xref: /openbmc/qemu/target/arm/kvm64.c (revision 94452ac4)
1 /*
2  * ARM implementation of KVM hooks, 64 bit specific code
3  *
4  * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
5  * Copyright Alex Bennée 2014, Linaro
6  *
7  * This work is licensed under the terms of the GNU GPL, version 2 or later.
8  * See the COPYING file in the top-level directory.
9  *
10  */
11 
12 #include "qemu/osdep.h"
13 #include <sys/ioctl.h>
14 #include <sys/ptrace.h>
15 
16 #include <linux/elf.h>
17 #include <linux/kvm.h>
18 
19 #include "qapi/error.h"
20 #include "cpu.h"
21 #include "qemu/timer.h"
22 #include "qemu/error-report.h"
23 #include "qemu/host-utils.h"
24 #include "qemu/main-loop.h"
25 #include "exec/gdbstub.h"
26 #include "sysemu/runstate.h"
27 #include "sysemu/kvm.h"
28 #include "sysemu/kvm_int.h"
29 #include "kvm_arm.h"
30 #include "internals.h"
31 #include "hw/acpi/acpi.h"
32 #include "hw/acpi/ghes.h"
33 #include "hw/arm/virt.h"
34 
35 static bool have_guest_debug;
36 
37 /*
38  * Although the ARM implementation of hardware assisted debugging
39  * allows for different breakpoints per-core, the current GDB
40  * interface treats them as a global pool of registers (which seems to
41  * be the case for x86, ppc and s390). As a result we store one copy
42  * of registers which is used for all active cores.
43  *
44  * Write access is serialised by virtue of the GDB protocol which
45  * updates things. Read access (i.e. when the values are copied to the
46  * vCPU) is also gated by GDB's run control.
47  *
48  * This is not unreasonable as most of the time debugging kernels you
49  * never know which core will eventually execute your function.
50  */
51 
52 typedef struct {
53     uint64_t bcr;
54     uint64_t bvr;
55 } HWBreakpoint;
56 
57 /* The watchpoint registers can cover more area than the requested
58  * watchpoint so we need to store the additional information
59  * somewhere. We also need to supply a CPUWatchpoint to the GDB stub
60  * when the watchpoint is hit.
61  */
62 typedef struct {
63     uint64_t wcr;
64     uint64_t wvr;
65     CPUWatchpoint details;
66 } HWWatchpoint;
67 
68 /* Maximum and current break/watch point counts */
69 int max_hw_bps, max_hw_wps;
70 GArray *hw_breakpoints, *hw_watchpoints;
71 
72 #define cur_hw_wps      (hw_watchpoints->len)
73 #define cur_hw_bps      (hw_breakpoints->len)
74 #define get_hw_bp(i)    (&g_array_index(hw_breakpoints, HWBreakpoint, i))
75 #define get_hw_wp(i)    (&g_array_index(hw_watchpoints, HWWatchpoint, i))
76 
77 /**
78  * kvm_arm_init_debug() - check for guest debug capabilities
79  * @cs: CPUState
80  *
81  * kvm_check_extension returns the number of debug registers we have
82  * or 0 if we have none.
83  *
84  */
85 static void kvm_arm_init_debug(CPUState *cs)
86 {
87     have_guest_debug = kvm_check_extension(cs->kvm_state,
88                                            KVM_CAP_SET_GUEST_DEBUG);
89 
90     max_hw_wps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_WPS);
91     hw_watchpoints = g_array_sized_new(true, true,
92                                        sizeof(HWWatchpoint), max_hw_wps);
93 
94     max_hw_bps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_BPS);
95     hw_breakpoints = g_array_sized_new(true, true,
96                                        sizeof(HWBreakpoint), max_hw_bps);
97     return;
98 }
99 
100 /**
101  * insert_hw_breakpoint()
102  * @addr: address of breakpoint
103  *
104  * See ARM ARM D2.9.1 for details but here we are only going to create
105  * simple un-linked breakpoints (i.e. we don't chain breakpoints
106  * together to match address and context or vmid). The hardware is
107  * capable of fancier matching but that will require exposing that
108  * fanciness to GDB's interface
109  *
110  * DBGBCR<n>_EL1, Debug Breakpoint Control Registers
111  *
112  *  31  24 23  20 19   16 15 14  13  12   9 8   5 4    3 2   1  0
113  * +------+------+-------+-----+----+------+-----+------+-----+---+
114  * | RES0 |  BT  |  LBN  | SSC | HMC| RES0 | BAS | RES0 | PMC | E |
115  * +------+------+-------+-----+----+------+-----+------+-----+---+
116  *
117  * BT: Breakpoint type (0 = unlinked address match)
118  * LBN: Linked BP number (0 = unused)
119  * SSC/HMC/PMC: Security, Higher and Priv access control (Table D-12)
120  * BAS: Byte Address Select (RES1 for AArch64)
121  * E: Enable bit
122  *
123  * DBGBVR<n>_EL1, Debug Breakpoint Value Registers
124  *
125  *  63  53 52       49 48       2  1 0
126  * +------+-----------+----------+-----+
127  * | RESS | VA[52:49] | VA[48:2] | 0 0 |
128  * +------+-----------+----------+-----+
129  *
130  * Depending on the addressing mode bits the top bits of the register
131  * are a sign extension of the highest applicable VA bit. Some
132  * versions of GDB don't do it correctly so we ensure they are correct
133  * here so future PC comparisons will work properly.
134  */
135 
136 static int insert_hw_breakpoint(target_ulong addr)
137 {
138     HWBreakpoint brk = {
139         .bcr = 0x1,                             /* BCR E=1, enable */
140         .bvr = sextract64(addr, 0, 53)
141     };
142 
143     if (cur_hw_bps >= max_hw_bps) {
144         return -ENOBUFS;
145     }
146 
147     brk.bcr = deposit32(brk.bcr, 1, 2, 0x3);   /* PMC = 11 */
148     brk.bcr = deposit32(brk.bcr, 5, 4, 0xf);   /* BAS = RES1 */
149 
150     g_array_append_val(hw_breakpoints, brk);
151 
152     return 0;
153 }
154 
155 /**
156  * delete_hw_breakpoint()
157  * @pc: address of breakpoint
158  *
159  * Delete a breakpoint and shuffle any above down
160  */
161 
162 static int delete_hw_breakpoint(target_ulong pc)
163 {
164     int i;
165     for (i = 0; i < hw_breakpoints->len; i++) {
166         HWBreakpoint *brk = get_hw_bp(i);
167         if (brk->bvr == pc) {
168             g_array_remove_index(hw_breakpoints, i);
169             return 0;
170         }
171     }
172     return -ENOENT;
173 }
174 
175 /**
176  * insert_hw_watchpoint()
177  * @addr: address of watch point
178  * @len: size of area
179  * @type: type of watch point
180  *
181  * See ARM ARM D2.10. As with the breakpoints we can do some advanced
182  * stuff if we want to. The watch points can be linked with the break
183  * points above to make them context aware. However for simplicity
184  * currently we only deal with simple read/write watch points.
185  *
186  * D7.3.11 DBGWCR<n>_EL1, Debug Watchpoint Control Registers
187  *
188  *  31  29 28   24 23  21  20  19 16 15 14  13   12  5 4   3 2   1  0
189  * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
190  * | RES0 |  MASK | RES0 | WT | LBN | SSC | HMC | BAS | LSC | PAC | E |
191  * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
192  *
193  * MASK: num bits addr mask (0=none,01/10=res,11=3 bits (8 bytes))
194  * WT: 0 - unlinked, 1 - linked (not currently used)
195  * LBN: Linked BP number (not currently used)
196  * SSC/HMC/PAC: Security, Higher and Priv access control (Table D2-11)
197  * BAS: Byte Address Select
198  * LSC: Load/Store control (01: load, 10: store, 11: both)
199  * E: Enable
200  *
201  * The bottom 2 bits of the value register are masked. Therefore to
202  * break on any sizes smaller than an unaligned word you need to set
203  * MASK=0, BAS=bit per byte in question. For larger regions (^2) you
204  * need to ensure you mask the address as required and set BAS=0xff
205  */
206 
207 static int insert_hw_watchpoint(target_ulong addr,
208                                 target_ulong len, int type)
209 {
210     HWWatchpoint wp = {
211         .wcr = R_DBGWCR_E_MASK, /* E=1, enable */
212         .wvr = addr & (~0x7ULL),
213         .details = { .vaddr = addr, .len = len }
214     };
215 
216     if (cur_hw_wps >= max_hw_wps) {
217         return -ENOBUFS;
218     }
219 
220     /*
221      * HMC=0 SSC=0 PAC=3 will hit EL0 or EL1, any security state,
222      * valid whether EL3 is implemented or not
223      */
224     wp.wcr = FIELD_DP64(wp.wcr, DBGWCR, PAC, 3);
225 
226     switch (type) {
227     case GDB_WATCHPOINT_READ:
228         wp.wcr = FIELD_DP64(wp.wcr, DBGWCR, LSC, 1);
229         wp.details.flags = BP_MEM_READ;
230         break;
231     case GDB_WATCHPOINT_WRITE:
232         wp.wcr = FIELD_DP64(wp.wcr, DBGWCR, LSC, 2);
233         wp.details.flags = BP_MEM_WRITE;
234         break;
235     case GDB_WATCHPOINT_ACCESS:
236         wp.wcr = FIELD_DP64(wp.wcr, DBGWCR, LSC, 3);
237         wp.details.flags = BP_MEM_ACCESS;
238         break;
239     default:
240         g_assert_not_reached();
241         break;
242     }
243     if (len <= 8) {
244         /* we align the address and set the bits in BAS */
245         int off = addr & 0x7;
246         int bas = (1 << len) - 1;
247 
248         wp.wcr = deposit32(wp.wcr, 5 + off, 8 - off, bas);
249     } else {
250         /* For ranges above 8 bytes we need to be a power of 2 */
251         if (is_power_of_2(len)) {
252             int bits = ctz64(len);
253 
254             wp.wvr &= ~((1 << bits) - 1);
255             wp.wcr = FIELD_DP64(wp.wcr, DBGWCR, MASK, bits);
256             wp.wcr = FIELD_DP64(wp.wcr, DBGWCR, BAS, 0xff);
257         } else {
258             return -ENOBUFS;
259         }
260     }
261 
262     g_array_append_val(hw_watchpoints, wp);
263     return 0;
264 }
265 
266 
267 static bool check_watchpoint_in_range(int i, target_ulong addr)
268 {
269     HWWatchpoint *wp = get_hw_wp(i);
270     uint64_t addr_top, addr_bottom = wp->wvr;
271     int bas = extract32(wp->wcr, 5, 8);
272     int mask = extract32(wp->wcr, 24, 4);
273 
274     if (mask) {
275         addr_top = addr_bottom + (1 << mask);
276     } else {
277         /* BAS must be contiguous but can offset against the base
278          * address in DBGWVR */
279         addr_bottom = addr_bottom + ctz32(bas);
280         addr_top = addr_bottom + clo32(bas);
281     }
282 
283     if (addr >= addr_bottom && addr <= addr_top) {
284         return true;
285     }
286 
287     return false;
288 }
289 
290 /**
291  * delete_hw_watchpoint()
292  * @addr: address of breakpoint
293  *
294  * Delete a breakpoint and shuffle any above down
295  */
296 
297 static int delete_hw_watchpoint(target_ulong addr,
298                                 target_ulong len, int type)
299 {
300     int i;
301     for (i = 0; i < cur_hw_wps; i++) {
302         if (check_watchpoint_in_range(i, addr)) {
303             g_array_remove_index(hw_watchpoints, i);
304             return 0;
305         }
306     }
307     return -ENOENT;
308 }
309 
310 
311 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
312                                   target_ulong len, int type)
313 {
314     switch (type) {
315     case GDB_BREAKPOINT_HW:
316         return insert_hw_breakpoint(addr);
317         break;
318     case GDB_WATCHPOINT_READ:
319     case GDB_WATCHPOINT_WRITE:
320     case GDB_WATCHPOINT_ACCESS:
321         return insert_hw_watchpoint(addr, len, type);
322     default:
323         return -ENOSYS;
324     }
325 }
326 
327 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
328                                   target_ulong len, int type)
329 {
330     switch (type) {
331     case GDB_BREAKPOINT_HW:
332         return delete_hw_breakpoint(addr);
333     case GDB_WATCHPOINT_READ:
334     case GDB_WATCHPOINT_WRITE:
335     case GDB_WATCHPOINT_ACCESS:
336         return delete_hw_watchpoint(addr, len, type);
337     default:
338         return -ENOSYS;
339     }
340 }
341 
342 
343 void kvm_arch_remove_all_hw_breakpoints(void)
344 {
345     if (cur_hw_wps > 0) {
346         g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
347     }
348     if (cur_hw_bps > 0) {
349         g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
350     }
351 }
352 
353 void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
354 {
355     int i;
356     memset(ptr, 0, sizeof(struct kvm_guest_debug_arch));
357 
358     for (i = 0; i < max_hw_wps; i++) {
359         HWWatchpoint *wp = get_hw_wp(i);
360         ptr->dbg_wcr[i] = wp->wcr;
361         ptr->dbg_wvr[i] = wp->wvr;
362     }
363     for (i = 0; i < max_hw_bps; i++) {
364         HWBreakpoint *bp = get_hw_bp(i);
365         ptr->dbg_bcr[i] = bp->bcr;
366         ptr->dbg_bvr[i] = bp->bvr;
367     }
368 }
369 
370 bool kvm_arm_hw_debug_active(CPUState *cs)
371 {
372     return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
373 }
374 
375 static bool find_hw_breakpoint(CPUState *cpu, target_ulong pc)
376 {
377     int i;
378 
379     for (i = 0; i < cur_hw_bps; i++) {
380         HWBreakpoint *bp = get_hw_bp(i);
381         if (bp->bvr == pc) {
382             return true;
383         }
384     }
385     return false;
386 }
387 
388 static CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr)
389 {
390     int i;
391 
392     for (i = 0; i < cur_hw_wps; i++) {
393         if (check_watchpoint_in_range(i, addr)) {
394             return &get_hw_wp(i)->details;
395         }
396     }
397     return NULL;
398 }
399 
400 static bool kvm_arm_set_device_attr(CPUState *cs, struct kvm_device_attr *attr,
401                                     const char *name)
402 {
403     int err;
404 
405     err = kvm_vcpu_ioctl(cs, KVM_HAS_DEVICE_ATTR, attr);
406     if (err != 0) {
407         error_report("%s: KVM_HAS_DEVICE_ATTR: %s", name, strerror(-err));
408         return false;
409     }
410 
411     err = kvm_vcpu_ioctl(cs, KVM_SET_DEVICE_ATTR, attr);
412     if (err != 0) {
413         error_report("%s: KVM_SET_DEVICE_ATTR: %s", name, strerror(-err));
414         return false;
415     }
416 
417     return true;
418 }
419 
420 void kvm_arm_pmu_init(CPUState *cs)
421 {
422     struct kvm_device_attr attr = {
423         .group = KVM_ARM_VCPU_PMU_V3_CTRL,
424         .attr = KVM_ARM_VCPU_PMU_V3_INIT,
425     };
426 
427     if (!ARM_CPU(cs)->has_pmu) {
428         return;
429     }
430     if (!kvm_arm_set_device_attr(cs, &attr, "PMU")) {
431         error_report("failed to init PMU");
432         abort();
433     }
434 }
435 
436 void kvm_arm_pmu_set_irq(CPUState *cs, int irq)
437 {
438     struct kvm_device_attr attr = {
439         .group = KVM_ARM_VCPU_PMU_V3_CTRL,
440         .addr = (intptr_t)&irq,
441         .attr = KVM_ARM_VCPU_PMU_V3_IRQ,
442     };
443 
444     if (!ARM_CPU(cs)->has_pmu) {
445         return;
446     }
447     if (!kvm_arm_set_device_attr(cs, &attr, "PMU")) {
448         error_report("failed to set irq for PMU");
449         abort();
450     }
451 }
452 
453 void kvm_arm_pvtime_init(CPUState *cs, uint64_t ipa)
454 {
455     struct kvm_device_attr attr = {
456         .group = KVM_ARM_VCPU_PVTIME_CTRL,
457         .attr = KVM_ARM_VCPU_PVTIME_IPA,
458         .addr = (uint64_t)&ipa,
459     };
460 
461     if (ARM_CPU(cs)->kvm_steal_time == ON_OFF_AUTO_OFF) {
462         return;
463     }
464     if (!kvm_arm_set_device_attr(cs, &attr, "PVTIME IPA")) {
465         error_report("failed to init PVTIME IPA");
466         abort();
467     }
468 }
469 
470 static int read_sys_reg32(int fd, uint32_t *pret, uint64_t id)
471 {
472     uint64_t ret;
473     struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)&ret };
474     int err;
475 
476     assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
477     err = ioctl(fd, KVM_GET_ONE_REG, &idreg);
478     if (err < 0) {
479         return -1;
480     }
481     *pret = ret;
482     return 0;
483 }
484 
485 static int read_sys_reg64(int fd, uint64_t *pret, uint64_t id)
486 {
487     struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)pret };
488 
489     assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
490     return ioctl(fd, KVM_GET_ONE_REG, &idreg);
491 }
492 
493 static bool kvm_arm_pauth_supported(void)
494 {
495     return (kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_ADDRESS) &&
496             kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_GENERIC));
497 }
498 
499 bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
500 {
501     /* Identify the feature bits corresponding to the host CPU, and
502      * fill out the ARMHostCPUClass fields accordingly. To do this
503      * we have to create a scratch VM, create a single CPU inside it,
504      * and then query that CPU for the relevant ID registers.
505      */
506     int fdarray[3];
507     bool sve_supported;
508     bool pmu_supported = false;
509     uint64_t features = 0;
510     int err;
511 
512     /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
513      * we know these will only support creating one kind of guest CPU,
514      * which is its preferred CPU type. Fortunately these old kernels
515      * support only a very limited number of CPUs.
516      */
517     static const uint32_t cpus_to_try[] = {
518         KVM_ARM_TARGET_AEM_V8,
519         KVM_ARM_TARGET_FOUNDATION_V8,
520         KVM_ARM_TARGET_CORTEX_A57,
521         QEMU_KVM_ARM_TARGET_NONE
522     };
523     /*
524      * target = -1 informs kvm_arm_create_scratch_host_vcpu()
525      * to use the preferred target
526      */
527     struct kvm_vcpu_init init = { .target = -1, };
528 
529     /*
530      * Ask for SVE if supported, so that we can query ID_AA64ZFR0,
531      * which is otherwise RAZ.
532      */
533     sve_supported = kvm_arm_sve_supported();
534     if (sve_supported) {
535         init.features[0] |= 1 << KVM_ARM_VCPU_SVE;
536     }
537 
538     /*
539      * Ask for Pointer Authentication if supported, so that we get
540      * the unsanitized field values for AA64ISAR1_EL1.
541      */
542     if (kvm_arm_pauth_supported()) {
543         init.features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
544                              1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
545     }
546 
547     if (kvm_arm_pmu_supported()) {
548         init.features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
549         pmu_supported = true;
550     }
551 
552     if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
553         return false;
554     }
555 
556     ahcf->target = init.target;
557     ahcf->dtb_compatible = "arm,arm-v8";
558 
559     err = read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr0,
560                          ARM64_SYS_REG(3, 0, 0, 4, 0));
561     if (unlikely(err < 0)) {
562         /*
563          * Before v4.15, the kernel only exposed a limited number of system
564          * registers, not including any of the interesting AArch64 ID regs.
565          * For the most part we could leave these fields as zero with minimal
566          * effect, since this does not affect the values seen by the guest.
567          *
568          * However, it could cause problems down the line for QEMU,
569          * so provide a minimal v8.0 default.
570          *
571          * ??? Could read MIDR and use knowledge from cpu64.c.
572          * ??? Could map a page of memory into our temp guest and
573          *     run the tiniest of hand-crafted kernels to extract
574          *     the values seen by the guest.
575          * ??? Either of these sounds like too much effort just
576          *     to work around running a modern host kernel.
577          */
578         ahcf->isar.id_aa64pfr0 = 0x00000011; /* EL1&0, AArch64 only */
579         err = 0;
580     } else {
581         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr1,
582                               ARM64_SYS_REG(3, 0, 0, 4, 1));
583         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64smfr0,
584                               ARM64_SYS_REG(3, 0, 0, 4, 5));
585         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr0,
586                               ARM64_SYS_REG(3, 0, 0, 5, 0));
587         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr1,
588                               ARM64_SYS_REG(3, 0, 0, 5, 1));
589         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar0,
590                               ARM64_SYS_REG(3, 0, 0, 6, 0));
591         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar1,
592                               ARM64_SYS_REG(3, 0, 0, 6, 1));
593         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr0,
594                               ARM64_SYS_REG(3, 0, 0, 7, 0));
595         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr1,
596                               ARM64_SYS_REG(3, 0, 0, 7, 1));
597         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr2,
598                               ARM64_SYS_REG(3, 0, 0, 7, 2));
599 
600         /*
601          * Note that if AArch32 support is not present in the host,
602          * the AArch32 sysregs are present to be read, but will
603          * return UNKNOWN values.  This is neither better nor worse
604          * than skipping the reads and leaving 0, as we must avoid
605          * considering the values in every case.
606          */
607         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr0,
608                               ARM64_SYS_REG(3, 0, 0, 1, 0));
609         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr1,
610                               ARM64_SYS_REG(3, 0, 0, 1, 1));
611         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr0,
612                               ARM64_SYS_REG(3, 0, 0, 1, 2));
613         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr0,
614                               ARM64_SYS_REG(3, 0, 0, 1, 4));
615         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr1,
616                               ARM64_SYS_REG(3, 0, 0, 1, 5));
617         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr2,
618                               ARM64_SYS_REG(3, 0, 0, 1, 6));
619         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr3,
620                               ARM64_SYS_REG(3, 0, 0, 1, 7));
621         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar0,
622                               ARM64_SYS_REG(3, 0, 0, 2, 0));
623         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar1,
624                               ARM64_SYS_REG(3, 0, 0, 2, 1));
625         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar2,
626                               ARM64_SYS_REG(3, 0, 0, 2, 2));
627         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar3,
628                               ARM64_SYS_REG(3, 0, 0, 2, 3));
629         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar4,
630                               ARM64_SYS_REG(3, 0, 0, 2, 4));
631         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar5,
632                               ARM64_SYS_REG(3, 0, 0, 2, 5));
633         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr4,
634                               ARM64_SYS_REG(3, 0, 0, 2, 6));
635         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar6,
636                               ARM64_SYS_REG(3, 0, 0, 2, 7));
637 
638         err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr0,
639                               ARM64_SYS_REG(3, 0, 0, 3, 0));
640         err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr1,
641                               ARM64_SYS_REG(3, 0, 0, 3, 1));
642         err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr2,
643                               ARM64_SYS_REG(3, 0, 0, 3, 2));
644         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr2,
645                               ARM64_SYS_REG(3, 0, 0, 3, 4));
646         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr1,
647                               ARM64_SYS_REG(3, 0, 0, 3, 5));
648         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr5,
649                               ARM64_SYS_REG(3, 0, 0, 3, 6));
650 
651         /*
652          * DBGDIDR is a bit complicated because the kernel doesn't
653          * provide an accessor for it in 64-bit mode, which is what this
654          * scratch VM is in, and there's no architected "64-bit sysreg
655          * which reads the same as the 32-bit register" the way there is
656          * for other ID registers. Instead we synthesize a value from the
657          * AArch64 ID_AA64DFR0, the same way the kernel code in
658          * arch/arm64/kvm/sys_regs.c:trap_dbgidr() does.
659          * We only do this if the CPU supports AArch32 at EL1.
660          */
661         if (FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL1) >= 2) {
662             int wrps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, WRPS);
663             int brps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, BRPS);
664             int ctx_cmps =
665                 FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS);
666             int version = 6; /* ARMv8 debug architecture */
667             bool has_el3 =
668                 !!FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL3);
669             uint32_t dbgdidr = 0;
670 
671             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, WRPS, wrps);
672             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, BRPS, brps);
673             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, CTX_CMPS, ctx_cmps);
674             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, VERSION, version);
675             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, NSUHD_IMP, has_el3);
676             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, SE_IMP, has_el3);
677             dbgdidr |= (1 << 15); /* RES1 bit */
678             ahcf->isar.dbgdidr = dbgdidr;
679         }
680 
681         if (pmu_supported) {
682             /* PMCR_EL0 is only accessible if the vCPU has feature PMU_V3 */
683             err |= read_sys_reg64(fdarray[2], &ahcf->isar.reset_pmcr_el0,
684                                   ARM64_SYS_REG(3, 3, 9, 12, 0));
685         }
686 
687         if (sve_supported) {
688             /*
689              * There is a range of kernels between kernel commit 73433762fcae
690              * and f81cb2c3ad41 which have a bug where the kernel doesn't
691              * expose SYS_ID_AA64ZFR0_EL1 via the ONE_REG API unless the VM has
692              * enabled SVE support, which resulted in an error rather than RAZ.
693              * So only read the register if we set KVM_ARM_VCPU_SVE above.
694              */
695             err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64zfr0,
696                                   ARM64_SYS_REG(3, 0, 0, 4, 4));
697         }
698     }
699 
700     kvm_arm_destroy_scratch_host_vcpu(fdarray);
701 
702     if (err < 0) {
703         return false;
704     }
705 
706     /*
707      * We can assume any KVM supporting CPU is at least a v8
708      * with VFPv4+Neon; this in turn implies most of the other
709      * feature bits.
710      */
711     features |= 1ULL << ARM_FEATURE_V8;
712     features |= 1ULL << ARM_FEATURE_NEON;
713     features |= 1ULL << ARM_FEATURE_AARCH64;
714     features |= 1ULL << ARM_FEATURE_PMU;
715     features |= 1ULL << ARM_FEATURE_GENERIC_TIMER;
716 
717     ahcf->features = features;
718 
719     return true;
720 }
721 
722 void kvm_arm_steal_time_finalize(ARMCPU *cpu, Error **errp)
723 {
724     bool has_steal_time = kvm_arm_steal_time_supported();
725 
726     if (cpu->kvm_steal_time == ON_OFF_AUTO_AUTO) {
727         if (!has_steal_time || !arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
728             cpu->kvm_steal_time = ON_OFF_AUTO_OFF;
729         } else {
730             cpu->kvm_steal_time = ON_OFF_AUTO_ON;
731         }
732     } else if (cpu->kvm_steal_time == ON_OFF_AUTO_ON) {
733         if (!has_steal_time) {
734             error_setg(errp, "'kvm-steal-time' cannot be enabled "
735                              "on this host");
736             return;
737         } else if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
738             /*
739              * DEN0057A chapter 2 says "This specification only covers
740              * systems in which the Execution state of the hypervisor
741              * as well as EL1 of virtual machines is AArch64.". And,
742              * to ensure that, the smc/hvc calls are only specified as
743              * smc64/hvc64.
744              */
745             error_setg(errp, "'kvm-steal-time' cannot be enabled "
746                              "for AArch32 guests");
747             return;
748         }
749     }
750 }
751 
752 bool kvm_arm_aarch32_supported(void)
753 {
754     return kvm_check_extension(kvm_state, KVM_CAP_ARM_EL1_32BIT);
755 }
756 
757 bool kvm_arm_sve_supported(void)
758 {
759     return kvm_check_extension(kvm_state, KVM_CAP_ARM_SVE);
760 }
761 
762 bool kvm_arm_steal_time_supported(void)
763 {
764     return kvm_check_extension(kvm_state, KVM_CAP_STEAL_TIME);
765 }
766 
767 QEMU_BUILD_BUG_ON(KVM_ARM64_SVE_VQ_MIN != 1);
768 
769 uint32_t kvm_arm_sve_get_vls(CPUState *cs)
770 {
771     /* Only call this function if kvm_arm_sve_supported() returns true. */
772     static uint64_t vls[KVM_ARM64_SVE_VLS_WORDS];
773     static bool probed;
774     uint32_t vq = 0;
775     int i;
776 
777     /*
778      * KVM ensures all host CPUs support the same set of vector lengths.
779      * So we only need to create the scratch VCPUs once and then cache
780      * the results.
781      */
782     if (!probed) {
783         struct kvm_vcpu_init init = {
784             .target = -1,
785             .features[0] = (1 << KVM_ARM_VCPU_SVE),
786         };
787         struct kvm_one_reg reg = {
788             .id = KVM_REG_ARM64_SVE_VLS,
789             .addr = (uint64_t)&vls[0],
790         };
791         int fdarray[3], ret;
792 
793         probed = true;
794 
795         if (!kvm_arm_create_scratch_host_vcpu(NULL, fdarray, &init)) {
796             error_report("failed to create scratch VCPU with SVE enabled");
797             abort();
798         }
799         ret = ioctl(fdarray[2], KVM_GET_ONE_REG, &reg);
800         kvm_arm_destroy_scratch_host_vcpu(fdarray);
801         if (ret) {
802             error_report("failed to get KVM_REG_ARM64_SVE_VLS: %s",
803                          strerror(errno));
804             abort();
805         }
806 
807         for (i = KVM_ARM64_SVE_VLS_WORDS - 1; i >= 0; --i) {
808             if (vls[i]) {
809                 vq = 64 - clz64(vls[i]) + i * 64;
810                 break;
811             }
812         }
813         if (vq > ARM_MAX_VQ) {
814             warn_report("KVM supports vector lengths larger than "
815                         "QEMU can enable");
816             vls[0] &= MAKE_64BIT_MASK(0, ARM_MAX_VQ);
817         }
818     }
819 
820     return vls[0];
821 }
822 
823 static int kvm_arm_sve_set_vls(CPUState *cs)
824 {
825     ARMCPU *cpu = ARM_CPU(cs);
826     uint64_t vls[KVM_ARM64_SVE_VLS_WORDS] = { cpu->sve_vq.map };
827     struct kvm_one_reg reg = {
828         .id = KVM_REG_ARM64_SVE_VLS,
829         .addr = (uint64_t)&vls[0],
830     };
831 
832     assert(cpu->sve_max_vq <= KVM_ARM64_SVE_VQ_MAX);
833 
834     return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
835 }
836 
837 #define ARM_CPU_ID_MPIDR       3, 0, 0, 0, 5
838 
839 int kvm_arch_init_vcpu(CPUState *cs)
840 {
841     int ret;
842     uint64_t mpidr;
843     ARMCPU *cpu = ARM_CPU(cs);
844     CPUARMState *env = &cpu->env;
845     uint64_t psciver;
846 
847     if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
848         !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
849         error_report("KVM is not supported for this guest CPU type");
850         return -EINVAL;
851     }
852 
853     qemu_add_vm_change_state_handler(kvm_arm_vm_state_change, cs);
854 
855     /* Determine init features for this CPU */
856     memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
857     if (cs->start_powered_off) {
858         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
859     }
860     if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
861         cpu->psci_version = QEMU_PSCI_VERSION_0_2;
862         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
863     }
864     if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
865         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
866     }
867     if (!kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PMU_V3)) {
868         cpu->has_pmu = false;
869     }
870     if (cpu->has_pmu) {
871         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
872     } else {
873         env->features &= ~(1ULL << ARM_FEATURE_PMU);
874     }
875     if (cpu_isar_feature(aa64_sve, cpu)) {
876         assert(kvm_arm_sve_supported());
877         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_SVE;
878     }
879     if (cpu_isar_feature(aa64_pauth, cpu)) {
880         cpu->kvm_init_features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
881                                       1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
882     }
883 
884     /* Do KVM_ARM_VCPU_INIT ioctl */
885     ret = kvm_arm_vcpu_init(cs);
886     if (ret) {
887         return ret;
888     }
889 
890     if (cpu_isar_feature(aa64_sve, cpu)) {
891         ret = kvm_arm_sve_set_vls(cs);
892         if (ret) {
893             return ret;
894         }
895         ret = kvm_arm_vcpu_finalize(cs, KVM_ARM_VCPU_SVE);
896         if (ret) {
897             return ret;
898         }
899     }
900 
901     /*
902      * KVM reports the exact PSCI version it is implementing via a
903      * special sysreg. If it is present, use its contents to determine
904      * what to report to the guest in the dtb (it is the PSCI version,
905      * in the same 15-bits major 16-bits minor format that PSCI_VERSION
906      * returns).
907      */
908     if (!kvm_get_one_reg(cs, KVM_REG_ARM_PSCI_VERSION, &psciver)) {
909         cpu->psci_version = psciver;
910     }
911 
912     /*
913      * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
914      * Currently KVM has its own idea about MPIDR assignment, so we
915      * override our defaults with what we get from KVM.
916      */
917     ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
918     if (ret) {
919         return ret;
920     }
921     cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
922 
923     kvm_arm_init_debug(cs);
924 
925     /* Check whether user space can specify guest syndrome value */
926     kvm_arm_init_serror_injection(cs);
927 
928     return kvm_arm_init_cpreg_list(cpu);
929 }
930 
931 int kvm_arch_destroy_vcpu(CPUState *cs)
932 {
933     return 0;
934 }
935 
936 bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
937 {
938     /* Return true if the regidx is a register we should synchronize
939      * via the cpreg_tuples array (ie is not a core or sve reg that
940      * we sync by hand in kvm_arch_get/put_registers())
941      */
942     switch (regidx & KVM_REG_ARM_COPROC_MASK) {
943     case KVM_REG_ARM_CORE:
944     case KVM_REG_ARM64_SVE:
945         return false;
946     default:
947         return true;
948     }
949 }
950 
951 typedef struct CPRegStateLevel {
952     uint64_t regidx;
953     int level;
954 } CPRegStateLevel;
955 
956 /* All system registers not listed in the following table are assumed to be
957  * of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
958  * often, you must add it to this table with a state of either
959  * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
960  */
961 static const CPRegStateLevel non_runtime_cpregs[] = {
962     { KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE },
963 };
964 
965 int kvm_arm_cpreg_level(uint64_t regidx)
966 {
967     int i;
968 
969     for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) {
970         const CPRegStateLevel *l = &non_runtime_cpregs[i];
971         if (l->regidx == regidx) {
972             return l->level;
973         }
974     }
975 
976     return KVM_PUT_RUNTIME_STATE;
977 }
978 
979 /* Callers must hold the iothread mutex lock */
980 static void kvm_inject_arm_sea(CPUState *c)
981 {
982     ARMCPU *cpu = ARM_CPU(c);
983     CPUARMState *env = &cpu->env;
984     uint32_t esr;
985     bool same_el;
986 
987     c->exception_index = EXCP_DATA_ABORT;
988     env->exception.target_el = 1;
989 
990     /*
991      * Set the DFSC to synchronous external abort and set FnV to not valid,
992      * this will tell guest the FAR_ELx is UNKNOWN for this abort.
993      */
994     same_el = arm_current_el(env) == env->exception.target_el;
995     esr = syn_data_abort_no_iss(same_el, 1, 0, 0, 0, 0, 0x10);
996 
997     env->exception.syndrome = esr;
998 
999     arm_cpu_do_interrupt(c);
1000 }
1001 
1002 #define AARCH64_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
1003                  KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1004 
1005 #define AARCH64_SIMD_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
1006                  KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1007 
1008 #define AARCH64_SIMD_CTRL_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
1009                  KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1010 
1011 static int kvm_arch_put_fpsimd(CPUState *cs)
1012 {
1013     CPUARMState *env = &ARM_CPU(cs)->env;
1014     struct kvm_one_reg reg;
1015     int i, ret;
1016 
1017     for (i = 0; i < 32; i++) {
1018         uint64_t *q = aa64_vfp_qreg(env, i);
1019 #if HOST_BIG_ENDIAN
1020         uint64_t fp_val[2] = { q[1], q[0] };
1021         reg.addr = (uintptr_t)fp_val;
1022 #else
1023         reg.addr = (uintptr_t)q;
1024 #endif
1025         reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
1026         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1027         if (ret) {
1028             return ret;
1029         }
1030     }
1031 
1032     return 0;
1033 }
1034 
1035 /*
1036  * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
1037  * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
1038  * code the slice index to zero for now as it's unlikely we'll need more than
1039  * one slice for quite some time.
1040  */
1041 static int kvm_arch_put_sve(CPUState *cs)
1042 {
1043     ARMCPU *cpu = ARM_CPU(cs);
1044     CPUARMState *env = &cpu->env;
1045     uint64_t tmp[ARM_MAX_VQ * 2];
1046     uint64_t *r;
1047     struct kvm_one_reg reg;
1048     int n, ret;
1049 
1050     for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
1051         r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2);
1052         reg.addr = (uintptr_t)r;
1053         reg.id = KVM_REG_ARM64_SVE_ZREG(n, 0);
1054         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1055         if (ret) {
1056             return ret;
1057         }
1058     }
1059 
1060     for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
1061         r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0],
1062                         DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
1063         reg.addr = (uintptr_t)r;
1064         reg.id = KVM_REG_ARM64_SVE_PREG(n, 0);
1065         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1066         if (ret) {
1067             return ret;
1068         }
1069     }
1070 
1071     r = sve_bswap64(tmp, &env->vfp.pregs[FFR_PRED_NUM].p[0],
1072                     DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
1073     reg.addr = (uintptr_t)r;
1074     reg.id = KVM_REG_ARM64_SVE_FFR(0);
1075     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1076     if (ret) {
1077         return ret;
1078     }
1079 
1080     return 0;
1081 }
1082 
1083 int kvm_arch_put_registers(CPUState *cs, int level)
1084 {
1085     struct kvm_one_reg reg;
1086     uint64_t val;
1087     uint32_t fpr;
1088     int i, ret;
1089     unsigned int el;
1090 
1091     ARMCPU *cpu = ARM_CPU(cs);
1092     CPUARMState *env = &cpu->env;
1093 
1094     /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
1095      * AArch64 registers before pushing them out to 64-bit KVM.
1096      */
1097     if (!is_a64(env)) {
1098         aarch64_sync_32_to_64(env);
1099     }
1100 
1101     for (i = 0; i < 31; i++) {
1102         reg.id = AARCH64_CORE_REG(regs.regs[i]);
1103         reg.addr = (uintptr_t) &env->xregs[i];
1104         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1105         if (ret) {
1106             return ret;
1107         }
1108     }
1109 
1110     /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
1111      * QEMU side we keep the current SP in xregs[31] as well.
1112      */
1113     aarch64_save_sp(env, 1);
1114 
1115     reg.id = AARCH64_CORE_REG(regs.sp);
1116     reg.addr = (uintptr_t) &env->sp_el[0];
1117     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1118     if (ret) {
1119         return ret;
1120     }
1121 
1122     reg.id = AARCH64_CORE_REG(sp_el1);
1123     reg.addr = (uintptr_t) &env->sp_el[1];
1124     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1125     if (ret) {
1126         return ret;
1127     }
1128 
1129     /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
1130     if (is_a64(env)) {
1131         val = pstate_read(env);
1132     } else {
1133         val = cpsr_read(env);
1134     }
1135     reg.id = AARCH64_CORE_REG(regs.pstate);
1136     reg.addr = (uintptr_t) &val;
1137     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1138     if (ret) {
1139         return ret;
1140     }
1141 
1142     reg.id = AARCH64_CORE_REG(regs.pc);
1143     reg.addr = (uintptr_t) &env->pc;
1144     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1145     if (ret) {
1146         return ret;
1147     }
1148 
1149     reg.id = AARCH64_CORE_REG(elr_el1);
1150     reg.addr = (uintptr_t) &env->elr_el[1];
1151     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1152     if (ret) {
1153         return ret;
1154     }
1155 
1156     /* Saved Program State Registers
1157      *
1158      * Before we restore from the banked_spsr[] array we need to
1159      * ensure that any modifications to env->spsr are correctly
1160      * reflected in the banks.
1161      */
1162     el = arm_current_el(env);
1163     if (el > 0 && !is_a64(env)) {
1164         i = bank_number(env->uncached_cpsr & CPSR_M);
1165         env->banked_spsr[i] = env->spsr;
1166     }
1167 
1168     /* KVM 0-4 map to QEMU banks 1-5 */
1169     for (i = 0; i < KVM_NR_SPSR; i++) {
1170         reg.id = AARCH64_CORE_REG(spsr[i]);
1171         reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
1172         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1173         if (ret) {
1174             return ret;
1175         }
1176     }
1177 
1178     if (cpu_isar_feature(aa64_sve, cpu)) {
1179         ret = kvm_arch_put_sve(cs);
1180     } else {
1181         ret = kvm_arch_put_fpsimd(cs);
1182     }
1183     if (ret) {
1184         return ret;
1185     }
1186 
1187     reg.addr = (uintptr_t)(&fpr);
1188     fpr = vfp_get_fpsr(env);
1189     reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
1190     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1191     if (ret) {
1192         return ret;
1193     }
1194 
1195     reg.addr = (uintptr_t)(&fpr);
1196     fpr = vfp_get_fpcr(env);
1197     reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
1198     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1199     if (ret) {
1200         return ret;
1201     }
1202 
1203     write_cpustate_to_list(cpu, true);
1204 
1205     if (!write_list_to_kvmstate(cpu, level)) {
1206         return -EINVAL;
1207     }
1208 
1209    /*
1210     * Setting VCPU events should be triggered after syncing the registers
1211     * to avoid overwriting potential changes made by KVM upon calling
1212     * KVM_SET_VCPU_EVENTS ioctl
1213     */
1214     ret = kvm_put_vcpu_events(cpu);
1215     if (ret) {
1216         return ret;
1217     }
1218 
1219     kvm_arm_sync_mpstate_to_kvm(cpu);
1220 
1221     return ret;
1222 }
1223 
1224 static int kvm_arch_get_fpsimd(CPUState *cs)
1225 {
1226     CPUARMState *env = &ARM_CPU(cs)->env;
1227     struct kvm_one_reg reg;
1228     int i, ret;
1229 
1230     for (i = 0; i < 32; i++) {
1231         uint64_t *q = aa64_vfp_qreg(env, i);
1232         reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
1233         reg.addr = (uintptr_t)q;
1234         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1235         if (ret) {
1236             return ret;
1237         } else {
1238 #if HOST_BIG_ENDIAN
1239             uint64_t t;
1240             t = q[0], q[0] = q[1], q[1] = t;
1241 #endif
1242         }
1243     }
1244 
1245     return 0;
1246 }
1247 
1248 /*
1249  * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
1250  * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
1251  * code the slice index to zero for now as it's unlikely we'll need more than
1252  * one slice for quite some time.
1253  */
1254 static int kvm_arch_get_sve(CPUState *cs)
1255 {
1256     ARMCPU *cpu = ARM_CPU(cs);
1257     CPUARMState *env = &cpu->env;
1258     struct kvm_one_reg reg;
1259     uint64_t *r;
1260     int n, ret;
1261 
1262     for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
1263         r = &env->vfp.zregs[n].d[0];
1264         reg.addr = (uintptr_t)r;
1265         reg.id = KVM_REG_ARM64_SVE_ZREG(n, 0);
1266         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1267         if (ret) {
1268             return ret;
1269         }
1270         sve_bswap64(r, r, cpu->sve_max_vq * 2);
1271     }
1272 
1273     for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
1274         r = &env->vfp.pregs[n].p[0];
1275         reg.addr = (uintptr_t)r;
1276         reg.id = KVM_REG_ARM64_SVE_PREG(n, 0);
1277         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1278         if (ret) {
1279             return ret;
1280         }
1281         sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
1282     }
1283 
1284     r = &env->vfp.pregs[FFR_PRED_NUM].p[0];
1285     reg.addr = (uintptr_t)r;
1286     reg.id = KVM_REG_ARM64_SVE_FFR(0);
1287     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1288     if (ret) {
1289         return ret;
1290     }
1291     sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
1292 
1293     return 0;
1294 }
1295 
1296 int kvm_arch_get_registers(CPUState *cs)
1297 {
1298     struct kvm_one_reg reg;
1299     uint64_t val;
1300     unsigned int el;
1301     uint32_t fpr;
1302     int i, ret;
1303 
1304     ARMCPU *cpu = ARM_CPU(cs);
1305     CPUARMState *env = &cpu->env;
1306 
1307     for (i = 0; i < 31; i++) {
1308         reg.id = AARCH64_CORE_REG(regs.regs[i]);
1309         reg.addr = (uintptr_t) &env->xregs[i];
1310         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1311         if (ret) {
1312             return ret;
1313         }
1314     }
1315 
1316     reg.id = AARCH64_CORE_REG(regs.sp);
1317     reg.addr = (uintptr_t) &env->sp_el[0];
1318     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1319     if (ret) {
1320         return ret;
1321     }
1322 
1323     reg.id = AARCH64_CORE_REG(sp_el1);
1324     reg.addr = (uintptr_t) &env->sp_el[1];
1325     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1326     if (ret) {
1327         return ret;
1328     }
1329 
1330     reg.id = AARCH64_CORE_REG(regs.pstate);
1331     reg.addr = (uintptr_t) &val;
1332     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1333     if (ret) {
1334         return ret;
1335     }
1336 
1337     env->aarch64 = ((val & PSTATE_nRW) == 0);
1338     if (is_a64(env)) {
1339         pstate_write(env, val);
1340     } else {
1341         cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
1342     }
1343 
1344     /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
1345      * QEMU side we keep the current SP in xregs[31] as well.
1346      */
1347     aarch64_restore_sp(env, 1);
1348 
1349     reg.id = AARCH64_CORE_REG(regs.pc);
1350     reg.addr = (uintptr_t) &env->pc;
1351     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1352     if (ret) {
1353         return ret;
1354     }
1355 
1356     /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
1357      * incoming AArch64 regs received from 64-bit KVM.
1358      * We must perform this after all of the registers have been acquired from
1359      * the kernel.
1360      */
1361     if (!is_a64(env)) {
1362         aarch64_sync_64_to_32(env);
1363     }
1364 
1365     reg.id = AARCH64_CORE_REG(elr_el1);
1366     reg.addr = (uintptr_t) &env->elr_el[1];
1367     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1368     if (ret) {
1369         return ret;
1370     }
1371 
1372     /* Fetch the SPSR registers
1373      *
1374      * KVM SPSRs 0-4 map to QEMU banks 1-5
1375      */
1376     for (i = 0; i < KVM_NR_SPSR; i++) {
1377         reg.id = AARCH64_CORE_REG(spsr[i]);
1378         reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
1379         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1380         if (ret) {
1381             return ret;
1382         }
1383     }
1384 
1385     el = arm_current_el(env);
1386     if (el > 0 && !is_a64(env)) {
1387         i = bank_number(env->uncached_cpsr & CPSR_M);
1388         env->spsr = env->banked_spsr[i];
1389     }
1390 
1391     if (cpu_isar_feature(aa64_sve, cpu)) {
1392         ret = kvm_arch_get_sve(cs);
1393     } else {
1394         ret = kvm_arch_get_fpsimd(cs);
1395     }
1396     if (ret) {
1397         return ret;
1398     }
1399 
1400     reg.addr = (uintptr_t)(&fpr);
1401     reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
1402     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1403     if (ret) {
1404         return ret;
1405     }
1406     vfp_set_fpsr(env, fpr);
1407 
1408     reg.addr = (uintptr_t)(&fpr);
1409     reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
1410     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1411     if (ret) {
1412         return ret;
1413     }
1414     vfp_set_fpcr(env, fpr);
1415 
1416     ret = kvm_get_vcpu_events(cpu);
1417     if (ret) {
1418         return ret;
1419     }
1420 
1421     if (!write_kvmstate_to_list(cpu)) {
1422         return -EINVAL;
1423     }
1424     /* Note that it's OK to have registers which aren't in CPUState,
1425      * so we can ignore a failure return here.
1426      */
1427     write_list_to_cpustate(cpu);
1428 
1429     kvm_arm_sync_mpstate_to_qemu(cpu);
1430 
1431     /* TODO: other registers */
1432     return ret;
1433 }
1434 
1435 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
1436 {
1437     ram_addr_t ram_addr;
1438     hwaddr paddr;
1439 
1440     assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
1441 
1442     if (acpi_ghes_present() && addr) {
1443         ram_addr = qemu_ram_addr_from_host(addr);
1444         if (ram_addr != RAM_ADDR_INVALID &&
1445             kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
1446             kvm_hwpoison_page_add(ram_addr);
1447             /*
1448              * If this is a BUS_MCEERR_AR, we know we have been called
1449              * synchronously from the vCPU thread, so we can easily
1450              * synchronize the state and inject an error.
1451              *
1452              * TODO: we currently don't tell the guest at all about
1453              * BUS_MCEERR_AO. In that case we might either be being
1454              * called synchronously from the vCPU thread, or a bit
1455              * later from the main thread, so doing the injection of
1456              * the error would be more complicated.
1457              */
1458             if (code == BUS_MCEERR_AR) {
1459                 kvm_cpu_synchronize_state(c);
1460                 if (!acpi_ghes_record_errors(ACPI_HEST_SRC_ID_SEA, paddr)) {
1461                     kvm_inject_arm_sea(c);
1462                 } else {
1463                     error_report("failed to record the error");
1464                     abort();
1465                 }
1466             }
1467             return;
1468         }
1469         if (code == BUS_MCEERR_AO) {
1470             error_report("Hardware memory error at addr %p for memory used by "
1471                 "QEMU itself instead of guest system!", addr);
1472         }
1473     }
1474 
1475     if (code == BUS_MCEERR_AR) {
1476         error_report("Hardware memory error!");
1477         exit(1);
1478     }
1479 }
1480 
1481 /* C6.6.29 BRK instruction */
1482 static const uint32_t brk_insn = 0xd4200000;
1483 
1484 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1485 {
1486     if (have_guest_debug) {
1487         if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
1488             cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
1489             return -EINVAL;
1490         }
1491         return 0;
1492     } else {
1493         error_report("guest debug not supported on this kernel");
1494         return -EINVAL;
1495     }
1496 }
1497 
1498 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1499 {
1500     static uint32_t brk;
1501 
1502     if (have_guest_debug) {
1503         if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
1504             brk != brk_insn ||
1505             cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
1506             return -EINVAL;
1507         }
1508         return 0;
1509     } else {
1510         error_report("guest debug not supported on this kernel");
1511         return -EINVAL;
1512     }
1513 }
1514 
1515 /* See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register
1516  *
1517  * To minimise translating between kernel and user-space the kernel
1518  * ABI just provides user-space with the full exception syndrome
1519  * register value to be decoded in QEMU.
1520  */
1521 
1522 bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit)
1523 {
1524     int hsr_ec = syn_get_ec(debug_exit->hsr);
1525     ARMCPU *cpu = ARM_CPU(cs);
1526     CPUARMState *env = &cpu->env;
1527 
1528     /* Ensure PC is synchronised */
1529     kvm_cpu_synchronize_state(cs);
1530 
1531     switch (hsr_ec) {
1532     case EC_SOFTWARESTEP:
1533         if (cs->singlestep_enabled) {
1534             return true;
1535         } else {
1536             /*
1537              * The kernel should have suppressed the guest's ability to
1538              * single step at this point so something has gone wrong.
1539              */
1540             error_report("%s: guest single-step while debugging unsupported"
1541                          " (%"PRIx64", %"PRIx32")",
1542                          __func__, env->pc, debug_exit->hsr);
1543             return false;
1544         }
1545         break;
1546     case EC_AA64_BKPT:
1547         if (kvm_find_sw_breakpoint(cs, env->pc)) {
1548             return true;
1549         }
1550         break;
1551     case EC_BREAKPOINT:
1552         if (find_hw_breakpoint(cs, env->pc)) {
1553             return true;
1554         }
1555         break;
1556     case EC_WATCHPOINT:
1557     {
1558         CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far);
1559         if (wp) {
1560             cs->watchpoint_hit = wp;
1561             return true;
1562         }
1563         break;
1564     }
1565     default:
1566         error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")",
1567                      __func__, debug_exit->hsr, env->pc);
1568     }
1569 
1570     /* If we are not handling the debug exception it must belong to
1571      * the guest. Let's re-use the existing TCG interrupt code to set
1572      * everything up properly.
1573      */
1574     cs->exception_index = EXCP_BKPT;
1575     env->exception.syndrome = debug_exit->hsr;
1576     env->exception.vaddress = debug_exit->far;
1577     env->exception.target_el = 1;
1578     qemu_mutex_lock_iothread();
1579     arm_cpu_do_interrupt(cs);
1580     qemu_mutex_unlock_iothread();
1581 
1582     return false;
1583 }
1584 
1585 #define ARM64_REG_ESR_EL1 ARM64_SYS_REG(3, 0, 5, 2, 0)
1586 #define ARM64_REG_TCR_EL1 ARM64_SYS_REG(3, 0, 2, 0, 2)
1587 
1588 /*
1589  * ESR_EL1
1590  * ISS encoding
1591  * AARCH64: DFSC,   bits [5:0]
1592  * AARCH32:
1593  *      TTBCR.EAE == 0
1594  *          FS[4]   - DFSR[10]
1595  *          FS[3:0] - DFSR[3:0]
1596  *      TTBCR.EAE == 1
1597  *          FS, bits [5:0]
1598  */
1599 #define ESR_DFSC(aarch64, lpae, v)        \
1600     ((aarch64 || (lpae)) ? ((v) & 0x3F)   \
1601                : (((v) >> 6) | ((v) & 0x1F)))
1602 
1603 #define ESR_DFSC_EXTABT(aarch64, lpae) \
1604     ((aarch64) ? 0x10 : (lpae) ? 0x10 : 0x8)
1605 
1606 bool kvm_arm_verify_ext_dabt_pending(CPUState *cs)
1607 {
1608     uint64_t dfsr_val;
1609 
1610     if (!kvm_get_one_reg(cs, ARM64_REG_ESR_EL1, &dfsr_val)) {
1611         ARMCPU *cpu = ARM_CPU(cs);
1612         CPUARMState *env = &cpu->env;
1613         int aarch64_mode = arm_feature(env, ARM_FEATURE_AARCH64);
1614         int lpae = 0;
1615 
1616         if (!aarch64_mode) {
1617             uint64_t ttbcr;
1618 
1619             if (!kvm_get_one_reg(cs, ARM64_REG_TCR_EL1, &ttbcr)) {
1620                 lpae = arm_feature(env, ARM_FEATURE_LPAE)
1621                         && (ttbcr & TTBCR_EAE);
1622             }
1623         }
1624         /*
1625          * The verification here is based on the DFSC bits
1626          * of the ESR_EL1 reg only
1627          */
1628          return (ESR_DFSC(aarch64_mode, lpae, dfsr_val) ==
1629                 ESR_DFSC_EXTABT(aarch64_mode, lpae));
1630     }
1631     return false;
1632 }
1633