xref: /openbmc/qemu/target/arm/kvm64.c (revision 812b31d3)
1 /*
2  * ARM implementation of KVM hooks, 64 bit specific code
3  *
4  * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
5  * Copyright Alex Bennée 2014, Linaro
6  *
7  * This work is licensed under the terms of the GNU GPL, version 2 or later.
8  * See the COPYING file in the top-level directory.
9  *
10  */
11 
12 #include "qemu/osdep.h"
13 #include <sys/ioctl.h>
14 #include <sys/ptrace.h>
15 
16 #include <linux/elf.h>
17 #include <linux/kvm.h>
18 
19 #include "qemu-common.h"
20 #include "qapi/error.h"
21 #include "cpu.h"
22 #include "qemu/timer.h"
23 #include "qemu/error-report.h"
24 #include "qemu/host-utils.h"
25 #include "qemu/main-loop.h"
26 #include "exec/gdbstub.h"
27 #include "sysemu/runstate.h"
28 #include "sysemu/kvm.h"
29 #include "sysemu/kvm_int.h"
30 #include "kvm_arm.h"
31 #include "internals.h"
32 #include "hw/acpi/acpi.h"
33 #include "hw/acpi/ghes.h"
34 #include "hw/arm/virt.h"
35 
36 static bool have_guest_debug;
37 
38 /*
39  * Although the ARM implementation of hardware assisted debugging
40  * allows for different breakpoints per-core, the current GDB
41  * interface treats them as a global pool of registers (which seems to
42  * be the case for x86, ppc and s390). As a result we store one copy
43  * of registers which is used for all active cores.
44  *
45  * Write access is serialised by virtue of the GDB protocol which
46  * updates things. Read access (i.e. when the values are copied to the
47  * vCPU) is also gated by GDB's run control.
48  *
49  * This is not unreasonable as most of the time debugging kernels you
50  * never know which core will eventually execute your function.
51  */
52 
53 typedef struct {
54     uint64_t bcr;
55     uint64_t bvr;
56 } HWBreakpoint;
57 
58 /* The watchpoint registers can cover more area than the requested
59  * watchpoint so we need to store the additional information
60  * somewhere. We also need to supply a CPUWatchpoint to the GDB stub
61  * when the watchpoint is hit.
62  */
63 typedef struct {
64     uint64_t wcr;
65     uint64_t wvr;
66     CPUWatchpoint details;
67 } HWWatchpoint;
68 
69 /* Maximum and current break/watch point counts */
70 int max_hw_bps, max_hw_wps;
71 GArray *hw_breakpoints, *hw_watchpoints;
72 
73 #define cur_hw_wps      (hw_watchpoints->len)
74 #define cur_hw_bps      (hw_breakpoints->len)
75 #define get_hw_bp(i)    (&g_array_index(hw_breakpoints, HWBreakpoint, i))
76 #define get_hw_wp(i)    (&g_array_index(hw_watchpoints, HWWatchpoint, i))
77 
78 /**
79  * kvm_arm_init_debug() - check for guest debug capabilities
80  * @cs: CPUState
81  *
82  * kvm_check_extension returns the number of debug registers we have
83  * or 0 if we have none.
84  *
85  */
86 static void kvm_arm_init_debug(CPUState *cs)
87 {
88     have_guest_debug = kvm_check_extension(cs->kvm_state,
89                                            KVM_CAP_SET_GUEST_DEBUG);
90 
91     max_hw_wps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_WPS);
92     hw_watchpoints = g_array_sized_new(true, true,
93                                        sizeof(HWWatchpoint), max_hw_wps);
94 
95     max_hw_bps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_BPS);
96     hw_breakpoints = g_array_sized_new(true, true,
97                                        sizeof(HWBreakpoint), max_hw_bps);
98     return;
99 }
100 
101 /**
102  * insert_hw_breakpoint()
103  * @addr: address of breakpoint
104  *
105  * See ARM ARM D2.9.1 for details but here we are only going to create
106  * simple un-linked breakpoints (i.e. we don't chain breakpoints
107  * together to match address and context or vmid). The hardware is
108  * capable of fancier matching but that will require exposing that
109  * fanciness to GDB's interface
110  *
111  * DBGBCR<n>_EL1, Debug Breakpoint Control Registers
112  *
113  *  31  24 23  20 19   16 15 14  13  12   9 8   5 4    3 2   1  0
114  * +------+------+-------+-----+----+------+-----+------+-----+---+
115  * | RES0 |  BT  |  LBN  | SSC | HMC| RES0 | BAS | RES0 | PMC | E |
116  * +------+------+-------+-----+----+------+-----+------+-----+---+
117  *
118  * BT: Breakpoint type (0 = unlinked address match)
119  * LBN: Linked BP number (0 = unused)
120  * SSC/HMC/PMC: Security, Higher and Priv access control (Table D-12)
121  * BAS: Byte Address Select (RES1 for AArch64)
122  * E: Enable bit
123  *
124  * DBGBVR<n>_EL1, Debug Breakpoint Value Registers
125  *
126  *  63  53 52       49 48       2  1 0
127  * +------+-----------+----------+-----+
128  * | RESS | VA[52:49] | VA[48:2] | 0 0 |
129  * +------+-----------+----------+-----+
130  *
131  * Depending on the addressing mode bits the top bits of the register
132  * are a sign extension of the highest applicable VA bit. Some
133  * versions of GDB don't do it correctly so we ensure they are correct
134  * here so future PC comparisons will work properly.
135  */
136 
137 static int insert_hw_breakpoint(target_ulong addr)
138 {
139     HWBreakpoint brk = {
140         .bcr = 0x1,                             /* BCR E=1, enable */
141         .bvr = sextract64(addr, 0, 53)
142     };
143 
144     if (cur_hw_bps >= max_hw_bps) {
145         return -ENOBUFS;
146     }
147 
148     brk.bcr = deposit32(brk.bcr, 1, 2, 0x3);   /* PMC = 11 */
149     brk.bcr = deposit32(brk.bcr, 5, 4, 0xf);   /* BAS = RES1 */
150 
151     g_array_append_val(hw_breakpoints, brk);
152 
153     return 0;
154 }
155 
156 /**
157  * delete_hw_breakpoint()
158  * @pc: address of breakpoint
159  *
160  * Delete a breakpoint and shuffle any above down
161  */
162 
163 static int delete_hw_breakpoint(target_ulong pc)
164 {
165     int i;
166     for (i = 0; i < hw_breakpoints->len; i++) {
167         HWBreakpoint *brk = get_hw_bp(i);
168         if (brk->bvr == pc) {
169             g_array_remove_index(hw_breakpoints, i);
170             return 0;
171         }
172     }
173     return -ENOENT;
174 }
175 
176 /**
177  * insert_hw_watchpoint()
178  * @addr: address of watch point
179  * @len: size of area
180  * @type: type of watch point
181  *
182  * See ARM ARM D2.10. As with the breakpoints we can do some advanced
183  * stuff if we want to. The watch points can be linked with the break
184  * points above to make them context aware. However for simplicity
185  * currently we only deal with simple read/write watch points.
186  *
187  * D7.3.11 DBGWCR<n>_EL1, Debug Watchpoint Control Registers
188  *
189  *  31  29 28   24 23  21  20  19 16 15 14  13   12  5 4   3 2   1  0
190  * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
191  * | RES0 |  MASK | RES0 | WT | LBN | SSC | HMC | BAS | LSC | PAC | E |
192  * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
193  *
194  * MASK: num bits addr mask (0=none,01/10=res,11=3 bits (8 bytes))
195  * WT: 0 - unlinked, 1 - linked (not currently used)
196  * LBN: Linked BP number (not currently used)
197  * SSC/HMC/PAC: Security, Higher and Priv access control (Table D2-11)
198  * BAS: Byte Address Select
199  * LSC: Load/Store control (01: load, 10: store, 11: both)
200  * E: Enable
201  *
202  * The bottom 2 bits of the value register are masked. Therefore to
203  * break on any sizes smaller than an unaligned word you need to set
204  * MASK=0, BAS=bit per byte in question. For larger regions (^2) you
205  * need to ensure you mask the address as required and set BAS=0xff
206  */
207 
208 static int insert_hw_watchpoint(target_ulong addr,
209                                 target_ulong len, int type)
210 {
211     HWWatchpoint wp = {
212         .wcr = 1, /* E=1, enable */
213         .wvr = addr & (~0x7ULL),
214         .details = { .vaddr = addr, .len = len }
215     };
216 
217     if (cur_hw_wps >= max_hw_wps) {
218         return -ENOBUFS;
219     }
220 
221     /*
222      * HMC=0 SSC=0 PAC=3 will hit EL0 or EL1, any security state,
223      * valid whether EL3 is implemented or not
224      */
225     wp.wcr = deposit32(wp.wcr, 1, 2, 3);
226 
227     switch (type) {
228     case GDB_WATCHPOINT_READ:
229         wp.wcr = deposit32(wp.wcr, 3, 2, 1);
230         wp.details.flags = BP_MEM_READ;
231         break;
232     case GDB_WATCHPOINT_WRITE:
233         wp.wcr = deposit32(wp.wcr, 3, 2, 2);
234         wp.details.flags = BP_MEM_WRITE;
235         break;
236     case GDB_WATCHPOINT_ACCESS:
237         wp.wcr = deposit32(wp.wcr, 3, 2, 3);
238         wp.details.flags = BP_MEM_ACCESS;
239         break;
240     default:
241         g_assert_not_reached();
242         break;
243     }
244     if (len <= 8) {
245         /* we align the address and set the bits in BAS */
246         int off = addr & 0x7;
247         int bas = (1 << len) - 1;
248 
249         wp.wcr = deposit32(wp.wcr, 5 + off, 8 - off, bas);
250     } else {
251         /* For ranges above 8 bytes we need to be a power of 2 */
252         if (is_power_of_2(len)) {
253             int bits = ctz64(len);
254 
255             wp.wvr &= ~((1 << bits) - 1);
256             wp.wcr = deposit32(wp.wcr, 24, 4, bits);
257             wp.wcr = deposit32(wp.wcr, 5, 8, 0xff);
258         } else {
259             return -ENOBUFS;
260         }
261     }
262 
263     g_array_append_val(hw_watchpoints, wp);
264     return 0;
265 }
266 
267 
268 static bool check_watchpoint_in_range(int i, target_ulong addr)
269 {
270     HWWatchpoint *wp = get_hw_wp(i);
271     uint64_t addr_top, addr_bottom = wp->wvr;
272     int bas = extract32(wp->wcr, 5, 8);
273     int mask = extract32(wp->wcr, 24, 4);
274 
275     if (mask) {
276         addr_top = addr_bottom + (1 << mask);
277     } else {
278         /* BAS must be contiguous but can offset against the base
279          * address in DBGWVR */
280         addr_bottom = addr_bottom + ctz32(bas);
281         addr_top = addr_bottom + clo32(bas);
282     }
283 
284     if (addr >= addr_bottom && addr <= addr_top) {
285         return true;
286     }
287 
288     return false;
289 }
290 
291 /**
292  * delete_hw_watchpoint()
293  * @addr: address of breakpoint
294  *
295  * Delete a breakpoint and shuffle any above down
296  */
297 
298 static int delete_hw_watchpoint(target_ulong addr,
299                                 target_ulong len, int type)
300 {
301     int i;
302     for (i = 0; i < cur_hw_wps; i++) {
303         if (check_watchpoint_in_range(i, addr)) {
304             g_array_remove_index(hw_watchpoints, i);
305             return 0;
306         }
307     }
308     return -ENOENT;
309 }
310 
311 
312 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
313                                   target_ulong len, int type)
314 {
315     switch (type) {
316     case GDB_BREAKPOINT_HW:
317         return insert_hw_breakpoint(addr);
318         break;
319     case GDB_WATCHPOINT_READ:
320     case GDB_WATCHPOINT_WRITE:
321     case GDB_WATCHPOINT_ACCESS:
322         return insert_hw_watchpoint(addr, len, type);
323     default:
324         return -ENOSYS;
325     }
326 }
327 
328 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
329                                   target_ulong len, int type)
330 {
331     switch (type) {
332     case GDB_BREAKPOINT_HW:
333         return delete_hw_breakpoint(addr);
334     case GDB_WATCHPOINT_READ:
335     case GDB_WATCHPOINT_WRITE:
336     case GDB_WATCHPOINT_ACCESS:
337         return delete_hw_watchpoint(addr, len, type);
338     default:
339         return -ENOSYS;
340     }
341 }
342 
343 
344 void kvm_arch_remove_all_hw_breakpoints(void)
345 {
346     if (cur_hw_wps > 0) {
347         g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
348     }
349     if (cur_hw_bps > 0) {
350         g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
351     }
352 }
353 
354 void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
355 {
356     int i;
357     memset(ptr, 0, sizeof(struct kvm_guest_debug_arch));
358 
359     for (i = 0; i < max_hw_wps; i++) {
360         HWWatchpoint *wp = get_hw_wp(i);
361         ptr->dbg_wcr[i] = wp->wcr;
362         ptr->dbg_wvr[i] = wp->wvr;
363     }
364     for (i = 0; i < max_hw_bps; i++) {
365         HWBreakpoint *bp = get_hw_bp(i);
366         ptr->dbg_bcr[i] = bp->bcr;
367         ptr->dbg_bvr[i] = bp->bvr;
368     }
369 }
370 
371 bool kvm_arm_hw_debug_active(CPUState *cs)
372 {
373     return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
374 }
375 
376 static bool find_hw_breakpoint(CPUState *cpu, target_ulong pc)
377 {
378     int i;
379 
380     for (i = 0; i < cur_hw_bps; i++) {
381         HWBreakpoint *bp = get_hw_bp(i);
382         if (bp->bvr == pc) {
383             return true;
384         }
385     }
386     return false;
387 }
388 
389 static CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr)
390 {
391     int i;
392 
393     for (i = 0; i < cur_hw_wps; i++) {
394         if (check_watchpoint_in_range(i, addr)) {
395             return &get_hw_wp(i)->details;
396         }
397     }
398     return NULL;
399 }
400 
401 static bool kvm_arm_set_device_attr(CPUState *cs, struct kvm_device_attr *attr,
402                                     const char *name)
403 {
404     int err;
405 
406     err = kvm_vcpu_ioctl(cs, KVM_HAS_DEVICE_ATTR, attr);
407     if (err != 0) {
408         error_report("%s: KVM_HAS_DEVICE_ATTR: %s", name, strerror(-err));
409         return false;
410     }
411 
412     err = kvm_vcpu_ioctl(cs, KVM_SET_DEVICE_ATTR, attr);
413     if (err != 0) {
414         error_report("%s: KVM_SET_DEVICE_ATTR: %s", name, strerror(-err));
415         return false;
416     }
417 
418     return true;
419 }
420 
421 void kvm_arm_pmu_init(CPUState *cs)
422 {
423     struct kvm_device_attr attr = {
424         .group = KVM_ARM_VCPU_PMU_V3_CTRL,
425         .attr = KVM_ARM_VCPU_PMU_V3_INIT,
426     };
427 
428     if (!ARM_CPU(cs)->has_pmu) {
429         return;
430     }
431     if (!kvm_arm_set_device_attr(cs, &attr, "PMU")) {
432         error_report("failed to init PMU");
433         abort();
434     }
435 }
436 
437 void kvm_arm_pmu_set_irq(CPUState *cs, int irq)
438 {
439     struct kvm_device_attr attr = {
440         .group = KVM_ARM_VCPU_PMU_V3_CTRL,
441         .addr = (intptr_t)&irq,
442         .attr = KVM_ARM_VCPU_PMU_V3_IRQ,
443     };
444 
445     if (!ARM_CPU(cs)->has_pmu) {
446         return;
447     }
448     if (!kvm_arm_set_device_attr(cs, &attr, "PMU")) {
449         error_report("failed to set irq for PMU");
450         abort();
451     }
452 }
453 
454 void kvm_arm_pvtime_init(CPUState *cs, uint64_t ipa)
455 {
456     struct kvm_device_attr attr = {
457         .group = KVM_ARM_VCPU_PVTIME_CTRL,
458         .attr = KVM_ARM_VCPU_PVTIME_IPA,
459         .addr = (uint64_t)&ipa,
460     };
461 
462     if (ARM_CPU(cs)->kvm_steal_time == ON_OFF_AUTO_OFF) {
463         return;
464     }
465     if (!kvm_arm_set_device_attr(cs, &attr, "PVTIME IPA")) {
466         error_report("failed to init PVTIME IPA");
467         abort();
468     }
469 }
470 
471 static int read_sys_reg32(int fd, uint32_t *pret, uint64_t id)
472 {
473     uint64_t ret;
474     struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)&ret };
475     int err;
476 
477     assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
478     err = ioctl(fd, KVM_GET_ONE_REG, &idreg);
479     if (err < 0) {
480         return -1;
481     }
482     *pret = ret;
483     return 0;
484 }
485 
486 static int read_sys_reg64(int fd, uint64_t *pret, uint64_t id)
487 {
488     struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)pret };
489 
490     assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
491     return ioctl(fd, KVM_GET_ONE_REG, &idreg);
492 }
493 
494 bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
495 {
496     /* Identify the feature bits corresponding to the host CPU, and
497      * fill out the ARMHostCPUClass fields accordingly. To do this
498      * we have to create a scratch VM, create a single CPU inside it,
499      * and then query that CPU for the relevant ID registers.
500      */
501     int fdarray[3];
502     bool sve_supported;
503     uint64_t features = 0;
504     uint64_t t;
505     int err;
506 
507     /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
508      * we know these will only support creating one kind of guest CPU,
509      * which is its preferred CPU type. Fortunately these old kernels
510      * support only a very limited number of CPUs.
511      */
512     static const uint32_t cpus_to_try[] = {
513         KVM_ARM_TARGET_AEM_V8,
514         KVM_ARM_TARGET_FOUNDATION_V8,
515         KVM_ARM_TARGET_CORTEX_A57,
516         QEMU_KVM_ARM_TARGET_NONE
517     };
518     /*
519      * target = -1 informs kvm_arm_create_scratch_host_vcpu()
520      * to use the preferred target
521      */
522     struct kvm_vcpu_init init = { .target = -1, };
523 
524     if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
525         return false;
526     }
527 
528     ahcf->target = init.target;
529     ahcf->dtb_compatible = "arm,arm-v8";
530 
531     err = read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr0,
532                          ARM64_SYS_REG(3, 0, 0, 4, 0));
533     if (unlikely(err < 0)) {
534         /*
535          * Before v4.15, the kernel only exposed a limited number of system
536          * registers, not including any of the interesting AArch64 ID regs.
537          * For the most part we could leave these fields as zero with minimal
538          * effect, since this does not affect the values seen by the guest.
539          *
540          * However, it could cause problems down the line for QEMU,
541          * so provide a minimal v8.0 default.
542          *
543          * ??? Could read MIDR and use knowledge from cpu64.c.
544          * ??? Could map a page of memory into our temp guest and
545          *     run the tiniest of hand-crafted kernels to extract
546          *     the values seen by the guest.
547          * ??? Either of these sounds like too much effort just
548          *     to work around running a modern host kernel.
549          */
550         ahcf->isar.id_aa64pfr0 = 0x00000011; /* EL1&0, AArch64 only */
551         err = 0;
552     } else {
553         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr1,
554                               ARM64_SYS_REG(3, 0, 0, 4, 1));
555         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr0,
556                               ARM64_SYS_REG(3, 0, 0, 5, 0));
557         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr1,
558                               ARM64_SYS_REG(3, 0, 0, 5, 1));
559         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar0,
560                               ARM64_SYS_REG(3, 0, 0, 6, 0));
561         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar1,
562                               ARM64_SYS_REG(3, 0, 0, 6, 1));
563         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr0,
564                               ARM64_SYS_REG(3, 0, 0, 7, 0));
565         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr1,
566                               ARM64_SYS_REG(3, 0, 0, 7, 1));
567         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr2,
568                               ARM64_SYS_REG(3, 0, 0, 7, 2));
569 
570         /*
571          * Note that if AArch32 support is not present in the host,
572          * the AArch32 sysregs are present to be read, but will
573          * return UNKNOWN values.  This is neither better nor worse
574          * than skipping the reads and leaving 0, as we must avoid
575          * considering the values in every case.
576          */
577         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr0,
578                               ARM64_SYS_REG(3, 0, 0, 1, 0));
579         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr1,
580                               ARM64_SYS_REG(3, 0, 0, 1, 1));
581         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr2,
582                               ARM64_SYS_REG(3, 0, 0, 3, 4));
583         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr0,
584                               ARM64_SYS_REG(3, 0, 0, 1, 2));
585         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr0,
586                               ARM64_SYS_REG(3, 0, 0, 1, 4));
587         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr1,
588                               ARM64_SYS_REG(3, 0, 0, 1, 5));
589         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr2,
590                               ARM64_SYS_REG(3, 0, 0, 1, 6));
591         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr3,
592                               ARM64_SYS_REG(3, 0, 0, 1, 7));
593         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar0,
594                               ARM64_SYS_REG(3, 0, 0, 2, 0));
595         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar1,
596                               ARM64_SYS_REG(3, 0, 0, 2, 1));
597         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar2,
598                               ARM64_SYS_REG(3, 0, 0, 2, 2));
599         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar3,
600                               ARM64_SYS_REG(3, 0, 0, 2, 3));
601         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar4,
602                               ARM64_SYS_REG(3, 0, 0, 2, 4));
603         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar5,
604                               ARM64_SYS_REG(3, 0, 0, 2, 5));
605         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr4,
606                               ARM64_SYS_REG(3, 0, 0, 2, 6));
607         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar6,
608                               ARM64_SYS_REG(3, 0, 0, 2, 7));
609 
610         err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr0,
611                               ARM64_SYS_REG(3, 0, 0, 3, 0));
612         err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr1,
613                               ARM64_SYS_REG(3, 0, 0, 3, 1));
614         err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr2,
615                               ARM64_SYS_REG(3, 0, 0, 3, 2));
616 
617         /*
618          * DBGDIDR is a bit complicated because the kernel doesn't
619          * provide an accessor for it in 64-bit mode, which is what this
620          * scratch VM is in, and there's no architected "64-bit sysreg
621          * which reads the same as the 32-bit register" the way there is
622          * for other ID registers. Instead we synthesize a value from the
623          * AArch64 ID_AA64DFR0, the same way the kernel code in
624          * arch/arm64/kvm/sys_regs.c:trap_dbgidr() does.
625          * We only do this if the CPU supports AArch32 at EL1.
626          */
627         if (FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL1) >= 2) {
628             int wrps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, WRPS);
629             int brps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, BRPS);
630             int ctx_cmps =
631                 FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS);
632             int version = 6; /* ARMv8 debug architecture */
633             bool has_el3 =
634                 !!FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL3);
635             uint32_t dbgdidr = 0;
636 
637             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, WRPS, wrps);
638             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, BRPS, brps);
639             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, CTX_CMPS, ctx_cmps);
640             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, VERSION, version);
641             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, NSUHD_IMP, has_el3);
642             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, SE_IMP, has_el3);
643             dbgdidr |= (1 << 15); /* RES1 bit */
644             ahcf->isar.dbgdidr = dbgdidr;
645         }
646     }
647 
648     sve_supported = ioctl(fdarray[0], KVM_CHECK_EXTENSION, KVM_CAP_ARM_SVE) > 0;
649 
650     /* Add feature bits that can't appear until after VCPU init. */
651     if (sve_supported) {
652         t = ahcf->isar.id_aa64pfr0;
653         t = FIELD_DP64(t, ID_AA64PFR0, SVE, 1);
654         ahcf->isar.id_aa64pfr0 = t;
655 
656         /*
657          * Before v5.1, KVM did not support SVE and did not expose
658          * ID_AA64ZFR0_EL1 even as RAZ.  After v5.1, KVM still does
659          * not expose the register to "user" requests like this
660          * unless the host supports SVE.
661          */
662         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64zfr0,
663                               ARM64_SYS_REG(3, 0, 0, 4, 4));
664     }
665 
666     kvm_arm_destroy_scratch_host_vcpu(fdarray);
667 
668     if (err < 0) {
669         return false;
670     }
671 
672     /*
673      * We can assume any KVM supporting CPU is at least a v8
674      * with VFPv4+Neon; this in turn implies most of the other
675      * feature bits.
676      */
677     features |= 1ULL << ARM_FEATURE_V8;
678     features |= 1ULL << ARM_FEATURE_NEON;
679     features |= 1ULL << ARM_FEATURE_AARCH64;
680     features |= 1ULL << ARM_FEATURE_PMU;
681     features |= 1ULL << ARM_FEATURE_GENERIC_TIMER;
682 
683     ahcf->features = features;
684 
685     return true;
686 }
687 
688 void kvm_arm_steal_time_finalize(ARMCPU *cpu, Error **errp)
689 {
690     bool has_steal_time = kvm_arm_steal_time_supported();
691 
692     if (cpu->kvm_steal_time == ON_OFF_AUTO_AUTO) {
693         if (!has_steal_time || !arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
694             cpu->kvm_steal_time = ON_OFF_AUTO_OFF;
695         } else {
696             cpu->kvm_steal_time = ON_OFF_AUTO_ON;
697         }
698     } else if (cpu->kvm_steal_time == ON_OFF_AUTO_ON) {
699         if (!has_steal_time) {
700             error_setg(errp, "'kvm-steal-time' cannot be enabled "
701                              "on this host");
702             return;
703         } else if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
704             /*
705              * DEN0057A chapter 2 says "This specification only covers
706              * systems in which the Execution state of the hypervisor
707              * as well as EL1 of virtual machines is AArch64.". And,
708              * to ensure that, the smc/hvc calls are only specified as
709              * smc64/hvc64.
710              */
711             error_setg(errp, "'kvm-steal-time' cannot be enabled "
712                              "for AArch32 guests");
713             return;
714         }
715     }
716 }
717 
718 bool kvm_arm_aarch32_supported(void)
719 {
720     return kvm_check_extension(kvm_state, KVM_CAP_ARM_EL1_32BIT);
721 }
722 
723 bool kvm_arm_sve_supported(void)
724 {
725     return kvm_check_extension(kvm_state, KVM_CAP_ARM_SVE);
726 }
727 
728 bool kvm_arm_steal_time_supported(void)
729 {
730     return kvm_check_extension(kvm_state, KVM_CAP_STEAL_TIME);
731 }
732 
733 QEMU_BUILD_BUG_ON(KVM_ARM64_SVE_VQ_MIN != 1);
734 
735 void kvm_arm_sve_get_vls(CPUState *cs, unsigned long *map)
736 {
737     /* Only call this function if kvm_arm_sve_supported() returns true. */
738     static uint64_t vls[KVM_ARM64_SVE_VLS_WORDS];
739     static bool probed;
740     uint32_t vq = 0;
741     int i, j;
742 
743     bitmap_clear(map, 0, ARM_MAX_VQ);
744 
745     /*
746      * KVM ensures all host CPUs support the same set of vector lengths.
747      * So we only need to create the scratch VCPUs once and then cache
748      * the results.
749      */
750     if (!probed) {
751         struct kvm_vcpu_init init = {
752             .target = -1,
753             .features[0] = (1 << KVM_ARM_VCPU_SVE),
754         };
755         struct kvm_one_reg reg = {
756             .id = KVM_REG_ARM64_SVE_VLS,
757             .addr = (uint64_t)&vls[0],
758         };
759         int fdarray[3], ret;
760 
761         probed = true;
762 
763         if (!kvm_arm_create_scratch_host_vcpu(NULL, fdarray, &init)) {
764             error_report("failed to create scratch VCPU with SVE enabled");
765             abort();
766         }
767         ret = ioctl(fdarray[2], KVM_GET_ONE_REG, &reg);
768         kvm_arm_destroy_scratch_host_vcpu(fdarray);
769         if (ret) {
770             error_report("failed to get KVM_REG_ARM64_SVE_VLS: %s",
771                          strerror(errno));
772             abort();
773         }
774 
775         for (i = KVM_ARM64_SVE_VLS_WORDS - 1; i >= 0; --i) {
776             if (vls[i]) {
777                 vq = 64 - clz64(vls[i]) + i * 64;
778                 break;
779             }
780         }
781         if (vq > ARM_MAX_VQ) {
782             warn_report("KVM supports vector lengths larger than "
783                         "QEMU can enable");
784         }
785     }
786 
787     for (i = 0; i < KVM_ARM64_SVE_VLS_WORDS; ++i) {
788         if (!vls[i]) {
789             continue;
790         }
791         for (j = 1; j <= 64; ++j) {
792             vq = j + i * 64;
793             if (vq > ARM_MAX_VQ) {
794                 return;
795             }
796             if (vls[i] & (1UL << (j - 1))) {
797                 set_bit(vq - 1, map);
798             }
799         }
800     }
801 }
802 
803 static int kvm_arm_sve_set_vls(CPUState *cs)
804 {
805     uint64_t vls[KVM_ARM64_SVE_VLS_WORDS] = {0};
806     struct kvm_one_reg reg = {
807         .id = KVM_REG_ARM64_SVE_VLS,
808         .addr = (uint64_t)&vls[0],
809     };
810     ARMCPU *cpu = ARM_CPU(cs);
811     uint32_t vq;
812     int i, j;
813 
814     assert(cpu->sve_max_vq <= KVM_ARM64_SVE_VQ_MAX);
815 
816     for (vq = 1; vq <= cpu->sve_max_vq; ++vq) {
817         if (test_bit(vq - 1, cpu->sve_vq_map)) {
818             i = (vq - 1) / 64;
819             j = (vq - 1) % 64;
820             vls[i] |= 1UL << j;
821         }
822     }
823 
824     return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
825 }
826 
827 #define ARM_CPU_ID_MPIDR       3, 0, 0, 0, 5
828 
829 int kvm_arch_init_vcpu(CPUState *cs)
830 {
831     int ret;
832     uint64_t mpidr;
833     ARMCPU *cpu = ARM_CPU(cs);
834     CPUARMState *env = &cpu->env;
835 
836     if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
837         !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
838         error_report("KVM is not supported for this guest CPU type");
839         return -EINVAL;
840     }
841 
842     qemu_add_vm_change_state_handler(kvm_arm_vm_state_change, cs);
843 
844     /* Determine init features for this CPU */
845     memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
846     if (cs->start_powered_off) {
847         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
848     }
849     if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
850         cpu->psci_version = 2;
851         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
852     }
853     if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
854         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
855     }
856     if (!kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PMU_V3)) {
857         cpu->has_pmu = false;
858     }
859     if (cpu->has_pmu) {
860         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
861     } else {
862         env->features &= ~(1ULL << ARM_FEATURE_PMU);
863     }
864     if (cpu_isar_feature(aa64_sve, cpu)) {
865         assert(kvm_arm_sve_supported());
866         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_SVE;
867     }
868 
869     /* Do KVM_ARM_VCPU_INIT ioctl */
870     ret = kvm_arm_vcpu_init(cs);
871     if (ret) {
872         return ret;
873     }
874 
875     if (cpu_isar_feature(aa64_sve, cpu)) {
876         ret = kvm_arm_sve_set_vls(cs);
877         if (ret) {
878             return ret;
879         }
880         ret = kvm_arm_vcpu_finalize(cs, KVM_ARM_VCPU_SVE);
881         if (ret) {
882             return ret;
883         }
884     }
885 
886     /*
887      * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
888      * Currently KVM has its own idea about MPIDR assignment, so we
889      * override our defaults with what we get from KVM.
890      */
891     ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
892     if (ret) {
893         return ret;
894     }
895     cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
896 
897     kvm_arm_init_debug(cs);
898 
899     /* Check whether user space can specify guest syndrome value */
900     kvm_arm_init_serror_injection(cs);
901 
902     return kvm_arm_init_cpreg_list(cpu);
903 }
904 
905 int kvm_arch_destroy_vcpu(CPUState *cs)
906 {
907     return 0;
908 }
909 
910 bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
911 {
912     /* Return true if the regidx is a register we should synchronize
913      * via the cpreg_tuples array (ie is not a core or sve reg that
914      * we sync by hand in kvm_arch_get/put_registers())
915      */
916     switch (regidx & KVM_REG_ARM_COPROC_MASK) {
917     case KVM_REG_ARM_CORE:
918     case KVM_REG_ARM64_SVE:
919         return false;
920     default:
921         return true;
922     }
923 }
924 
925 typedef struct CPRegStateLevel {
926     uint64_t regidx;
927     int level;
928 } CPRegStateLevel;
929 
930 /* All system registers not listed in the following table are assumed to be
931  * of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
932  * often, you must add it to this table with a state of either
933  * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
934  */
935 static const CPRegStateLevel non_runtime_cpregs[] = {
936     { KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE },
937 };
938 
939 int kvm_arm_cpreg_level(uint64_t regidx)
940 {
941     int i;
942 
943     for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) {
944         const CPRegStateLevel *l = &non_runtime_cpregs[i];
945         if (l->regidx == regidx) {
946             return l->level;
947         }
948     }
949 
950     return KVM_PUT_RUNTIME_STATE;
951 }
952 
953 /* Callers must hold the iothread mutex lock */
954 static void kvm_inject_arm_sea(CPUState *c)
955 {
956     ARMCPU *cpu = ARM_CPU(c);
957     CPUARMState *env = &cpu->env;
958     uint32_t esr;
959     bool same_el;
960 
961     c->exception_index = EXCP_DATA_ABORT;
962     env->exception.target_el = 1;
963 
964     /*
965      * Set the DFSC to synchronous external abort and set FnV to not valid,
966      * this will tell guest the FAR_ELx is UNKNOWN for this abort.
967      */
968     same_el = arm_current_el(env) == env->exception.target_el;
969     esr = syn_data_abort_no_iss(same_el, 1, 0, 0, 0, 0, 0x10);
970 
971     env->exception.syndrome = esr;
972 
973     arm_cpu_do_interrupt(c);
974 }
975 
976 #define AARCH64_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
977                  KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
978 
979 #define AARCH64_SIMD_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
980                  KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
981 
982 #define AARCH64_SIMD_CTRL_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
983                  KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
984 
985 static int kvm_arch_put_fpsimd(CPUState *cs)
986 {
987     CPUARMState *env = &ARM_CPU(cs)->env;
988     struct kvm_one_reg reg;
989     int i, ret;
990 
991     for (i = 0; i < 32; i++) {
992         uint64_t *q = aa64_vfp_qreg(env, i);
993 #ifdef HOST_WORDS_BIGENDIAN
994         uint64_t fp_val[2] = { q[1], q[0] };
995         reg.addr = (uintptr_t)fp_val;
996 #else
997         reg.addr = (uintptr_t)q;
998 #endif
999         reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
1000         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1001         if (ret) {
1002             return ret;
1003         }
1004     }
1005 
1006     return 0;
1007 }
1008 
1009 /*
1010  * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
1011  * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
1012  * code the slice index to zero for now as it's unlikely we'll need more than
1013  * one slice for quite some time.
1014  */
1015 static int kvm_arch_put_sve(CPUState *cs)
1016 {
1017     ARMCPU *cpu = ARM_CPU(cs);
1018     CPUARMState *env = &cpu->env;
1019     uint64_t tmp[ARM_MAX_VQ * 2];
1020     uint64_t *r;
1021     struct kvm_one_reg reg;
1022     int n, ret;
1023 
1024     for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
1025         r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2);
1026         reg.addr = (uintptr_t)r;
1027         reg.id = KVM_REG_ARM64_SVE_ZREG(n, 0);
1028         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1029         if (ret) {
1030             return ret;
1031         }
1032     }
1033 
1034     for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
1035         r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0],
1036                         DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
1037         reg.addr = (uintptr_t)r;
1038         reg.id = KVM_REG_ARM64_SVE_PREG(n, 0);
1039         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1040         if (ret) {
1041             return ret;
1042         }
1043     }
1044 
1045     r = sve_bswap64(tmp, &env->vfp.pregs[FFR_PRED_NUM].p[0],
1046                     DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
1047     reg.addr = (uintptr_t)r;
1048     reg.id = KVM_REG_ARM64_SVE_FFR(0);
1049     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1050     if (ret) {
1051         return ret;
1052     }
1053 
1054     return 0;
1055 }
1056 
1057 int kvm_arch_put_registers(CPUState *cs, int level)
1058 {
1059     struct kvm_one_reg reg;
1060     uint64_t val;
1061     uint32_t fpr;
1062     int i, ret;
1063     unsigned int el;
1064 
1065     ARMCPU *cpu = ARM_CPU(cs);
1066     CPUARMState *env = &cpu->env;
1067 
1068     /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
1069      * AArch64 registers before pushing them out to 64-bit KVM.
1070      */
1071     if (!is_a64(env)) {
1072         aarch64_sync_32_to_64(env);
1073     }
1074 
1075     for (i = 0; i < 31; i++) {
1076         reg.id = AARCH64_CORE_REG(regs.regs[i]);
1077         reg.addr = (uintptr_t) &env->xregs[i];
1078         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1079         if (ret) {
1080             return ret;
1081         }
1082     }
1083 
1084     /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
1085      * QEMU side we keep the current SP in xregs[31] as well.
1086      */
1087     aarch64_save_sp(env, 1);
1088 
1089     reg.id = AARCH64_CORE_REG(regs.sp);
1090     reg.addr = (uintptr_t) &env->sp_el[0];
1091     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1092     if (ret) {
1093         return ret;
1094     }
1095 
1096     reg.id = AARCH64_CORE_REG(sp_el1);
1097     reg.addr = (uintptr_t) &env->sp_el[1];
1098     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1099     if (ret) {
1100         return ret;
1101     }
1102 
1103     /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
1104     if (is_a64(env)) {
1105         val = pstate_read(env);
1106     } else {
1107         val = cpsr_read(env);
1108     }
1109     reg.id = AARCH64_CORE_REG(regs.pstate);
1110     reg.addr = (uintptr_t) &val;
1111     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1112     if (ret) {
1113         return ret;
1114     }
1115 
1116     reg.id = AARCH64_CORE_REG(regs.pc);
1117     reg.addr = (uintptr_t) &env->pc;
1118     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1119     if (ret) {
1120         return ret;
1121     }
1122 
1123     reg.id = AARCH64_CORE_REG(elr_el1);
1124     reg.addr = (uintptr_t) &env->elr_el[1];
1125     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1126     if (ret) {
1127         return ret;
1128     }
1129 
1130     /* Saved Program State Registers
1131      *
1132      * Before we restore from the banked_spsr[] array we need to
1133      * ensure that any modifications to env->spsr are correctly
1134      * reflected in the banks.
1135      */
1136     el = arm_current_el(env);
1137     if (el > 0 && !is_a64(env)) {
1138         i = bank_number(env->uncached_cpsr & CPSR_M);
1139         env->banked_spsr[i] = env->spsr;
1140     }
1141 
1142     /* KVM 0-4 map to QEMU banks 1-5 */
1143     for (i = 0; i < KVM_NR_SPSR; i++) {
1144         reg.id = AARCH64_CORE_REG(spsr[i]);
1145         reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
1146         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1147         if (ret) {
1148             return ret;
1149         }
1150     }
1151 
1152     if (cpu_isar_feature(aa64_sve, cpu)) {
1153         ret = kvm_arch_put_sve(cs);
1154     } else {
1155         ret = kvm_arch_put_fpsimd(cs);
1156     }
1157     if (ret) {
1158         return ret;
1159     }
1160 
1161     reg.addr = (uintptr_t)(&fpr);
1162     fpr = vfp_get_fpsr(env);
1163     reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
1164     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1165     if (ret) {
1166         return ret;
1167     }
1168 
1169     reg.addr = (uintptr_t)(&fpr);
1170     fpr = vfp_get_fpcr(env);
1171     reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
1172     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1173     if (ret) {
1174         return ret;
1175     }
1176 
1177     write_cpustate_to_list(cpu, true);
1178 
1179     if (!write_list_to_kvmstate(cpu, level)) {
1180         return -EINVAL;
1181     }
1182 
1183    /*
1184     * Setting VCPU events should be triggered after syncing the registers
1185     * to avoid overwriting potential changes made by KVM upon calling
1186     * KVM_SET_VCPU_EVENTS ioctl
1187     */
1188     ret = kvm_put_vcpu_events(cpu);
1189     if (ret) {
1190         return ret;
1191     }
1192 
1193     kvm_arm_sync_mpstate_to_kvm(cpu);
1194 
1195     return ret;
1196 }
1197 
1198 static int kvm_arch_get_fpsimd(CPUState *cs)
1199 {
1200     CPUARMState *env = &ARM_CPU(cs)->env;
1201     struct kvm_one_reg reg;
1202     int i, ret;
1203 
1204     for (i = 0; i < 32; i++) {
1205         uint64_t *q = aa64_vfp_qreg(env, i);
1206         reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
1207         reg.addr = (uintptr_t)q;
1208         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1209         if (ret) {
1210             return ret;
1211         } else {
1212 #ifdef HOST_WORDS_BIGENDIAN
1213             uint64_t t;
1214             t = q[0], q[0] = q[1], q[1] = t;
1215 #endif
1216         }
1217     }
1218 
1219     return 0;
1220 }
1221 
1222 /*
1223  * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
1224  * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
1225  * code the slice index to zero for now as it's unlikely we'll need more than
1226  * one slice for quite some time.
1227  */
1228 static int kvm_arch_get_sve(CPUState *cs)
1229 {
1230     ARMCPU *cpu = ARM_CPU(cs);
1231     CPUARMState *env = &cpu->env;
1232     struct kvm_one_reg reg;
1233     uint64_t *r;
1234     int n, ret;
1235 
1236     for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
1237         r = &env->vfp.zregs[n].d[0];
1238         reg.addr = (uintptr_t)r;
1239         reg.id = KVM_REG_ARM64_SVE_ZREG(n, 0);
1240         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1241         if (ret) {
1242             return ret;
1243         }
1244         sve_bswap64(r, r, cpu->sve_max_vq * 2);
1245     }
1246 
1247     for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
1248         r = &env->vfp.pregs[n].p[0];
1249         reg.addr = (uintptr_t)r;
1250         reg.id = KVM_REG_ARM64_SVE_PREG(n, 0);
1251         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1252         if (ret) {
1253             return ret;
1254         }
1255         sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
1256     }
1257 
1258     r = &env->vfp.pregs[FFR_PRED_NUM].p[0];
1259     reg.addr = (uintptr_t)r;
1260     reg.id = KVM_REG_ARM64_SVE_FFR(0);
1261     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1262     if (ret) {
1263         return ret;
1264     }
1265     sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
1266 
1267     return 0;
1268 }
1269 
1270 int kvm_arch_get_registers(CPUState *cs)
1271 {
1272     struct kvm_one_reg reg;
1273     uint64_t val;
1274     unsigned int el;
1275     uint32_t fpr;
1276     int i, ret;
1277 
1278     ARMCPU *cpu = ARM_CPU(cs);
1279     CPUARMState *env = &cpu->env;
1280 
1281     for (i = 0; i < 31; i++) {
1282         reg.id = AARCH64_CORE_REG(regs.regs[i]);
1283         reg.addr = (uintptr_t) &env->xregs[i];
1284         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1285         if (ret) {
1286             return ret;
1287         }
1288     }
1289 
1290     reg.id = AARCH64_CORE_REG(regs.sp);
1291     reg.addr = (uintptr_t) &env->sp_el[0];
1292     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1293     if (ret) {
1294         return ret;
1295     }
1296 
1297     reg.id = AARCH64_CORE_REG(sp_el1);
1298     reg.addr = (uintptr_t) &env->sp_el[1];
1299     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1300     if (ret) {
1301         return ret;
1302     }
1303 
1304     reg.id = AARCH64_CORE_REG(regs.pstate);
1305     reg.addr = (uintptr_t) &val;
1306     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1307     if (ret) {
1308         return ret;
1309     }
1310 
1311     env->aarch64 = ((val & PSTATE_nRW) == 0);
1312     if (is_a64(env)) {
1313         pstate_write(env, val);
1314     } else {
1315         cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
1316     }
1317 
1318     /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
1319      * QEMU side we keep the current SP in xregs[31] as well.
1320      */
1321     aarch64_restore_sp(env, 1);
1322 
1323     reg.id = AARCH64_CORE_REG(regs.pc);
1324     reg.addr = (uintptr_t) &env->pc;
1325     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1326     if (ret) {
1327         return ret;
1328     }
1329 
1330     /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
1331      * incoming AArch64 regs received from 64-bit KVM.
1332      * We must perform this after all of the registers have been acquired from
1333      * the kernel.
1334      */
1335     if (!is_a64(env)) {
1336         aarch64_sync_64_to_32(env);
1337     }
1338 
1339     reg.id = AARCH64_CORE_REG(elr_el1);
1340     reg.addr = (uintptr_t) &env->elr_el[1];
1341     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1342     if (ret) {
1343         return ret;
1344     }
1345 
1346     /* Fetch the SPSR registers
1347      *
1348      * KVM SPSRs 0-4 map to QEMU banks 1-5
1349      */
1350     for (i = 0; i < KVM_NR_SPSR; i++) {
1351         reg.id = AARCH64_CORE_REG(spsr[i]);
1352         reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
1353         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1354         if (ret) {
1355             return ret;
1356         }
1357     }
1358 
1359     el = arm_current_el(env);
1360     if (el > 0 && !is_a64(env)) {
1361         i = bank_number(env->uncached_cpsr & CPSR_M);
1362         env->spsr = env->banked_spsr[i];
1363     }
1364 
1365     if (cpu_isar_feature(aa64_sve, cpu)) {
1366         ret = kvm_arch_get_sve(cs);
1367     } else {
1368         ret = kvm_arch_get_fpsimd(cs);
1369     }
1370     if (ret) {
1371         return ret;
1372     }
1373 
1374     reg.addr = (uintptr_t)(&fpr);
1375     reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
1376     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1377     if (ret) {
1378         return ret;
1379     }
1380     vfp_set_fpsr(env, fpr);
1381 
1382     reg.addr = (uintptr_t)(&fpr);
1383     reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
1384     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1385     if (ret) {
1386         return ret;
1387     }
1388     vfp_set_fpcr(env, fpr);
1389 
1390     ret = kvm_get_vcpu_events(cpu);
1391     if (ret) {
1392         return ret;
1393     }
1394 
1395     if (!write_kvmstate_to_list(cpu)) {
1396         return -EINVAL;
1397     }
1398     /* Note that it's OK to have registers which aren't in CPUState,
1399      * so we can ignore a failure return here.
1400      */
1401     write_list_to_cpustate(cpu);
1402 
1403     kvm_arm_sync_mpstate_to_qemu(cpu);
1404 
1405     /* TODO: other registers */
1406     return ret;
1407 }
1408 
1409 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
1410 {
1411     ram_addr_t ram_addr;
1412     hwaddr paddr;
1413 
1414     assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
1415 
1416     if (acpi_ghes_present() && addr) {
1417         ram_addr = qemu_ram_addr_from_host(addr);
1418         if (ram_addr != RAM_ADDR_INVALID &&
1419             kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
1420             kvm_hwpoison_page_add(ram_addr);
1421             /*
1422              * If this is a BUS_MCEERR_AR, we know we have been called
1423              * synchronously from the vCPU thread, so we can easily
1424              * synchronize the state and inject an error.
1425              *
1426              * TODO: we currently don't tell the guest at all about
1427              * BUS_MCEERR_AO. In that case we might either be being
1428              * called synchronously from the vCPU thread, or a bit
1429              * later from the main thread, so doing the injection of
1430              * the error would be more complicated.
1431              */
1432             if (code == BUS_MCEERR_AR) {
1433                 kvm_cpu_synchronize_state(c);
1434                 if (!acpi_ghes_record_errors(ACPI_HEST_SRC_ID_SEA, paddr)) {
1435                     kvm_inject_arm_sea(c);
1436                 } else {
1437                     error_report("failed to record the error");
1438                     abort();
1439                 }
1440             }
1441             return;
1442         }
1443         if (code == BUS_MCEERR_AO) {
1444             error_report("Hardware memory error at addr %p for memory used by "
1445                 "QEMU itself instead of guest system!", addr);
1446         }
1447     }
1448 
1449     if (code == BUS_MCEERR_AR) {
1450         error_report("Hardware memory error!");
1451         exit(1);
1452     }
1453 }
1454 
1455 /* C6.6.29 BRK instruction */
1456 static const uint32_t brk_insn = 0xd4200000;
1457 
1458 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1459 {
1460     if (have_guest_debug) {
1461         if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
1462             cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
1463             return -EINVAL;
1464         }
1465         return 0;
1466     } else {
1467         error_report("guest debug not supported on this kernel");
1468         return -EINVAL;
1469     }
1470 }
1471 
1472 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1473 {
1474     static uint32_t brk;
1475 
1476     if (have_guest_debug) {
1477         if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
1478             brk != brk_insn ||
1479             cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
1480             return -EINVAL;
1481         }
1482         return 0;
1483     } else {
1484         error_report("guest debug not supported on this kernel");
1485         return -EINVAL;
1486     }
1487 }
1488 
1489 /* See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register
1490  *
1491  * To minimise translating between kernel and user-space the kernel
1492  * ABI just provides user-space with the full exception syndrome
1493  * register value to be decoded in QEMU.
1494  */
1495 
1496 bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit)
1497 {
1498     int hsr_ec = syn_get_ec(debug_exit->hsr);
1499     ARMCPU *cpu = ARM_CPU(cs);
1500     CPUARMState *env = &cpu->env;
1501 
1502     /* Ensure PC is synchronised */
1503     kvm_cpu_synchronize_state(cs);
1504 
1505     switch (hsr_ec) {
1506     case EC_SOFTWARESTEP:
1507         if (cs->singlestep_enabled) {
1508             return true;
1509         } else {
1510             /*
1511              * The kernel should have suppressed the guest's ability to
1512              * single step at this point so something has gone wrong.
1513              */
1514             error_report("%s: guest single-step while debugging unsupported"
1515                          " (%"PRIx64", %"PRIx32")",
1516                          __func__, env->pc, debug_exit->hsr);
1517             return false;
1518         }
1519         break;
1520     case EC_AA64_BKPT:
1521         if (kvm_find_sw_breakpoint(cs, env->pc)) {
1522             return true;
1523         }
1524         break;
1525     case EC_BREAKPOINT:
1526         if (find_hw_breakpoint(cs, env->pc)) {
1527             return true;
1528         }
1529         break;
1530     case EC_WATCHPOINT:
1531     {
1532         CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far);
1533         if (wp) {
1534             cs->watchpoint_hit = wp;
1535             return true;
1536         }
1537         break;
1538     }
1539     default:
1540         error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")",
1541                      __func__, debug_exit->hsr, env->pc);
1542     }
1543 
1544     /* If we are not handling the debug exception it must belong to
1545      * the guest. Let's re-use the existing TCG interrupt code to set
1546      * everything up properly.
1547      */
1548     cs->exception_index = EXCP_BKPT;
1549     env->exception.syndrome = debug_exit->hsr;
1550     env->exception.vaddress = debug_exit->far;
1551     env->exception.target_el = 1;
1552     qemu_mutex_lock_iothread();
1553     arm_cpu_do_interrupt(cs);
1554     qemu_mutex_unlock_iothread();
1555 
1556     return false;
1557 }
1558 
1559 #define ARM64_REG_ESR_EL1 ARM64_SYS_REG(3, 0, 5, 2, 0)
1560 #define ARM64_REG_TCR_EL1 ARM64_SYS_REG(3, 0, 2, 0, 2)
1561 
1562 /*
1563  * ESR_EL1
1564  * ISS encoding
1565  * AARCH64: DFSC,   bits [5:0]
1566  * AARCH32:
1567  *      TTBCR.EAE == 0
1568  *          FS[4]   - DFSR[10]
1569  *          FS[3:0] - DFSR[3:0]
1570  *      TTBCR.EAE == 1
1571  *          FS, bits [5:0]
1572  */
1573 #define ESR_DFSC(aarch64, lpae, v)        \
1574     ((aarch64 || (lpae)) ? ((v) & 0x3F)   \
1575                : (((v) >> 6) | ((v) & 0x1F)))
1576 
1577 #define ESR_DFSC_EXTABT(aarch64, lpae) \
1578     ((aarch64) ? 0x10 : (lpae) ? 0x10 : 0x8)
1579 
1580 bool kvm_arm_verify_ext_dabt_pending(CPUState *cs)
1581 {
1582     uint64_t dfsr_val;
1583 
1584     if (!kvm_get_one_reg(cs, ARM64_REG_ESR_EL1, &dfsr_val)) {
1585         ARMCPU *cpu = ARM_CPU(cs);
1586         CPUARMState *env = &cpu->env;
1587         int aarch64_mode = arm_feature(env, ARM_FEATURE_AARCH64);
1588         int lpae = 0;
1589 
1590         if (!aarch64_mode) {
1591             uint64_t ttbcr;
1592 
1593             if (!kvm_get_one_reg(cs, ARM64_REG_TCR_EL1, &ttbcr)) {
1594                 lpae = arm_feature(env, ARM_FEATURE_LPAE)
1595                         && (ttbcr & TTBCR_EAE);
1596             }
1597         }
1598         /*
1599          * The verification here is based on the DFSC bits
1600          * of the ESR_EL1 reg only
1601          */
1602          return (ESR_DFSC(aarch64_mode, lpae, dfsr_val) ==
1603                 ESR_DFSC_EXTABT(aarch64_mode, lpae));
1604     }
1605     return false;
1606 }
1607