     if (ret) {
860         return ret;
861     }
862 
863     ret = kvm_put_vcpu_events(cpu);
864     if (ret) {
865         return ret;
866     }
867 
868     write_cpustate_to_list(cpu, true);
869 
870     if (!write_list_to_kvmstate(cpu, level)) {
871         return -EINVAL;
872     }
873 
874     kvm_arm_sync_mpstate_to_kvm(cpu);
875 
876     return ret;
877 }
878 
879 static int kvm_arch_get_fpsimd(CPUState *cs)
880 {
881     ARMCPU *cpu = ARM_CPU(cs);
882     CPUARMState *env = &cpu->env;
883     struct kvm_one_reg reg;
884     uint32_t fpr;
885     int i, ret;
886 
887     for (i = 0; i < 32; i++) {
888         uint64_t *q = aa64_vfp_qreg(env, i);
889         reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
890         reg.addr = (uintptr_t)q;
891         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
892         if (ret) {
893             return ret;
894         } else {
895 #ifdef HOST_WORDS_BIGENDIAN
896             uint64_t t;
897             t = q[0], q[0] = q[1], q[1] = t;
898 #endif
899         }
900     }
901 
902     reg.addr = (uintptr_t)(&fpr);
903     reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
904     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
905     if (ret) {
906         return ret;
907     }
908     vfp_set_fpsr(env, fpr);
909 
910     reg.addr = (uintptr_t)(&fpr);
911     reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
912     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
913     if (ret) {
914         return ret;
915     }
916     vfp_set_fpcr(env, fpr);
917 
918     return 0;
919 }
920 
921 int kvm_arch_get_registers(CPUState *cs)
922 {
923     struct kvm_one_reg reg;
924     uint64_t val;
925     unsigned int el;
926     int i, ret;
927 
928     ARMCPU *cpu = ARM_CPU(cs);
929     CPUARMState *env = &cpu->env;
930 
931     for (i = 0; i < 31; i++) {
932         reg.id = AARCH64_CORE_REG(regs.regs[i]);
933         reg.addr = (uintptr_t) &env->xregs[i];
934         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
935         if (ret) {
936             return ret;
937         }
938     }
939 
940     reg.id = AARCH64_CORE_REG(regs.sp);
941     reg.addr = (uintptr_t) &env->sp_el[0];
942     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
943     if (ret) {
944         return ret;
945     }
946 
947     reg.id = AARCH64_CORE_REG(sp_el1);
948     reg.addr = (uintptr_t) &env->sp_el[1];
949     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
950     if (ret) {
951         return ret;
952     }
953 
954     reg.id = AARCH64_CORE_REG(regs.pstate);
955     reg.addr = (uintptr_t) &val;
956     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
957     if (ret) {
958         return ret;
959     }
960 
961     env->aarch64 = ((val & PSTATE_nRW) == 0);
962     if (is_a64(env)) {
963         pstate_write(env, val);
964     } else {
965         cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
966     }
967 
968     /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
969      * QEMU side we keep the current SP in xregs[31] as well.
970      */
971     aarch64_restore_sp(env, 1);
972 
973     reg.id = AARCH64_CORE_REG(regs.pc);
974     reg.addr = (uintptr_t) &env->pc;
975     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
976     if (ret) {
977         return ret;
978     }
979 
980     /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
981      * incoming AArch64 regs received from 64-bit KVM.
982      * We must perform this after all of the registers have been acquired from
983      * the kernel.
984      */
985     if (!is_a64(env)) {
986         aarch64_sync_64_to_32(env);
987     }
988 
989     reg.id = AARCH64_CORE_REG(elr_el1);
990     reg.addr = (uintptr_t) &env->elr_el[1];
991     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
992     if (ret) {
993         return ret;
994     }
995 
996     /* Fetch the SPSR registers
997      *
998      * KVM SPSRs 0-4 map to QEMU banks 1-5
999      */
1000     for (i = 0; i < KVM_NR_SPSR; i++) {
1001         reg.id = AARCH64_CORE_REG(spsr[i]);
1002         reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
1003         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1004         if (ret) {
1005             return ret;
1006         }
1007     }
1008 
1009     el = arm_current_el(env);
1010     if (el > 0 && !is_a64(env)) {
1011         i = bank_number(env->uncached_cpsr & CPSR_M);
1012         env->spsr = env->banked_spsr[i];
1013     }
1014 
1015     ret = kvm_arch_get_fpsimd(cs);
1016     if (ret) {
1017         return ret;
1018     }
1019 
1020     ret = kvm_get_vcpu_events(cpu);
1021     if (ret) {
1022         return ret;
1023     }
1024 
1025     if (!write_kvmstate_to_list(cpu)) {
1026         return -EINVAL;
1027     }
1028     /* Note that it's OK to have registers which aren't in CPUState,
1029      * so we can ignore a failure return here.
1030      */
1031     write_list_to_cpustate(cpu);
1032 
1033     kvm_arm_sync_mpstate_to_qemu(cpu);
1034 
1035     /* TODO: other registers */
1036     return ret;
1037 }
1038 
1039 /* C6.6.29 BRK instruction */
1040 static const uint32_t brk_insn = 0xd4200000;
1041 
1042 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1043 {
1044     if (have_guest_debug) {
1045         if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
1046             cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
1047             return -EINVAL;
1048         }
1049         return 0;
1050     } else {
1051         error_report("guest debug not supported on this kernel");
1052         return -EINVAL;
1053     }
1054 }
1055 
1056 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1057 {
1058     static uint32_t brk;
1059 
1060     if (have_guest_debug) {
1061         if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
1062             brk != brk_insn ||
1063             cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
1064             return -EINVAL;
1065         }
1066         return 0;
1067     } else {
1068         error_report("guest debug not supported on this kernel");
1069         return -EINVAL;
1070     }
1071 }
1072 
1073 /* See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register
1074  *
1075  * To minimise translating between kernel and user-space the kernel
1076  * ABI just provides user-space with the full exception syndrome
1077  * register value to be decoded in QEMU.
1078  */
1079 
1080 bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit)
1081 {
1082     int hsr_ec = syn_get_ec(debug_exit->hsr);
1083     ARMCPU *cpu = ARM_CPU(cs);
1084     CPUClass *cc = CPU_GET_CLASS(cs);
1085     CPUARMState *env = &cpu->env;
1086 
1087     /* Ensure PC is synchronised */
1088     kvm_cpu_synchronize_state(cs);
1089 
1090     switch (hsr_ec) {
1091     case EC_SOFTWARESTEP:
1092         if (cs->singlestep_enabled) {
1093             return true;
1094         } else {
1095             /*
1096              * The kernel should have suppressed the guest's ability to
1097              * single step at this point so something has gone wrong.
1098              */
1099             error_report("%s: guest single-step while debugging unsupported"
1100                          " (%"PRIx64", %"PRIx32")",
1101                          __func__, env->pc, debug_exit->hsr);
1102             return false;
1103         }
1104         break;
1105     case EC_AA64_BKPT:
1106         if (kvm_find_sw_breakpoint(cs, env->pc)) {
1107             return true;
1108         }
1109         break;
1110     case EC_BREAKPOINT:
1111         if (find_hw_breakpoint(cs, env->pc)) {
1112             return true;
1113         }
1114         break;
1115     case EC_WATCHPOINT:
1116     {
1117         CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far);
1118         if (wp) {
1119             cs->watchpoint_hit = wp;
1120             return true;
1121         }
1122         break;
1123     }
1124     default:
1125         error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")",
1126                      __func__, debug_exit->hsr, env->pc);
1127     }
1128 
1129     /* If we are not handling the debug exception it must belong to
1130      * the guest. Let's re-use the existing TCG interrupt code to set
1131      * everything up properly.
1132      */
1133     cs->exception_index = EXCP_BKPT;
1134     env->exception.syndrome = debug_exit->hsr;
1135     env->exception.vaddress = debug_exit->far;
1136     env->exception.target_el = 1;
1137     qemu_mutex_lock_iothread();
1138     cc->do_interrupt(cs);
1139     qemu_mutex_unlock_iothread();
1140 
1141     return false;
1142 }
1143