xref: /openbmc/qemu/target/arm/kvm64.c (revision 27a4a30e)
1 /*
2  * ARM implementation of KVM hooks, 64 bit specific code
3  *
4  * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
5  * Copyright Alex Bennée 2014, Linaro
6  *
7  * This work is licensed under the terms of the GNU GPL, version 2 or later.
8  * See the COPYING file in the top-level directory.
9  *
10  */
11 
12 #include "qemu/osdep.h"
13 #include <sys/ioctl.h>
14 #include <sys/ptrace.h>
15 
16 #include <linux/elf.h>
17 #include <linux/kvm.h>
18 
19 #include "qemu-common.h"
20 #include "cpu.h"
21 #include "qemu/timer.h"
22 #include "qemu/error-report.h"
23 #include "qemu/host-utils.h"
24 #include "qemu/main-loop.h"
25 #include "exec/gdbstub.h"
26 #include "sysemu/runstate.h"
27 #include "sysemu/kvm.h"
28 #include "sysemu/kvm_int.h"
29 #include "kvm_arm.h"
30 #include "internals.h"
31 
32 static bool have_guest_debug;
33 
34 /*
35  * Although the ARM implementation of hardware assisted debugging
36  * allows for different breakpoints per-core, the current GDB
37  * interface treats them as a global pool of registers (which seems to
38  * be the case for x86, ppc and s390). As a result we store one copy
39  * of registers which is used for all active cores.
40  *
41  * Write access is serialised by virtue of the GDB protocol which
42  * updates things. Read access (i.e. when the values are copied to the
43  * vCPU) is also gated by GDB's run control.
44  *
45  * This is not unreasonable as most of the time debugging kernels you
46  * never know which core will eventually execute your function.
47  */
48 
49 typedef struct {
50     uint64_t bcr;
51     uint64_t bvr;
52 } HWBreakpoint;
53 
54 /* The watchpoint registers can cover more area than the requested
55  * watchpoint so we need to store the additional information
56  * somewhere. We also need to supply a CPUWatchpoint to the GDB stub
57  * when the watchpoint is hit.
58  */
59 typedef struct {
60     uint64_t wcr;
61     uint64_t wvr;
62     CPUWatchpoint details;
63 } HWWatchpoint;
64 
65 /* Maximum and current break/watch point counts */
66 int max_hw_bps, max_hw_wps;
67 GArray *hw_breakpoints, *hw_watchpoints;
68 
69 #define cur_hw_wps      (hw_watchpoints->len)
70 #define cur_hw_bps      (hw_breakpoints->len)
71 #define get_hw_bp(i)    (&g_array_index(hw_breakpoints, HWBreakpoint, i))
72 #define get_hw_wp(i)    (&g_array_index(hw_watchpoints, HWWatchpoint, i))
73 
74 /**
75  * kvm_arm_init_debug() - check for guest debug capabilities
76  * @cs: CPUState
77  *
78  * kvm_check_extension returns the number of debug registers we have
79  * or 0 if we have none.
80  *
81  */
82 static void kvm_arm_init_debug(CPUState *cs)
83 {
84     have_guest_debug = kvm_check_extension(cs->kvm_state,
85                                            KVM_CAP_SET_GUEST_DEBUG);
86 
87     max_hw_wps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_WPS);
88     hw_watchpoints = g_array_sized_new(true, true,
89                                        sizeof(HWWatchpoint), max_hw_wps);
90 
91     max_hw_bps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_BPS);
92     hw_breakpoints = g_array_sized_new(true, true,
93                                        sizeof(HWBreakpoint), max_hw_bps);
94     return;
95 }
96 
97 /**
98  * insert_hw_breakpoint()
99  * @addr: address of breakpoint
100  *
101  * See ARM ARM D2.9.1 for details but here we are only going to create
102  * simple un-linked breakpoints (i.e. we don't chain breakpoints
103  * together to match address and context or vmid). The hardware is
104  * capable of fancier matching but that will require exposing that
105  * fanciness to GDB's interface
106  *
107  * DBGBCR<n>_EL1, Debug Breakpoint Control Registers
108  *
109  *  31  24 23  20 19   16 15 14  13  12   9 8   5 4    3 2   1  0
110  * +------+------+-------+-----+----+------+-----+------+-----+---+
111  * | RES0 |  BT  |  LBN  | SSC | HMC| RES0 | BAS | RES0 | PMC | E |
112  * +------+------+-------+-----+----+------+-----+------+-----+---+
113  *
114  * BT: Breakpoint type (0 = unlinked address match)
115  * LBN: Linked BP number (0 = unused)
116  * SSC/HMC/PMC: Security, Higher and Priv access control (Table D-12)
117  * BAS: Byte Address Select (RES1 for AArch64)
118  * E: Enable bit
119  *
120  * DBGBVR<n>_EL1, Debug Breakpoint Value Registers
121  *
122  *  63  53 52       49 48       2  1 0
123  * +------+-----------+----------+-----+
124  * | RESS | VA[52:49] | VA[48:2] | 0 0 |
125  * +------+-----------+----------+-----+
126  *
127  * Depending on the addressing mode bits the top bits of the register
128  * are a sign extension of the highest applicable VA bit. Some
129  * versions of GDB don't do it correctly so we ensure they are correct
130  * here so future PC comparisons will work properly.
131  */
132 
133 static int insert_hw_breakpoint(target_ulong addr)
134 {
135     HWBreakpoint brk = {
136         .bcr = 0x1,                             /* BCR E=1, enable */
137         .bvr = sextract64(addr, 0, 53)
138     };
139 
140     if (cur_hw_bps >= max_hw_bps) {
141         return -ENOBUFS;
142     }
143 
144     brk.bcr = deposit32(brk.bcr, 1, 2, 0x3);   /* PMC = 11 */
145     brk.bcr = deposit32(brk.bcr, 5, 4, 0xf);   /* BAS = RES1 */
146 
147     g_array_append_val(hw_breakpoints, brk);
148 
149     return 0;
150 }
151 
152 /**
153  * delete_hw_breakpoint()
154  * @pc: address of breakpoint
155  *
156  * Delete a breakpoint and shuffle any above down
157  */
158 
159 static int delete_hw_breakpoint(target_ulong pc)
160 {
161     int i;
162     for (i = 0; i < hw_breakpoints->len; i++) {
163         HWBreakpoint *brk = get_hw_bp(i);
164         if (brk->bvr == pc) {
165             g_array_remove_index(hw_breakpoints, i);
166             return 0;
167         }
168     }
169     return -ENOENT;
170 }
171 
172 /**
173  * insert_hw_watchpoint()
174  * @addr: address of watch point
175  * @len: size of area
176  * @type: type of watch point
177  *
178  * See ARM ARM D2.10. As with the breakpoints we can do some advanced
179  * stuff if we want to. The watch points can be linked with the break
180  * points above to make them context aware. However for simplicity
181  * currently we only deal with simple read/write watch points.
182  *
183  * D7.3.11 DBGWCR<n>_EL1, Debug Watchpoint Control Registers
184  *
185  *  31  29 28   24 23  21  20  19 16 15 14  13   12  5 4   3 2   1  0
186  * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
187  * | RES0 |  MASK | RES0 | WT | LBN | SSC | HMC | BAS | LSC | PAC | E |
188  * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
189  *
190  * MASK: num bits addr mask (0=none,01/10=res,11=3 bits (8 bytes))
191  * WT: 0 - unlinked, 1 - linked (not currently used)
192  * LBN: Linked BP number (not currently used)
193  * SSC/HMC/PAC: Security, Higher and Priv access control (Table D2-11)
194  * BAS: Byte Address Select
195  * LSC: Load/Store control (01: load, 10: store, 11: both)
196  * E: Enable
197  *
198  * The bottom 2 bits of the value register are masked. Therefore to
199  * break on any sizes smaller than an unaligned word you need to set
200  * MASK=0, BAS=bit per byte in question. For larger regions (^2) you
201  * need to ensure you mask the address as required and set BAS=0xff
202  */
203 
204 static int insert_hw_watchpoint(target_ulong addr,
205                                 target_ulong len, int type)
206 {
207     HWWatchpoint wp = {
208         .wcr = 1, /* E=1, enable */
209         .wvr = addr & (~0x7ULL),
210         .details = { .vaddr = addr, .len = len }
211     };
212 
213     if (cur_hw_wps >= max_hw_wps) {
214         return -ENOBUFS;
215     }
216 
217     /*
218      * HMC=0 SSC=0 PAC=3 will hit EL0 or EL1, any security state,
219      * valid whether EL3 is implemented or not
220      */
221     wp.wcr = deposit32(wp.wcr, 1, 2, 3);
222 
223     switch (type) {
224     case GDB_WATCHPOINT_READ:
225         wp.wcr = deposit32(wp.wcr, 3, 2, 1);
226         wp.details.flags = BP_MEM_READ;
227         break;
228     case GDB_WATCHPOINT_WRITE:
229         wp.wcr = deposit32(wp.wcr, 3, 2, 2);
230         wp.details.flags = BP_MEM_WRITE;
231         break;
232     case GDB_WATCHPOINT_ACCESS:
233         wp.wcr = deposit32(wp.wcr, 3, 2, 3);
234         wp.details.flags = BP_MEM_ACCESS;
235         break;
236     default:
237         g_assert_not_reached();
238         break;
239     }
240     if (len <= 8) {
241         /* we align the address and set the bits in BAS */
242         int off = addr & 0x7;
243         int bas = (1 << len) - 1;
244 
245         wp.wcr = deposit32(wp.wcr, 5 + off, 8 - off, bas);
246     } else {
247         /* For ranges above 8 bytes we need to be a power of 2 */
248         if (is_power_of_2(len)) {
249             int bits = ctz64(len);
250 
251             wp.wvr &= ~((1 << bits) - 1);
252             wp.wcr = deposit32(wp.wcr, 24, 4, bits);
253             wp.wcr = deposit32(wp.wcr, 5, 8, 0xff);
254         } else {
255             return -ENOBUFS;
256         }
257     }
258 
259     g_array_append_val(hw_watchpoints, wp);
260     return 0;
261 }
262 
263 
264 static bool check_watchpoint_in_range(int i, target_ulong addr)
265 {
266     HWWatchpoint *wp = get_hw_wp(i);
267     uint64_t addr_top, addr_bottom = wp->wvr;
268     int bas = extract32(wp->wcr, 5, 8);
269     int mask = extract32(wp->wcr, 24, 4);
270 
271     if (mask) {
272         addr_top = addr_bottom + (1 << mask);
273     } else {
274         /* BAS must be contiguous but can offset against the base
275          * address in DBGWVR */
276         addr_bottom = addr_bottom + ctz32(bas);
277         addr_top = addr_bottom + clo32(bas);
278     }
279 
280     if (addr >= addr_bottom && addr <= addr_top) {
281         return true;
282     }
283 
284     return false;
285 }
286 
287 /**
288  * delete_hw_watchpoint()
289  * @addr: address of breakpoint
290  *
291  * Delete a breakpoint and shuffle any above down
292  */
293 
294 static int delete_hw_watchpoint(target_ulong addr,
295                                 target_ulong len, int type)
296 {
297     int i;
298     for (i = 0; i < cur_hw_wps; i++) {
299         if (check_watchpoint_in_range(i, addr)) {
300             g_array_remove_index(hw_watchpoints, i);
301             return 0;
302         }
303     }
304     return -ENOENT;
305 }
306 
307 
308 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
309                                   target_ulong len, int type)
310 {
311     switch (type) {
312     case GDB_BREAKPOINT_HW:
313         return insert_hw_breakpoint(addr);
314         break;
315     case GDB_WATCHPOINT_READ:
316     case GDB_WATCHPOINT_WRITE:
317     case GDB_WATCHPOINT_ACCESS:
318         return insert_hw_watchpoint(addr, len, type);
319     default:
320         return -ENOSYS;
321     }
322 }
323 
324 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
325                                   target_ulong len, int type)
326 {
327     switch (type) {
328     case GDB_BREAKPOINT_HW:
329         return delete_hw_breakpoint(addr);
330         break;
331     case GDB_WATCHPOINT_READ:
332     case GDB_WATCHPOINT_WRITE:
333     case GDB_WATCHPOINT_ACCESS:
334         return delete_hw_watchpoint(addr, len, type);
335     default:
336         return -ENOSYS;
337     }
338 }
339 
340 
341 void kvm_arch_remove_all_hw_breakpoints(void)
342 {
343     if (cur_hw_wps > 0) {
344         g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
345     }
346     if (cur_hw_bps > 0) {
347         g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
348     }
349 }
350 
351 void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
352 {
353     int i;
354     memset(ptr, 0, sizeof(struct kvm_guest_debug_arch));
355 
356     for (i = 0; i < max_hw_wps; i++) {
357         HWWatchpoint *wp = get_hw_wp(i);
358         ptr->dbg_wcr[i] = wp->wcr;
359         ptr->dbg_wvr[i] = wp->wvr;
360     }
361     for (i = 0; i < max_hw_bps; i++) {
362         HWBreakpoint *bp = get_hw_bp(i);
363         ptr->dbg_bcr[i] = bp->bcr;
364         ptr->dbg_bvr[i] = bp->bvr;
365     }
366 }
367 
368 bool kvm_arm_hw_debug_active(CPUState *cs)
369 {
370     return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
371 }
372 
373 static bool find_hw_breakpoint(CPUState *cpu, target_ulong pc)
374 {
375     int i;
376 
377     for (i = 0; i < cur_hw_bps; i++) {
378         HWBreakpoint *bp = get_hw_bp(i);
379         if (bp->bvr == pc) {
380             return true;
381         }
382     }
383     return false;
384 }
385 
386 static CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr)
387 {
388     int i;
389 
390     for (i = 0; i < cur_hw_wps; i++) {
391         if (check_watchpoint_in_range(i, addr)) {
392             return &get_hw_wp(i)->details;
393         }
394     }
395     return NULL;
396 }
397 
398 static bool kvm_arm_pmu_set_attr(CPUState *cs, struct kvm_device_attr *attr)
399 {
400     int err;
401 
402     err = kvm_vcpu_ioctl(cs, KVM_HAS_DEVICE_ATTR, attr);
403     if (err != 0) {
404         error_report("PMU: KVM_HAS_DEVICE_ATTR: %s", strerror(-err));
405         return false;
406     }
407 
408     err = kvm_vcpu_ioctl(cs, KVM_SET_DEVICE_ATTR, attr);
409     if (err != 0) {
410         error_report("PMU: KVM_SET_DEVICE_ATTR: %s", strerror(-err));
411         return false;
412     }
413 
414     return true;
415 }
416 
417 void kvm_arm_pmu_init(CPUState *cs)
418 {
419     struct kvm_device_attr attr = {
420         .group = KVM_ARM_VCPU_PMU_V3_CTRL,
421         .attr = KVM_ARM_VCPU_PMU_V3_INIT,
422     };
423 
424     if (!ARM_CPU(cs)->has_pmu) {
425         return;
426     }
427     if (!kvm_arm_pmu_set_attr(cs, &attr)) {
428         error_report("failed to init PMU");
429         abort();
430     }
431 }
432 
433 void kvm_arm_pmu_set_irq(CPUState *cs, int irq)
434 {
435     struct kvm_device_attr attr = {
436         .group = KVM_ARM_VCPU_PMU_V3_CTRL,
437         .addr = (intptr_t)&irq,
438         .attr = KVM_ARM_VCPU_PMU_V3_IRQ,
439     };
440 
441     if (!ARM_CPU(cs)->has_pmu) {
442         return;
443     }
444     if (!kvm_arm_pmu_set_attr(cs, &attr)) {
445         error_report("failed to set irq for PMU");
446         abort();
447     }
448 }
449 
450 static inline void set_feature(uint64_t *features, int feature)
451 {
452     *features |= 1ULL << feature;
453 }
454 
455 static inline void unset_feature(uint64_t *features, int feature)
456 {
457     *features &= ~(1ULL << feature);
458 }
459 
460 static int read_sys_reg32(int fd, uint32_t *pret, uint64_t id)
461 {
462     uint64_t ret;
463     struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)&ret };
464     int err;
465 
466     assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
467     err = ioctl(fd, KVM_GET_ONE_REG, &idreg);
468     if (err < 0) {
469         return -1;
470     }
471     *pret = ret;
472     return 0;
473 }
474 
475 static int read_sys_reg64(int fd, uint64_t *pret, uint64_t id)
476 {
477     struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)pret };
478 
479     assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
480     return ioctl(fd, KVM_GET_ONE_REG, &idreg);
481 }
482 
483 bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
484 {
485     /* Identify the feature bits corresponding to the host CPU, and
486      * fill out the ARMHostCPUClass fields accordingly. To do this
487      * we have to create a scratch VM, create a single CPU inside it,
488      * and then query that CPU for the relevant ID registers.
489      */
490     int fdarray[3];
491     bool sve_supported;
492     uint64_t features = 0;
493     uint64_t t;
494     int err;
495 
496     /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
497      * we know these will only support creating one kind of guest CPU,
498      * which is its preferred CPU type. Fortunately these old kernels
499      * support only a very limited number of CPUs.
500      */
501     static const uint32_t cpus_to_try[] = {
502         KVM_ARM_TARGET_AEM_V8,
503         KVM_ARM_TARGET_FOUNDATION_V8,
504         KVM_ARM_TARGET_CORTEX_A57,
505         QEMU_KVM_ARM_TARGET_NONE
506     };
507     /*
508      * target = -1 informs kvm_arm_create_scratch_host_vcpu()
509      * to use the preferred target
510      */
511     struct kvm_vcpu_init init = { .target = -1, };
512 
513     if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
514         return false;
515     }
516 
517     ahcf->target = init.target;
518     ahcf->dtb_compatible = "arm,arm-v8";
519 
520     err = read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr0,
521                          ARM64_SYS_REG(3, 0, 0, 4, 0));
522     if (unlikely(err < 0)) {
523         /*
524          * Before v4.15, the kernel only exposed a limited number of system
525          * registers, not including any of the interesting AArch64 ID regs.
526          * For the most part we could leave these fields as zero with minimal
527          * effect, since this does not affect the values seen by the guest.
528          *
529          * However, it could cause problems down the line for QEMU,
530          * so provide a minimal v8.0 default.
531          *
532          * ??? Could read MIDR and use knowledge from cpu64.c.
533          * ??? Could map a page of memory into our temp guest and
534          *     run the tiniest of hand-crafted kernels to extract
535          *     the values seen by the guest.
536          * ??? Either of these sounds like too much effort just
537          *     to work around running a modern host kernel.
538          */
539         ahcf->isar.id_aa64pfr0 = 0x00000011; /* EL1&0, AArch64 only */
540         err = 0;
541     } else {
542         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr1,
543                               ARM64_SYS_REG(3, 0, 0, 4, 1));
544         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr0,
545                               ARM64_SYS_REG(3, 0, 0, 5, 0));
546         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr1,
547                               ARM64_SYS_REG(3, 0, 0, 5, 1));
548         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar0,
549                               ARM64_SYS_REG(3, 0, 0, 6, 0));
550         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar1,
551                               ARM64_SYS_REG(3, 0, 0, 6, 1));
552         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr0,
553                               ARM64_SYS_REG(3, 0, 0, 7, 0));
554         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr1,
555                               ARM64_SYS_REG(3, 0, 0, 7, 1));
556         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr2,
557                               ARM64_SYS_REG(3, 0, 0, 7, 2));
558 
559         /*
560          * Note that if AArch32 support is not present in the host,
561          * the AArch32 sysregs are present to be read, but will
562          * return UNKNOWN values.  This is neither better nor worse
563          * than skipping the reads and leaving 0, as we must avoid
564          * considering the values in every case.
565          */
566         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr0,
567                               ARM64_SYS_REG(3, 0, 0, 1, 2));
568         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr0,
569                               ARM64_SYS_REG(3, 0, 0, 1, 4));
570         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr1,
571                               ARM64_SYS_REG(3, 0, 0, 1, 5));
572         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr2,
573                               ARM64_SYS_REG(3, 0, 0, 1, 6));
574         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr3,
575                               ARM64_SYS_REG(3, 0, 0, 1, 7));
576         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar0,
577                               ARM64_SYS_REG(3, 0, 0, 2, 0));
578         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar1,
579                               ARM64_SYS_REG(3, 0, 0, 2, 1));
580         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar2,
581                               ARM64_SYS_REG(3, 0, 0, 2, 2));
582         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar3,
583                               ARM64_SYS_REG(3, 0, 0, 2, 3));
584         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar4,
585                               ARM64_SYS_REG(3, 0, 0, 2, 4));
586         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar5,
587                               ARM64_SYS_REG(3, 0, 0, 2, 5));
588         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr4,
589                               ARM64_SYS_REG(3, 0, 0, 2, 6));
590         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar6,
591                               ARM64_SYS_REG(3, 0, 0, 2, 7));
592 
593         err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr0,
594                               ARM64_SYS_REG(3, 0, 0, 3, 0));
595         err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr1,
596                               ARM64_SYS_REG(3, 0, 0, 3, 1));
597         err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr2,
598                               ARM64_SYS_REG(3, 0, 0, 3, 2));
599 
600         /*
601          * DBGDIDR is a bit complicated because the kernel doesn't
602          * provide an accessor for it in 64-bit mode, which is what this
603          * scratch VM is in, and there's no architected "64-bit sysreg
604          * which reads the same as the 32-bit register" the way there is
605          * for other ID registers. Instead we synthesize a value from the
606          * AArch64 ID_AA64DFR0, the same way the kernel code in
607          * arch/arm64/kvm/sys_regs.c:trap_dbgidr() does.
608          * We only do this if the CPU supports AArch32 at EL1.
609          */
610         if (FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL1) >= 2) {
611             int wrps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, WRPS);
612             int brps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, BRPS);
613             int ctx_cmps =
614                 FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS);
615             int version = 6; /* ARMv8 debug architecture */
616             bool has_el3 =
617                 !!FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL3);
618             uint32_t dbgdidr = 0;
619 
620             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, WRPS, wrps);
621             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, BRPS, brps);
622             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, CTX_CMPS, ctx_cmps);
623             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, VERSION, version);
624             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, NSUHD_IMP, has_el3);
625             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, SE_IMP, has_el3);
626             dbgdidr |= (1 << 15); /* RES1 bit */
627             ahcf->isar.dbgdidr = dbgdidr;
628         }
629     }
630 
631     sve_supported = ioctl(fdarray[0], KVM_CHECK_EXTENSION, KVM_CAP_ARM_SVE) > 0;
632 
633     kvm_arm_destroy_scratch_host_vcpu(fdarray);
634 
635     if (err < 0) {
636         return false;
637     }
638 
639     /* Add feature bits that can't appear until after VCPU init. */
640     if (sve_supported) {
641         t = ahcf->isar.id_aa64pfr0;
642         t = FIELD_DP64(t, ID_AA64PFR0, SVE, 1);
643         ahcf->isar.id_aa64pfr0 = t;
644     }
645 
646     /*
647      * We can assume any KVM supporting CPU is at least a v8
648      * with VFPv4+Neon; this in turn implies most of the other
649      * feature bits.
650      */
651     set_feature(&features, ARM_FEATURE_V8);
652     set_feature(&features, ARM_FEATURE_NEON);
653     set_feature(&features, ARM_FEATURE_AARCH64);
654     set_feature(&features, ARM_FEATURE_PMU);
655     set_feature(&features, ARM_FEATURE_GENERIC_TIMER);
656 
657     ahcf->features = features;
658 
659     return true;
660 }
661 
662 bool kvm_arm_aarch32_supported(CPUState *cpu)
663 {
664     KVMState *s = KVM_STATE(current_accel());
665 
666     return kvm_check_extension(s, KVM_CAP_ARM_EL1_32BIT);
667 }
668 
669 bool kvm_arm_sve_supported(CPUState *cpu)
670 {
671     KVMState *s = KVM_STATE(current_accel());
672 
673     return kvm_check_extension(s, KVM_CAP_ARM_SVE);
674 }
675 
676 QEMU_BUILD_BUG_ON(KVM_ARM64_SVE_VQ_MIN != 1);
677 
678 void kvm_arm_sve_get_vls(CPUState *cs, unsigned long *map)
679 {
680     /* Only call this function if kvm_arm_sve_supported() returns true. */
681     static uint64_t vls[KVM_ARM64_SVE_VLS_WORDS];
682     static bool probed;
683     uint32_t vq = 0;
684     int i, j;
685 
686     bitmap_clear(map, 0, ARM_MAX_VQ);
687 
688     /*
689      * KVM ensures all host CPUs support the same set of vector lengths.
690      * So we only need to create the scratch VCPUs once and then cache
691      * the results.
692      */
693     if (!probed) {
694         struct kvm_vcpu_init init = {
695             .target = -1,
696             .features[0] = (1 << KVM_ARM_VCPU_SVE),
697         };
698         struct kvm_one_reg reg = {
699             .id = KVM_REG_ARM64_SVE_VLS,
700             .addr = (uint64_t)&vls[0],
701         };
702         int fdarray[3], ret;
703 
704         probed = true;
705 
706         if (!kvm_arm_create_scratch_host_vcpu(NULL, fdarray, &init)) {
707             error_report("failed to create scratch VCPU with SVE enabled");
708             abort();
709         }
710         ret = ioctl(fdarray[2], KVM_GET_ONE_REG, &reg);
711         kvm_arm_destroy_scratch_host_vcpu(fdarray);
712         if (ret) {
713             error_report("failed to get KVM_REG_ARM64_SVE_VLS: %s",
714                          strerror(errno));
715             abort();
716         }
717 
718         for (i = KVM_ARM64_SVE_VLS_WORDS - 1; i >= 0; --i) {
719             if (vls[i]) {
720                 vq = 64 - clz64(vls[i]) + i * 64;
721                 break;
722             }
723         }
724         if (vq > ARM_MAX_VQ) {
725             warn_report("KVM supports vector lengths larger than "
726                         "QEMU can enable");
727         }
728     }
729 
730     for (i = 0; i < KVM_ARM64_SVE_VLS_WORDS; ++i) {
731         if (!vls[i]) {
732             continue;
733         }
734         for (j = 1; j <= 64; ++j) {
735             vq = j + i * 64;
736             if (vq > ARM_MAX_VQ) {
737                 return;
738             }
739             if (vls[i] & (1UL << (j - 1))) {
740                 set_bit(vq - 1, map);
741             }
742         }
743     }
744 }
745 
746 static int kvm_arm_sve_set_vls(CPUState *cs)
747 {
748     uint64_t vls[KVM_ARM64_SVE_VLS_WORDS] = {0};
749     struct kvm_one_reg reg = {
750         .id = KVM_REG_ARM64_SVE_VLS,
751         .addr = (uint64_t)&vls[0],
752     };
753     ARMCPU *cpu = ARM_CPU(cs);
754     uint32_t vq;
755     int i, j;
756 
757     assert(cpu->sve_max_vq <= KVM_ARM64_SVE_VQ_MAX);
758 
759     for (vq = 1; vq <= cpu->sve_max_vq; ++vq) {
760         if (test_bit(vq - 1, cpu->sve_vq_map)) {
761             i = (vq - 1) / 64;
762             j = (vq - 1) % 64;
763             vls[i] |= 1UL << j;
764         }
765     }
766 
767     return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
768 }
769 
770 #define ARM_CPU_ID_MPIDR       3, 0, 0, 0, 5
771 
772 int kvm_arch_init_vcpu(CPUState *cs)
773 {
774     int ret;
775     uint64_t mpidr;
776     ARMCPU *cpu = ARM_CPU(cs);
777     CPUARMState *env = &cpu->env;
778 
779     if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
780         !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
781         error_report("KVM is not supported for this guest CPU type");
782         return -EINVAL;
783     }
784 
785     qemu_add_vm_change_state_handler(kvm_arm_vm_state_change, cs);
786 
787     /* Determine init features for this CPU */
788     memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
789     if (cpu->start_powered_off) {
790         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
791     }
792     if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
793         cpu->psci_version = 2;
794         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
795     }
796     if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
797         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
798     }
799     if (!kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PMU_V3)) {
800         cpu->has_pmu = false;
801     }
802     if (cpu->has_pmu) {
803         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
804     } else {
805         unset_feature(&env->features, ARM_FEATURE_PMU);
806     }
807     if (cpu_isar_feature(aa64_sve, cpu)) {
808         assert(kvm_arm_sve_supported(cs));
809         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_SVE;
810     }
811 
812     /* Do KVM_ARM_VCPU_INIT ioctl */
813     ret = kvm_arm_vcpu_init(cs);
814     if (ret) {
815         return ret;
816     }
817 
818     if (cpu_isar_feature(aa64_sve, cpu)) {
819         ret = kvm_arm_sve_set_vls(cs);
820         if (ret) {
821             return ret;
822         }
823         ret = kvm_arm_vcpu_finalize(cs, KVM_ARM_VCPU_SVE);
824         if (ret) {
825             return ret;
826         }
827     }
828 
829     /*
830      * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
831      * Currently KVM has its own idea about MPIDR assignment, so we
832      * override our defaults with what we get from KVM.
833      */
834     ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
835     if (ret) {
836         return ret;
837     }
838     cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
839 
840     kvm_arm_init_debug(cs);
841 
842     /* Check whether user space can specify guest syndrome value */
843     kvm_arm_init_serror_injection(cs);
844 
845     return kvm_arm_init_cpreg_list(cpu);
846 }
847 
848 int kvm_arch_destroy_vcpu(CPUState *cs)
849 {
850     return 0;
851 }
852 
853 bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
854 {
855     /* Return true if the regidx is a register we should synchronize
856      * via the cpreg_tuples array (ie is not a core or sve reg that
857      * we sync by hand in kvm_arch_get/put_registers())
858      */
859     switch (regidx & KVM_REG_ARM_COPROC_MASK) {
860     case KVM_REG_ARM_CORE:
861     case KVM_REG_ARM64_SVE:
862         return false;
863     default:
864         return true;
865     }
866 }
867 
868 typedef struct CPRegStateLevel {
869     uint64_t regidx;
870     int level;
871 } CPRegStateLevel;
872 
873 /* All system registers not listed in the following table are assumed to be
874  * of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
875  * often, you must add it to this table with a state of either
876  * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
877  */
878 static const CPRegStateLevel non_runtime_cpregs[] = {
879     { KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE },
880 };
881 
882 int kvm_arm_cpreg_level(uint64_t regidx)
883 {
884     int i;
885 
886     for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) {
887         const CPRegStateLevel *l = &non_runtime_cpregs[i];
888         if (l->regidx == regidx) {
889             return l->level;
890         }
891     }
892 
893     return KVM_PUT_RUNTIME_STATE;
894 }
895 
896 #define AARCH64_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
897                  KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
898 
899 #define AARCH64_SIMD_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
900                  KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
901 
902 #define AARCH64_SIMD_CTRL_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
903                  KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
904 
905 static int kvm_arch_put_fpsimd(CPUState *cs)
906 {
907     CPUARMState *env = &ARM_CPU(cs)->env;
908     struct kvm_one_reg reg;
909     int i, ret;
910 
911     for (i = 0; i < 32; i++) {
912         uint64_t *q = aa64_vfp_qreg(env, i);
913 #ifdef HOST_WORDS_BIGENDIAN
914         uint64_t fp_val[2] = { q[1], q[0] };
915         reg.addr = (uintptr_t)fp_val;
916 #else
917         reg.addr = (uintptr_t)q;
918 #endif
919         reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
920         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
921         if (ret) {
922             return ret;
923         }
924     }
925 
926     return 0;
927 }
928 
929 /*
930  * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
931  * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
932  * code the slice index to zero for now as it's unlikely we'll need more than
933  * one slice for quite some time.
934  */
935 static int kvm_arch_put_sve(CPUState *cs)
936 {
937     ARMCPU *cpu = ARM_CPU(cs);
938     CPUARMState *env = &cpu->env;
939     uint64_t tmp[ARM_MAX_VQ * 2];
940     uint64_t *r;
941     struct kvm_one_reg reg;
942     int n, ret;
943 
944     for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
945         r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2);
946         reg.addr = (uintptr_t)r;
947         reg.id = KVM_REG_ARM64_SVE_ZREG(n, 0);
948         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
949         if (ret) {
950             return ret;
951         }
952     }
953 
954     for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
955         r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0],
956                         DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
957         reg.addr = (uintptr_t)r;
958         reg.id = KVM_REG_ARM64_SVE_PREG(n, 0);
959         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
960         if (ret) {
961             return ret;
962         }
963     }
964 
965     r = sve_bswap64(tmp, &env->vfp.pregs[FFR_PRED_NUM].p[0],
966                     DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
967     reg.addr = (uintptr_t)r;
968     reg.id = KVM_REG_ARM64_SVE_FFR(0);
969     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
970     if (ret) {
971         return ret;
972     }
973 
974     return 0;
975 }
976 
977 int kvm_arch_put_registers(CPUState *cs, int level)
978 {
979     struct kvm_one_reg reg;
980     uint64_t val;
981     uint32_t fpr;
982     int i, ret;
983     unsigned int el;
984 
985     ARMCPU *cpu = ARM_CPU(cs);
986     CPUARMState *env = &cpu->env;
987 
988     /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
989      * AArch64 registers before pushing them out to 64-bit KVM.
990      */
991     if (!is_a64(env)) {
992         aarch64_sync_32_to_64(env);
993     }
994 
995     for (i = 0; i < 31; i++) {
996         reg.id = AARCH64_CORE_REG(regs.regs[i]);
997         reg.addr = (uintptr_t) &env->xregs[i];
998         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
999         if (ret) {
1000             return ret;
1001         }
1002     }
1003 
1004     /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
1005      * QEMU side we keep the current SP in xregs[31] as well.
1006      */
1007     aarch64_save_sp(env, 1);
1008 
1009     reg.id = AARCH64_CORE_REG(regs.sp);
1010     reg.addr = (uintptr_t) &env->sp_el[0];
1011     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1012     if (ret) {
1013         return ret;
1014     }
1015 
1016     reg.id = AARCH64_CORE_REG(sp_el1);
1017     reg.addr = (uintptr_t) &env->sp_el[1];
1018     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1019     if (ret) {
1020         return ret;
1021     }
1022 
1023     /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
1024     if (is_a64(env)) {
1025         val = pstate_read(env);
1026     } else {
1027         val = cpsr_read(env);
1028     }
1029     reg.id = AARCH64_CORE_REG(regs.pstate);
1030     reg.addr = (uintptr_t) &val;
1031     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1032     if (ret) {
1033         return ret;
1034     }
1035 
1036     reg.id = AARCH64_CORE_REG(regs.pc);
1037     reg.addr = (uintptr_t) &env->pc;
1038     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1039     if (ret) {
1040         return ret;
1041     }
1042 
1043     reg.id = AARCH64_CORE_REG(elr_el1);
1044     reg.addr = (uintptr_t) &env->elr_el[1];
1045     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1046     if (ret) {
1047         return ret;
1048     }
1049 
1050     /* Saved Program State Registers
1051      *
1052      * Before we restore from the banked_spsr[] array we need to
1053      * ensure that any modifications to env->spsr are correctly
1054      * reflected in the banks.
1055      */
1056     el = arm_current_el(env);
1057     if (el > 0 && !is_a64(env)) {
1058         i = bank_number(env->uncached_cpsr & CPSR_M);
1059         env->banked_spsr[i] = env->spsr;
1060     }
1061 
1062     /* KVM 0-4 map to QEMU banks 1-5 */
1063     for (i = 0; i < KVM_NR_SPSR; i++) {
1064         reg.id = AARCH64_CORE_REG(spsr[i]);
1065         reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
1066         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1067         if (ret) {
1068             return ret;
1069         }
1070     }
1071 
1072     if (cpu_isar_feature(aa64_sve, cpu)) {
1073         ret = kvm_arch_put_sve(cs);
1074     } else {
1075         ret = kvm_arch_put_fpsimd(cs);
1076     }
1077     if (ret) {
1078         return ret;
1079     }
1080 
1081     reg.addr = (uintptr_t)(&fpr);
1082     fpr = vfp_get_fpsr(env);
1083     reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
1084     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1085     if (ret) {
1086         return ret;
1087     }
1088 
1089     reg.addr = (uintptr_t)(&fpr);
1090     fpr = vfp_get_fpcr(env);
1091     reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
1092     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1093     if (ret) {
1094         return ret;
1095     }
1096 
1097     write_cpustate_to_list(cpu, true);
1098 
1099     if (!write_list_to_kvmstate(cpu, level)) {
1100         return -EINVAL;
1101     }
1102 
1103    /*
1104     * Setting VCPU events should be triggered after syncing the registers
1105     * to avoid overwriting potential changes made by KVM upon calling
1106     * KVM_SET_VCPU_EVENTS ioctl
1107     */
1108     ret = kvm_put_vcpu_events(cpu);
1109     if (ret) {
1110         return ret;
1111     }
1112 
1113     kvm_arm_sync_mpstate_to_kvm(cpu);
1114 
1115     return ret;
1116 }
1117 
1118 static int kvm_arch_get_fpsimd(CPUState *cs)
1119 {
1120     CPUARMState *env = &ARM_CPU(cs)->env;
1121     struct kvm_one_reg reg;
1122     int i, ret;
1123 
1124     for (i = 0; i < 32; i++) {
1125         uint64_t *q = aa64_vfp_qreg(env, i);
1126         reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
1127         reg.addr = (uintptr_t)q;
1128         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1129         if (ret) {
1130             return ret;
1131         } else {
1132 #ifdef HOST_WORDS_BIGENDIAN
1133             uint64_t t;
1134             t = q[0], q[0] = q[1], q[1] = t;
1135 #endif
1136         }
1137     }
1138 
1139     return 0;
1140 }
1141 
1142 /*
1143  * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
1144  * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
1145  * code the slice index to zero for now as it's unlikely we'll need more than
1146  * one slice for quite some time.
1147  */
1148 static int kvm_arch_get_sve(CPUState *cs)
1149 {
1150     ARMCPU *cpu = ARM_CPU(cs);
1151     CPUARMState *env = &cpu->env;
1152     struct kvm_one_reg reg;
1153     uint64_t *r;
1154     int n, ret;
1155 
1156     for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
1157         r = &env->vfp.zregs[n].d[0];
1158         reg.addr = (uintptr_t)r;
1159         reg.id = KVM_REG_ARM64_SVE_ZREG(n, 0);
1160         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1161         if (ret) {
1162             return ret;
1163         }
1164         sve_bswap64(r, r, cpu->sve_max_vq * 2);
1165     }
1166 
1167     for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
1168         r = &env->vfp.pregs[n].p[0];
1169         reg.addr = (uintptr_t)r;
1170         reg.id = KVM_REG_ARM64_SVE_PREG(n, 0);
1171         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1172         if (ret) {
1173             return ret;
1174         }
1175         sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
1176     }
1177 
1178     r = &env->vfp.pregs[FFR_PRED_NUM].p[0];
1179     reg.addr = (uintptr_t)r;
1180     reg.id = KVM_REG_ARM64_SVE_FFR(0);
1181     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1182     if (ret) {
1183         return ret;
1184     }
1185     sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
1186 
1187     return 0;
1188 }
1189 
1190 int kvm_arch_get_registers(CPUState *cs)
1191 {
1192     struct kvm_one_reg reg;
1193     uint64_t val;
1194     unsigned int el;
1195     uint32_t fpr;
1196     int i, ret;
1197 
1198     ARMCPU *cpu = ARM_CPU(cs);
1199     CPUARMState *env = &cpu->env;
1200 
1201     for (i = 0; i < 31; i++) {
1202         reg.id = AARCH64_CORE_REG(regs.regs[i]);
1203         reg.addr = (uintptr_t) &env->xregs[i];
1204         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1205         if (ret) {
1206             return ret;
1207         }
1208     }
1209 
1210     reg.id = AARCH64_CORE_REG(regs.sp);
1211     reg.addr = (uintptr_t) &env->sp_el[0];
1212     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1213     if (ret) {
1214         return ret;
1215     }
1216 
1217     reg.id = AARCH64_CORE_REG(sp_el1);
1218     reg.addr = (uintptr_t) &env->sp_el[1];
1219     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1220     if (ret) {
1221         return ret;
1222     }
1223 
1224     reg.id = AARCH64_CORE_REG(regs.pstate);
1225     reg.addr = (uintptr_t) &val;
1226     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1227     if (ret) {
1228         return ret;
1229     }
1230 
1231     env->aarch64 = ((val & PSTATE_nRW) == 0);
1232     if (is_a64(env)) {
1233         pstate_write(env, val);
1234     } else {
1235         cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
1236     }
1237 
1238     /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
1239      * QEMU side we keep the current SP in xregs[31] as well.
1240      */
1241     aarch64_restore_sp(env, 1);
1242 
1243     reg.id = AARCH64_CORE_REG(regs.pc);
1244     reg.addr = (uintptr_t) &env->pc;
1245     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1246     if (ret) {
1247         return ret;
1248     }
1249 
1250     /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
1251      * incoming AArch64 regs received from 64-bit KVM.
1252      * We must perform this after all of the registers have been acquired from
1253      * the kernel.
1254      */
1255     if (!is_a64(env)) {
1256         aarch64_sync_64_to_32(env);
1257     }
1258 
1259     reg.id = AARCH64_CORE_REG(elr_el1);
1260     reg.addr = (uintptr_t) &env->elr_el[1];
1261     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1262     if (ret) {
1263         return ret;
1264     }
1265 
1266     /* Fetch the SPSR registers
1267      *
1268      * KVM SPSRs 0-4 map to QEMU banks 1-5
1269      */
1270     for (i = 0; i < KVM_NR_SPSR; i++) {
1271         reg.id = AARCH64_CORE_REG(spsr[i]);
1272         reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
1273         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1274         if (ret) {
1275             return ret;
1276         }
1277     }
1278 
1279     el = arm_current_el(env);
1280     if (el > 0 && !is_a64(env)) {
1281         i = bank_number(env->uncached_cpsr & CPSR_M);
1282         env->spsr = env->banked_spsr[i];
1283     }
1284 
1285     if (cpu_isar_feature(aa64_sve, cpu)) {
1286         ret = kvm_arch_get_sve(cs);
1287     } else {
1288         ret = kvm_arch_get_fpsimd(cs);
1289     }
1290     if (ret) {
1291         return ret;
1292     }
1293 
1294     reg.addr = (uintptr_t)(&fpr);
1295     reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
1296     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1297     if (ret) {
1298         return ret;
1299     }
1300     vfp_set_fpsr(env, fpr);
1301 
1302     reg.addr = (uintptr_t)(&fpr);
1303     reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
1304     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1305     if (ret) {
1306         return ret;
1307     }
1308     vfp_set_fpcr(env, fpr);
1309 
1310     ret = kvm_get_vcpu_events(cpu);
1311     if (ret) {
1312         return ret;
1313     }
1314 
1315     if (!write_kvmstate_to_list(cpu)) {
1316         return -EINVAL;
1317     }
1318     /* Note that it's OK to have registers which aren't in CPUState,
1319      * so we can ignore a failure return here.
1320      */
1321     write_list_to_cpustate(cpu);
1322 
1323     kvm_arm_sync_mpstate_to_qemu(cpu);
1324 
1325     /* TODO: other registers */
1326     return ret;
1327 }
1328 
1329 /* C6.6.29 BRK instruction */
1330 static const uint32_t brk_insn = 0xd4200000;
1331 
1332 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1333 {
1334     if (have_guest_debug) {
1335         if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
1336             cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
1337             return -EINVAL;
1338         }
1339         return 0;
1340     } else {
1341         error_report("guest debug not supported on this kernel");
1342         return -EINVAL;
1343     }
1344 }
1345 
1346 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1347 {
1348     static uint32_t brk;
1349 
1350     if (have_guest_debug) {
1351         if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
1352             brk != brk_insn ||
1353             cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
1354             return -EINVAL;
1355         }
1356         return 0;
1357     } else {
1358         error_report("guest debug not supported on this kernel");
1359         return -EINVAL;
1360     }
1361 }
1362 
1363 /* See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register
1364  *
1365  * To minimise translating between kernel and user-space the kernel
1366  * ABI just provides user-space with the full exception syndrome
1367  * register value to be decoded in QEMU.
1368  */
1369 
1370 bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit)
1371 {
1372     int hsr_ec = syn_get_ec(debug_exit->hsr);
1373     ARMCPU *cpu = ARM_CPU(cs);
1374     CPUClass *cc = CPU_GET_CLASS(cs);
1375     CPUARMState *env = &cpu->env;
1376 
1377     /* Ensure PC is synchronised */
1378     kvm_cpu_synchronize_state(cs);
1379 
1380     switch (hsr_ec) {
1381     case EC_SOFTWARESTEP:
1382         if (cs->singlestep_enabled) {
1383             return true;
1384         } else {
1385             /*
1386              * The kernel should have suppressed the guest's ability to
1387              * single step at this point so something has gone wrong.
1388              */
1389             error_report("%s: guest single-step while debugging unsupported"
1390                          " (%"PRIx64", %"PRIx32")",
1391                          __func__, env->pc, debug_exit->hsr);
1392             return false;
1393         }
1394         break;
1395     case EC_AA64_BKPT:
1396         if (kvm_find_sw_breakpoint(cs, env->pc)) {
1397             return true;
1398         }
1399         break;
1400     case EC_BREAKPOINT:
1401         if (find_hw_breakpoint(cs, env->pc)) {
1402             return true;
1403         }
1404         break;
1405     case EC_WATCHPOINT:
1406     {
1407         CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far);
1408         if (wp) {
1409             cs->watchpoint_hit = wp;
1410             return true;
1411         }
1412         break;
1413     }
1414     default:
1415         error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")",
1416                      __func__, debug_exit->hsr, env->pc);
1417     }
1418 
1419     /* If we are not handling the debug exception it must belong to
1420      * the guest. Let's re-use the existing TCG interrupt code to set
1421      * everything up properly.
1422      */
1423     cs->exception_index = EXCP_BKPT;
1424     env->exception.syndrome = debug_exit->hsr;
1425     env->exception.vaddress = debug_exit->far;
1426     env->exception.target_el = 1;
1427     qemu_mutex_lock_iothread();
1428     cc->do_interrupt(cs);
1429     qemu_mutex_unlock_iothread();
1430 
1431     return false;
1432 }
1433