xref: /openbmc/qemu/target/arm/kvm64.c (revision 1fe8ac35)
1 /*
2  * ARM implementation of KVM hooks, 64 bit specific code
3  *
4  * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
5  * Copyright Alex Bennée 2014, Linaro
6  *
7  * This work is licensed under the terms of the GNU GPL, version 2 or later.
8  * See the COPYING file in the top-level directory.
9  *
10  */
11 
12 #include "qemu/osdep.h"
13 #include <sys/ioctl.h>
14 #include <sys/ptrace.h>
15 
16 #include <linux/elf.h>
17 #include <linux/kvm.h>
18 
19 #include "qapi/error.h"
20 #include "cpu.h"
21 #include "qemu/timer.h"
22 #include "qemu/error-report.h"
23 #include "qemu/host-utils.h"
24 #include "qemu/main-loop.h"
25 #include "exec/gdbstub.h"
26 #include "sysemu/runstate.h"
27 #include "sysemu/kvm.h"
28 #include "sysemu/kvm_int.h"
29 #include "kvm_arm.h"
30 #include "internals.h"
31 #include "hw/acpi/acpi.h"
32 #include "hw/acpi/ghes.h"
33 #include "hw/arm/virt.h"
34 
35 static bool have_guest_debug;
36 
37 /*
38  * Although the ARM implementation of hardware assisted debugging
39  * allows for different breakpoints per-core, the current GDB
40  * interface treats them as a global pool of registers (which seems to
41  * be the case for x86, ppc and s390). As a result we store one copy
42  * of registers which is used for all active cores.
43  *
44  * Write access is serialised by virtue of the GDB protocol which
45  * updates things. Read access (i.e. when the values are copied to the
46  * vCPU) is also gated by GDB's run control.
47  *
48  * This is not unreasonable as most of the time debugging kernels you
49  * never know which core will eventually execute your function.
50  */
51 
52 typedef struct {
53     uint64_t bcr;
54     uint64_t bvr;
55 } HWBreakpoint;
56 
57 /* The watchpoint registers can cover more area than the requested
58  * watchpoint so we need to store the additional information
59  * somewhere. We also need to supply a CPUWatchpoint to the GDB stub
60  * when the watchpoint is hit.
61  */
62 typedef struct {
63     uint64_t wcr;
64     uint64_t wvr;
65     CPUWatchpoint details;
66 } HWWatchpoint;
67 
68 /* Maximum and current break/watch point counts */
69 int max_hw_bps, max_hw_wps;
70 GArray *hw_breakpoints, *hw_watchpoints;
71 
72 #define cur_hw_wps      (hw_watchpoints->len)
73 #define cur_hw_bps      (hw_breakpoints->len)
74 #define get_hw_bp(i)    (&g_array_index(hw_breakpoints, HWBreakpoint, i))
75 #define get_hw_wp(i)    (&g_array_index(hw_watchpoints, HWWatchpoint, i))
76 
77 /**
78  * kvm_arm_init_debug() - check for guest debug capabilities
79  * @cs: CPUState
80  *
81  * kvm_check_extension returns the number of debug registers we have
82  * or 0 if we have none.
83  *
84  */
85 static void kvm_arm_init_debug(CPUState *cs)
86 {
87     have_guest_debug = kvm_check_extension(cs->kvm_state,
88                                            KVM_CAP_SET_GUEST_DEBUG);
89 
90     max_hw_wps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_WPS);
91     hw_watchpoints = g_array_sized_new(true, true,
92                                        sizeof(HWWatchpoint), max_hw_wps);
93 
94     max_hw_bps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_BPS);
95     hw_breakpoints = g_array_sized_new(true, true,
96                                        sizeof(HWBreakpoint), max_hw_bps);
97     return;
98 }
99 
100 /**
101  * insert_hw_breakpoint()
102  * @addr: address of breakpoint
103  *
104  * See ARM ARM D2.9.1 for details but here we are only going to create
105  * simple un-linked breakpoints (i.e. we don't chain breakpoints
106  * together to match address and context or vmid). The hardware is
107  * capable of fancier matching but that will require exposing that
108  * fanciness to GDB's interface
109  *
110  * DBGBCR<n>_EL1, Debug Breakpoint Control Registers
111  *
112  *  31  24 23  20 19   16 15 14  13  12   9 8   5 4    3 2   1  0
113  * +------+------+-------+-----+----+------+-----+------+-----+---+
114  * | RES0 |  BT  |  LBN  | SSC | HMC| RES0 | BAS | RES0 | PMC | E |
115  * +------+------+-------+-----+----+------+-----+------+-----+---+
116  *
117  * BT: Breakpoint type (0 = unlinked address match)
118  * LBN: Linked BP number (0 = unused)
119  * SSC/HMC/PMC: Security, Higher and Priv access control (Table D-12)
120  * BAS: Byte Address Select (RES1 for AArch64)
121  * E: Enable bit
122  *
123  * DBGBVR<n>_EL1, Debug Breakpoint Value Registers
124  *
125  *  63  53 52       49 48       2  1 0
126  * +------+-----------+----------+-----+
127  * | RESS | VA[52:49] | VA[48:2] | 0 0 |
128  * +------+-----------+----------+-----+
129  *
130  * Depending on the addressing mode bits the top bits of the register
131  * are a sign extension of the highest applicable VA bit. Some
132  * versions of GDB don't do it correctly so we ensure they are correct
133  * here so future PC comparisons will work properly.
134  */
135 
136 static int insert_hw_breakpoint(target_ulong addr)
137 {
138     HWBreakpoint brk = {
139         .bcr = 0x1,                             /* BCR E=1, enable */
140         .bvr = sextract64(addr, 0, 53)
141     };
142 
143     if (cur_hw_bps >= max_hw_bps) {
144         return -ENOBUFS;
145     }
146 
147     brk.bcr = deposit32(brk.bcr, 1, 2, 0x3);   /* PMC = 11 */
148     brk.bcr = deposit32(brk.bcr, 5, 4, 0xf);   /* BAS = RES1 */
149 
150     g_array_append_val(hw_breakpoints, brk);
151 
152     return 0;
153 }
154 
155 /**
156  * delete_hw_breakpoint()
157  * @pc: address of breakpoint
158  *
159  * Delete a breakpoint and shuffle any above down
160  */
161 
162 static int delete_hw_breakpoint(target_ulong pc)
163 {
164     int i;
165     for (i = 0; i < hw_breakpoints->len; i++) {
166         HWBreakpoint *brk = get_hw_bp(i);
167         if (brk->bvr == pc) {
168             g_array_remove_index(hw_breakpoints, i);
169             return 0;
170         }
171     }
172     return -ENOENT;
173 }
174 
175 /**
176  * insert_hw_watchpoint()
177  * @addr: address of watch point
178  * @len: size of area
179  * @type: type of watch point
180  *
181  * See ARM ARM D2.10. As with the breakpoints we can do some advanced
182  * stuff if we want to. The watch points can be linked with the break
183  * points above to make them context aware. However for simplicity
184  * currently we only deal with simple read/write watch points.
185  *
186  * D7.3.11 DBGWCR<n>_EL1, Debug Watchpoint Control Registers
187  *
188  *  31  29 28   24 23  21  20  19 16 15 14  13   12  5 4   3 2   1  0
189  * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
190  * | RES0 |  MASK | RES0 | WT | LBN | SSC | HMC | BAS | LSC | PAC | E |
191  * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
192  *
193  * MASK: num bits addr mask (0=none,01/10=res,11=3 bits (8 bytes))
194  * WT: 0 - unlinked, 1 - linked (not currently used)
195  * LBN: Linked BP number (not currently used)
196  * SSC/HMC/PAC: Security, Higher and Priv access control (Table D2-11)
197  * BAS: Byte Address Select
198  * LSC: Load/Store control (01: load, 10: store, 11: both)
199  * E: Enable
200  *
201  * The bottom 2 bits of the value register are masked. Therefore to
202  * break on any sizes smaller than an unaligned word you need to set
203  * MASK=0, BAS=bit per byte in question. For larger regions (^2) you
204  * need to ensure you mask the address as required and set BAS=0xff
205  */
206 
207 static int insert_hw_watchpoint(target_ulong addr,
208                                 target_ulong len, int type)
209 {
210     HWWatchpoint wp = {
211         .wcr = R_DBGWCR_E_MASK, /* E=1, enable */
212         .wvr = addr & (~0x7ULL),
213         .details = { .vaddr = addr, .len = len }
214     };
215 
216     if (cur_hw_wps >= max_hw_wps) {
217         return -ENOBUFS;
218     }
219 
220     /*
221      * HMC=0 SSC=0 PAC=3 will hit EL0 or EL1, any security state,
222      * valid whether EL3 is implemented or not
223      */
224     wp.wcr = FIELD_DP64(wp.wcr, DBGWCR, PAC, 3);
225 
226     switch (type) {
227     case GDB_WATCHPOINT_READ:
228         wp.wcr = FIELD_DP64(wp.wcr, DBGWCR, LSC, 1);
229         wp.details.flags = BP_MEM_READ;
230         break;
231     case GDB_WATCHPOINT_WRITE:
232         wp.wcr = FIELD_DP64(wp.wcr, DBGWCR, LSC, 2);
233         wp.details.flags = BP_MEM_WRITE;
234         break;
235     case GDB_WATCHPOINT_ACCESS:
236         wp.wcr = FIELD_DP64(wp.wcr, DBGWCR, LSC, 3);
237         wp.details.flags = BP_MEM_ACCESS;
238         break;
239     default:
240         g_assert_not_reached();
241         break;
242     }
243     if (len <= 8) {
244         /* we align the address and set the bits in BAS */
245         int off = addr & 0x7;
246         int bas = (1 << len) - 1;
247 
248         wp.wcr = deposit32(wp.wcr, 5 + off, 8 - off, bas);
249     } else {
250         /* For ranges above 8 bytes we need to be a power of 2 */
251         if (is_power_of_2(len)) {
252             int bits = ctz64(len);
253 
254             wp.wvr &= ~((1 << bits) - 1);
255             wp.wcr = FIELD_DP64(wp.wcr, DBGWCR, MASK, bits);
256             wp.wcr = FIELD_DP64(wp.wcr, DBGWCR, BAS, 0xff);
257         } else {
258             return -ENOBUFS;
259         }
260     }
261 
262     g_array_append_val(hw_watchpoints, wp);
263     return 0;
264 }
265 
266 
267 static bool check_watchpoint_in_range(int i, target_ulong addr)
268 {
269     HWWatchpoint *wp = get_hw_wp(i);
270     uint64_t addr_top, addr_bottom = wp->wvr;
271     int bas = extract32(wp->wcr, 5, 8);
272     int mask = extract32(wp->wcr, 24, 4);
273 
274     if (mask) {
275         addr_top = addr_bottom + (1 << mask);
276     } else {
277         /* BAS must be contiguous but can offset against the base
278          * address in DBGWVR */
279         addr_bottom = addr_bottom + ctz32(bas);
280         addr_top = addr_bottom + clo32(bas);
281     }
282 
283     if (addr >= addr_bottom && addr <= addr_top) {
284         return true;
285     }
286 
287     return false;
288 }
289 
290 /**
291  * delete_hw_watchpoint()
292  * @addr: address of breakpoint
293  *
294  * Delete a breakpoint and shuffle any above down
295  */
296 
297 static int delete_hw_watchpoint(target_ulong addr,
298                                 target_ulong len, int type)
299 {
300     int i;
301     for (i = 0; i < cur_hw_wps; i++) {
302         if (check_watchpoint_in_range(i, addr)) {
303             g_array_remove_index(hw_watchpoints, i);
304             return 0;
305         }
306     }
307     return -ENOENT;
308 }
309 
310 
311 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
312                                   target_ulong len, int type)
313 {
314     switch (type) {
315     case GDB_BREAKPOINT_HW:
316         return insert_hw_breakpoint(addr);
317         break;
318     case GDB_WATCHPOINT_READ:
319     case GDB_WATCHPOINT_WRITE:
320     case GDB_WATCHPOINT_ACCESS:
321         return insert_hw_watchpoint(addr, len, type);
322     default:
323         return -ENOSYS;
324     }
325 }
326 
327 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
328                                   target_ulong len, int type)
329 {
330     switch (type) {
331     case GDB_BREAKPOINT_HW:
332         return delete_hw_breakpoint(addr);
333     case GDB_WATCHPOINT_READ:
334     case GDB_WATCHPOINT_WRITE:
335     case GDB_WATCHPOINT_ACCESS:
336         return delete_hw_watchpoint(addr, len, type);
337     default:
338         return -ENOSYS;
339     }
340 }
341 
342 
343 void kvm_arch_remove_all_hw_breakpoints(void)
344 {
345     if (cur_hw_wps > 0) {
346         g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
347     }
348     if (cur_hw_bps > 0) {
349         g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
350     }
351 }
352 
353 void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
354 {
355     int i;
356     memset(ptr, 0, sizeof(struct kvm_guest_debug_arch));
357 
358     for (i = 0; i < max_hw_wps; i++) {
359         HWWatchpoint *wp = get_hw_wp(i);
360         ptr->dbg_wcr[i] = wp->wcr;
361         ptr->dbg_wvr[i] = wp->wvr;
362     }
363     for (i = 0; i < max_hw_bps; i++) {
364         HWBreakpoint *bp = get_hw_bp(i);
365         ptr->dbg_bcr[i] = bp->bcr;
366         ptr->dbg_bvr[i] = bp->bvr;
367     }
368 }
369 
370 bool kvm_arm_hw_debug_active(CPUState *cs)
371 {
372     return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
373 }
374 
375 static bool find_hw_breakpoint(CPUState *cpu, target_ulong pc)
376 {
377     int i;
378 
379     for (i = 0; i < cur_hw_bps; i++) {
380         HWBreakpoint *bp = get_hw_bp(i);
381         if (bp->bvr == pc) {
382             return true;
383         }
384     }
385     return false;
386 }
387 
388 static CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr)
389 {
390     int i;
391 
392     for (i = 0; i < cur_hw_wps; i++) {
393         if (check_watchpoint_in_range(i, addr)) {
394             return &get_hw_wp(i)->details;
395         }
396     }
397     return NULL;
398 }
399 
400 static bool kvm_arm_set_device_attr(CPUState *cs, struct kvm_device_attr *attr,
401                                     const char *name)
402 {
403     int err;
404 
405     err = kvm_vcpu_ioctl(cs, KVM_HAS_DEVICE_ATTR, attr);
406     if (err != 0) {
407         error_report("%s: KVM_HAS_DEVICE_ATTR: %s", name, strerror(-err));
408         return false;
409     }
410 
411     err = kvm_vcpu_ioctl(cs, KVM_SET_DEVICE_ATTR, attr);
412     if (err != 0) {
413         error_report("%s: KVM_SET_DEVICE_ATTR: %s", name, strerror(-err));
414         return false;
415     }
416 
417     return true;
418 }
419 
420 void kvm_arm_pmu_init(CPUState *cs)
421 {
422     struct kvm_device_attr attr = {
423         .group = KVM_ARM_VCPU_PMU_V3_CTRL,
424         .attr = KVM_ARM_VCPU_PMU_V3_INIT,
425     };
426 
427     if (!ARM_CPU(cs)->has_pmu) {
428         return;
429     }
430     if (!kvm_arm_set_device_attr(cs, &attr, "PMU")) {
431         error_report("failed to init PMU");
432         abort();
433     }
434 }
435 
436 void kvm_arm_pmu_set_irq(CPUState *cs, int irq)
437 {
438     struct kvm_device_attr attr = {
439         .group = KVM_ARM_VCPU_PMU_V3_CTRL,
440         .addr = (intptr_t)&irq,
441         .attr = KVM_ARM_VCPU_PMU_V3_IRQ,
442     };
443 
444     if (!ARM_CPU(cs)->has_pmu) {
445         return;
446     }
447     if (!kvm_arm_set_device_attr(cs, &attr, "PMU")) {
448         error_report("failed to set irq for PMU");
449         abort();
450     }
451 }
452 
453 void kvm_arm_pvtime_init(CPUState *cs, uint64_t ipa)
454 {
455     struct kvm_device_attr attr = {
456         .group = KVM_ARM_VCPU_PVTIME_CTRL,
457         .attr = KVM_ARM_VCPU_PVTIME_IPA,
458         .addr = (uint64_t)&ipa,
459     };
460 
461     if (ARM_CPU(cs)->kvm_steal_time == ON_OFF_AUTO_OFF) {
462         return;
463     }
464     if (!kvm_arm_set_device_attr(cs, &attr, "PVTIME IPA")) {
465         error_report("failed to init PVTIME IPA");
466         abort();
467     }
468 }
469 
470 static int read_sys_reg32(int fd, uint32_t *pret, uint64_t id)
471 {
472     uint64_t ret;
473     struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)&ret };
474     int err;
475 
476     assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
477     err = ioctl(fd, KVM_GET_ONE_REG, &idreg);
478     if (err < 0) {
479         return -1;
480     }
481     *pret = ret;
482     return 0;
483 }
484 
485 static int read_sys_reg64(int fd, uint64_t *pret, uint64_t id)
486 {
487     struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)pret };
488 
489     assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
490     return ioctl(fd, KVM_GET_ONE_REG, &idreg);
491 }
492 
493 static bool kvm_arm_pauth_supported(void)
494 {
495     return (kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_ADDRESS) &&
496             kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_GENERIC));
497 }
498 
499 bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
500 {
501     /* Identify the feature bits corresponding to the host CPU, and
502      * fill out the ARMHostCPUClass fields accordingly. To do this
503      * we have to create a scratch VM, create a single CPU inside it,
504      * and then query that CPU for the relevant ID registers.
505      */
506     int fdarray[3];
507     bool sve_supported;
508     bool pmu_supported = false;
509     uint64_t features = 0;
510     int err;
511 
512     /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
513      * we know these will only support creating one kind of guest CPU,
514      * which is its preferred CPU type. Fortunately these old kernels
515      * support only a very limited number of CPUs.
516      */
517     static const uint32_t cpus_to_try[] = {
518         KVM_ARM_TARGET_AEM_V8,
519         KVM_ARM_TARGET_FOUNDATION_V8,
520         KVM_ARM_TARGET_CORTEX_A57,
521         QEMU_KVM_ARM_TARGET_NONE
522     };
523     /*
524      * target = -1 informs kvm_arm_create_scratch_host_vcpu()
525      * to use the preferred target
526      */
527     struct kvm_vcpu_init init = { .target = -1, };
528 
529     /*
530      * Ask for SVE if supported, so that we can query ID_AA64ZFR0,
531      * which is otherwise RAZ.
532      */
533     sve_supported = kvm_arm_sve_supported();
534     if (sve_supported) {
535         init.features[0] |= 1 << KVM_ARM_VCPU_SVE;
536     }
537 
538     /*
539      * Ask for Pointer Authentication if supported, so that we get
540      * the unsanitized field values for AA64ISAR1_EL1.
541      */
542     if (kvm_arm_pauth_supported()) {
543         init.features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
544                              1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
545     }
546 
547     if (kvm_arm_pmu_supported()) {
548         init.features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
549         pmu_supported = true;
550     }
551 
552     if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
553         return false;
554     }
555 
556     ahcf->target = init.target;
557     ahcf->dtb_compatible = "arm,arm-v8";
558 
559     err = read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr0,
560                          ARM64_SYS_REG(3, 0, 0, 4, 0));
561     if (unlikely(err < 0)) {
562         /*
563          * Before v4.15, the kernel only exposed a limited number of system
564          * registers, not including any of the interesting AArch64 ID regs.
565          * For the most part we could leave these fields as zero with minimal
566          * effect, since this does not affect the values seen by the guest.
567          *
568          * However, it could cause problems down the line for QEMU,
569          * so provide a minimal v8.0 default.
570          *
571          * ??? Could read MIDR and use knowledge from cpu64.c.
572          * ??? Could map a page of memory into our temp guest and
573          *     run the tiniest of hand-crafted kernels to extract
574          *     the values seen by the guest.
575          * ??? Either of these sounds like too much effort just
576          *     to work around running a modern host kernel.
577          */
578         ahcf->isar.id_aa64pfr0 = 0x00000011; /* EL1&0, AArch64 only */
579         err = 0;
580     } else {
581         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr1,
582                               ARM64_SYS_REG(3, 0, 0, 4, 1));
583         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64smfr0,
584                               ARM64_SYS_REG(3, 0, 0, 4, 5));
585         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr0,
586                               ARM64_SYS_REG(3, 0, 0, 5, 0));
587         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr1,
588                               ARM64_SYS_REG(3, 0, 0, 5, 1));
589         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar0,
590                               ARM64_SYS_REG(3, 0, 0, 6, 0));
591         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar1,
592                               ARM64_SYS_REG(3, 0, 0, 6, 1));
593         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr0,
594                               ARM64_SYS_REG(3, 0, 0, 7, 0));
595         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr1,
596                               ARM64_SYS_REG(3, 0, 0, 7, 1));
597         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr2,
598                               ARM64_SYS_REG(3, 0, 0, 7, 2));
599 
600         /*
601          * Note that if AArch32 support is not present in the host,
602          * the AArch32 sysregs are present to be read, but will
603          * return UNKNOWN values.  This is neither better nor worse
604          * than skipping the reads and leaving 0, as we must avoid
605          * considering the values in every case.
606          */
607         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr0,
608                               ARM64_SYS_REG(3, 0, 0, 1, 0));
609         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr1,
610                               ARM64_SYS_REG(3, 0, 0, 1, 1));
611         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr2,
612                               ARM64_SYS_REG(3, 0, 0, 3, 4));
613         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr0,
614                               ARM64_SYS_REG(3, 0, 0, 1, 2));
615         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr0,
616                               ARM64_SYS_REG(3, 0, 0, 1, 4));
617         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr1,
618                               ARM64_SYS_REG(3, 0, 0, 1, 5));
619         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr2,
620                               ARM64_SYS_REG(3, 0, 0, 1, 6));
621         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr3,
622                               ARM64_SYS_REG(3, 0, 0, 1, 7));
623         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar0,
624                               ARM64_SYS_REG(3, 0, 0, 2, 0));
625         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar1,
626                               ARM64_SYS_REG(3, 0, 0, 2, 1));
627         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar2,
628                               ARM64_SYS_REG(3, 0, 0, 2, 2));
629         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar3,
630                               ARM64_SYS_REG(3, 0, 0, 2, 3));
631         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar4,
632                               ARM64_SYS_REG(3, 0, 0, 2, 4));
633         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar5,
634                               ARM64_SYS_REG(3, 0, 0, 2, 5));
635         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr4,
636                               ARM64_SYS_REG(3, 0, 0, 2, 6));
637         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar6,
638                               ARM64_SYS_REG(3, 0, 0, 2, 7));
639 
640         err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr0,
641                               ARM64_SYS_REG(3, 0, 0, 3, 0));
642         err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr1,
643                               ARM64_SYS_REG(3, 0, 0, 3, 1));
644         err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr2,
645                               ARM64_SYS_REG(3, 0, 0, 3, 2));
646 
647         /*
648          * DBGDIDR is a bit complicated because the kernel doesn't
649          * provide an accessor for it in 64-bit mode, which is what this
650          * scratch VM is in, and there's no architected "64-bit sysreg
651          * which reads the same as the 32-bit register" the way there is
652          * for other ID registers. Instead we synthesize a value from the
653          * AArch64 ID_AA64DFR0, the same way the kernel code in
654          * arch/arm64/kvm/sys_regs.c:trap_dbgidr() does.
655          * We only do this if the CPU supports AArch32 at EL1.
656          */
657         if (FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL1) >= 2) {
658             int wrps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, WRPS);
659             int brps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, BRPS);
660             int ctx_cmps =
661                 FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS);
662             int version = 6; /* ARMv8 debug architecture */
663             bool has_el3 =
664                 !!FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL3);
665             uint32_t dbgdidr = 0;
666 
667             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, WRPS, wrps);
668             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, BRPS, brps);
669             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, CTX_CMPS, ctx_cmps);
670             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, VERSION, version);
671             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, NSUHD_IMP, has_el3);
672             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, SE_IMP, has_el3);
673             dbgdidr |= (1 << 15); /* RES1 bit */
674             ahcf->isar.dbgdidr = dbgdidr;
675         }
676 
677         if (pmu_supported) {
678             /* PMCR_EL0 is only accessible if the vCPU has feature PMU_V3 */
679             err |= read_sys_reg64(fdarray[2], &ahcf->isar.reset_pmcr_el0,
680                                   ARM64_SYS_REG(3, 3, 9, 12, 0));
681         }
682 
683         if (sve_supported) {
684             /*
685              * There is a range of kernels between kernel commit 73433762fcae
686              * and f81cb2c3ad41 which have a bug where the kernel doesn't
687              * expose SYS_ID_AA64ZFR0_EL1 via the ONE_REG API unless the VM has
688              * enabled SVE support, which resulted in an error rather than RAZ.
689              * So only read the register if we set KVM_ARM_VCPU_SVE above.
690              */
691             err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64zfr0,
692                                   ARM64_SYS_REG(3, 0, 0, 4, 4));
693         }
694     }
695 
696     kvm_arm_destroy_scratch_host_vcpu(fdarray);
697 
698     if (err < 0) {
699         return false;
700     }
701 
702     /*
703      * We can assume any KVM supporting CPU is at least a v8
704      * with VFPv4+Neon; this in turn implies most of the other
705      * feature bits.
706      */
707     features |= 1ULL << ARM_FEATURE_V8;
708     features |= 1ULL << ARM_FEATURE_NEON;
709     features |= 1ULL << ARM_FEATURE_AARCH64;
710     features |= 1ULL << ARM_FEATURE_PMU;
711     features |= 1ULL << ARM_FEATURE_GENERIC_TIMER;
712 
713     ahcf->features = features;
714 
715     return true;
716 }
717 
718 void kvm_arm_steal_time_finalize(ARMCPU *cpu, Error **errp)
719 {
720     bool has_steal_time = kvm_arm_steal_time_supported();
721 
722     if (cpu->kvm_steal_time == ON_OFF_AUTO_AUTO) {
723         if (!has_steal_time || !arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
724             cpu->kvm_steal_time = ON_OFF_AUTO_OFF;
725         } else {
726             cpu->kvm_steal_time = ON_OFF_AUTO_ON;
727         }
728     } else if (cpu->kvm_steal_time == ON_OFF_AUTO_ON) {
729         if (!has_steal_time) {
730             error_setg(errp, "'kvm-steal-time' cannot be enabled "
731                              "on this host");
732             return;
733         } else if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
734             /*
735              * DEN0057A chapter 2 says "This specification only covers
736              * systems in which the Execution state of the hypervisor
737              * as well as EL1 of virtual machines is AArch64.". And,
738              * to ensure that, the smc/hvc calls are only specified as
739              * smc64/hvc64.
740              */
741             error_setg(errp, "'kvm-steal-time' cannot be enabled "
742                              "for AArch32 guests");
743             return;
744         }
745     }
746 }
747 
748 bool kvm_arm_aarch32_supported(void)
749 {
750     return kvm_check_extension(kvm_state, KVM_CAP_ARM_EL1_32BIT);
751 }
752 
753 bool kvm_arm_sve_supported(void)
754 {
755     return kvm_check_extension(kvm_state, KVM_CAP_ARM_SVE);
756 }
757 
758 bool kvm_arm_steal_time_supported(void)
759 {
760     return kvm_check_extension(kvm_state, KVM_CAP_STEAL_TIME);
761 }
762 
763 QEMU_BUILD_BUG_ON(KVM_ARM64_SVE_VQ_MIN != 1);
764 
765 uint32_t kvm_arm_sve_get_vls(CPUState *cs)
766 {
767     /* Only call this function if kvm_arm_sve_supported() returns true. */
768     static uint64_t vls[KVM_ARM64_SVE_VLS_WORDS];
769     static bool probed;
770     uint32_t vq = 0;
771     int i;
772 
773     /*
774      * KVM ensures all host CPUs support the same set of vector lengths.
775      * So we only need to create the scratch VCPUs once and then cache
776      * the results.
777      */
778     if (!probed) {
779         struct kvm_vcpu_init init = {
780             .target = -1,
781             .features[0] = (1 << KVM_ARM_VCPU_SVE),
782         };
783         struct kvm_one_reg reg = {
784             .id = KVM_REG_ARM64_SVE_VLS,
785             .addr = (uint64_t)&vls[0],
786         };
787         int fdarray[3], ret;
788 
789         probed = true;
790 
791         if (!kvm_arm_create_scratch_host_vcpu(NULL, fdarray, &init)) {
792             error_report("failed to create scratch VCPU with SVE enabled");
793             abort();
794         }
795         ret = ioctl(fdarray[2], KVM_GET_ONE_REG, &reg);
796         kvm_arm_destroy_scratch_host_vcpu(fdarray);
797         if (ret) {
798             error_report("failed to get KVM_REG_ARM64_SVE_VLS: %s",
799                          strerror(errno));
800             abort();
801         }
802 
803         for (i = KVM_ARM64_SVE_VLS_WORDS - 1; i >= 0; --i) {
804             if (vls[i]) {
805                 vq = 64 - clz64(vls[i]) + i * 64;
806                 break;
807             }
808         }
809         if (vq > ARM_MAX_VQ) {
810             warn_report("KVM supports vector lengths larger than "
811                         "QEMU can enable");
812             vls[0] &= MAKE_64BIT_MASK(0, ARM_MAX_VQ);
813         }
814     }
815 
816     return vls[0];
817 }
818 
819 static int kvm_arm_sve_set_vls(CPUState *cs)
820 {
821     ARMCPU *cpu = ARM_CPU(cs);
822     uint64_t vls[KVM_ARM64_SVE_VLS_WORDS] = { cpu->sve_vq.map };
823     struct kvm_one_reg reg = {
824         .id = KVM_REG_ARM64_SVE_VLS,
825         .addr = (uint64_t)&vls[0],
826     };
827 
828     assert(cpu->sve_max_vq <= KVM_ARM64_SVE_VQ_MAX);
829 
830     return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
831 }
832 
833 #define ARM_CPU_ID_MPIDR       3, 0, 0, 0, 5
834 
835 int kvm_arch_init_vcpu(CPUState *cs)
836 {
837     int ret;
838     uint64_t mpidr;
839     ARMCPU *cpu = ARM_CPU(cs);
840     CPUARMState *env = &cpu->env;
841     uint64_t psciver;
842 
843     if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
844         !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
845         error_report("KVM is not supported for this guest CPU type");
846         return -EINVAL;
847     }
848 
849     qemu_add_vm_change_state_handler(kvm_arm_vm_state_change, cs);
850 
851     /* Determine init features for this CPU */
852     memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
853     if (cs->start_powered_off) {
854         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
855     }
856     if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
857         cpu->psci_version = QEMU_PSCI_VERSION_0_2;
858         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
859     }
860     if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
861         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
862     }
863     if (!kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PMU_V3)) {
864         cpu->has_pmu = false;
865     }
866     if (cpu->has_pmu) {
867         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
868     } else {
869         env->features &= ~(1ULL << ARM_FEATURE_PMU);
870     }
871     if (cpu_isar_feature(aa64_sve, cpu)) {
872         assert(kvm_arm_sve_supported());
873         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_SVE;
874     }
875     if (cpu_isar_feature(aa64_pauth, cpu)) {
876         cpu->kvm_init_features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
877                                       1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
878     }
879 
880     /* Do KVM_ARM_VCPU_INIT ioctl */
881     ret = kvm_arm_vcpu_init(cs);
882     if (ret) {
883         return ret;
884     }
885 
886     if (cpu_isar_feature(aa64_sve, cpu)) {
887         ret = kvm_arm_sve_set_vls(cs);
888         if (ret) {
889             return ret;
890         }
891         ret = kvm_arm_vcpu_finalize(cs, KVM_ARM_VCPU_SVE);
892         if (ret) {
893             return ret;
894         }
895     }
896 
897     /*
898      * KVM reports the exact PSCI version it is implementing via a
899      * special sysreg. If it is present, use its contents to determine
900      * what to report to the guest in the dtb (it is the PSCI version,
901      * in the same 15-bits major 16-bits minor format that PSCI_VERSION
902      * returns).
903      */
904     if (!kvm_get_one_reg(cs, KVM_REG_ARM_PSCI_VERSION, &psciver)) {
905         cpu->psci_version = psciver;
906     }
907 
908     /*
909      * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
910      * Currently KVM has its own idea about MPIDR assignment, so we
911      * override our defaults with what we get from KVM.
912      */
913     ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
914     if (ret) {
915         return ret;
916     }
917     cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
918 
919     kvm_arm_init_debug(cs);
920 
921     /* Check whether user space can specify guest syndrome value */
922     kvm_arm_init_serror_injection(cs);
923 
924     return kvm_arm_init_cpreg_list(cpu);
925 }
926 
927 int kvm_arch_destroy_vcpu(CPUState *cs)
928 {
929     return 0;
930 }
931 
932 bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
933 {
934     /* Return true if the regidx is a register we should synchronize
935      * via the cpreg_tuples array (ie is not a core or sve reg that
936      * we sync by hand in kvm_arch_get/put_registers())
937      */
938     switch (regidx & KVM_REG_ARM_COPROC_MASK) {
939     case KVM_REG_ARM_CORE:
940     case KVM_REG_ARM64_SVE:
941         return false;
942     default:
943         return true;
944     }
945 }
946 
947 typedef struct CPRegStateLevel {
948     uint64_t regidx;
949     int level;
950 } CPRegStateLevel;
951 
952 /* All system registers not listed in the following table are assumed to be
953  * of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
954  * often, you must add it to this table with a state of either
955  * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
956  */
957 static const CPRegStateLevel non_runtime_cpregs[] = {
958     { KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE },
959 };
960 
961 int kvm_arm_cpreg_level(uint64_t regidx)
962 {
963     int i;
964 
965     for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) {
966         const CPRegStateLevel *l = &non_runtime_cpregs[i];
967         if (l->regidx == regidx) {
968             return l->level;
969         }
970     }
971 
972     return KVM_PUT_RUNTIME_STATE;
973 }
974 
975 /* Callers must hold the iothread mutex lock */
976 static void kvm_inject_arm_sea(CPUState *c)
977 {
978     ARMCPU *cpu = ARM_CPU(c);
979     CPUARMState *env = &cpu->env;
980     uint32_t esr;
981     bool same_el;
982 
983     c->exception_index = EXCP_DATA_ABORT;
984     env->exception.target_el = 1;
985 
986     /*
987      * Set the DFSC to synchronous external abort and set FnV to not valid,
988      * this will tell guest the FAR_ELx is UNKNOWN for this abort.
989      */
990     same_el = arm_current_el(env) == env->exception.target_el;
991     esr = syn_data_abort_no_iss(same_el, 1, 0, 0, 0, 0, 0x10);
992 
993     env->exception.syndrome = esr;
994 
995     arm_cpu_do_interrupt(c);
996 }
997 
998 #define AARCH64_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
999                  KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1000 
1001 #define AARCH64_SIMD_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
1002                  KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1003 
1004 #define AARCH64_SIMD_CTRL_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
1005                  KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1006 
1007 static int kvm_arch_put_fpsimd(CPUState *cs)
1008 {
1009     CPUARMState *env = &ARM_CPU(cs)->env;
1010     struct kvm_one_reg reg;
1011     int i, ret;
1012 
1013     for (i = 0; i < 32; i++) {
1014         uint64_t *q = aa64_vfp_qreg(env, i);
1015 #if HOST_BIG_ENDIAN
1016         uint64_t fp_val[2] = { q[1], q[0] };
1017         reg.addr = (uintptr_t)fp_val;
1018 #else
1019         reg.addr = (uintptr_t)q;
1020 #endif
1021         reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
1022         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1023         if (ret) {
1024             return ret;
1025         }
1026     }
1027 
1028     return 0;
1029 }
1030 
1031 /*
1032  * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
1033  * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
1034  * code the slice index to zero for now as it's unlikely we'll need more than
1035  * one slice for quite some time.
1036  */
1037 static int kvm_arch_put_sve(CPUState *cs)
1038 {
1039     ARMCPU *cpu = ARM_CPU(cs);
1040     CPUARMState *env = &cpu->env;
1041     uint64_t tmp[ARM_MAX_VQ * 2];
1042     uint64_t *r;
1043     struct kvm_one_reg reg;
1044     int n, ret;
1045 
1046     for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
1047         r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2);
1048         reg.addr = (uintptr_t)r;
1049         reg.id = KVM_REG_ARM64_SVE_ZREG(n, 0);
1050         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1051         if (ret) {
1052             return ret;
1053         }
1054     }
1055 
1056     for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
1057         r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0],
1058                         DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
1059         reg.addr = (uintptr_t)r;
1060         reg.id = KVM_REG_ARM64_SVE_PREG(n, 0);
1061         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1062         if (ret) {
1063             return ret;
1064         }
1065     }
1066 
1067     r = sve_bswap64(tmp, &env->vfp.pregs[FFR_PRED_NUM].p[0],
1068                     DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
1069     reg.addr = (uintptr_t)r;
1070     reg.id = KVM_REG_ARM64_SVE_FFR(0);
1071     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1072     if (ret) {
1073         return ret;
1074     }
1075 
1076     return 0;
1077 }
1078 
1079 int kvm_arch_put_registers(CPUState *cs, int level)
1080 {
1081     struct kvm_one_reg reg;
1082     uint64_t val;
1083     uint32_t fpr;
1084     int i, ret;
1085     unsigned int el;
1086 
1087     ARMCPU *cpu = ARM_CPU(cs);
1088     CPUARMState *env = &cpu->env;
1089 
1090     /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
1091      * AArch64 registers before pushing them out to 64-bit KVM.
1092      */
1093     if (!is_a64(env)) {
1094         aarch64_sync_32_to_64(env);
1095     }
1096 
1097     for (i = 0; i < 31; i++) {
1098         reg.id = AARCH64_CORE_REG(regs.regs[i]);
1099         reg.addr = (uintptr_t) &env->xregs[i];
1100         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1101         if (ret) {
1102             return ret;
1103         }
1104     }
1105 
1106     /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
1107      * QEMU side we keep the current SP in xregs[31] as well.
1108      */
1109     aarch64_save_sp(env, 1);
1110 
1111     reg.id = AARCH64_CORE_REG(regs.sp);
1112     reg.addr = (uintptr_t) &env->sp_el[0];
1113     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1114     if (ret) {
1115         return ret;
1116     }
1117 
1118     reg.id = AARCH64_CORE_REG(sp_el1);
1119     reg.addr = (uintptr_t) &env->sp_el[1];
1120     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1121     if (ret) {
1122         return ret;
1123     }
1124 
1125     /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
1126     if (is_a64(env)) {
1127         val = pstate_read(env);
1128     } else {
1129         val = cpsr_read(env);
1130     }
1131     reg.id = AARCH64_CORE_REG(regs.pstate);
1132     reg.addr = (uintptr_t) &val;
1133     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1134     if (ret) {
1135         return ret;
1136     }
1137 
1138     reg.id = AARCH64_CORE_REG(regs.pc);
1139     reg.addr = (uintptr_t) &env->pc;
1140     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1141     if (ret) {
1142         return ret;
1143     }
1144 
1145     reg.id = AARCH64_CORE_REG(elr_el1);
1146     reg.addr = (uintptr_t) &env->elr_el[1];
1147     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1148     if (ret) {
1149         return ret;
1150     }
1151 
1152     /* Saved Program State Registers
1153      *
1154      * Before we restore from the banked_spsr[] array we need to
1155      * ensure that any modifications to env->spsr are correctly
1156      * reflected in the banks.
1157      */
1158     el = arm_current_el(env);
1159     if (el > 0 && !is_a64(env)) {
1160         i = bank_number(env->uncached_cpsr & CPSR_M);
1161         env->banked_spsr[i] = env->spsr;
1162     }
1163 
1164     /* KVM 0-4 map to QEMU banks 1-5 */
1165     for (i = 0; i < KVM_NR_SPSR; i++) {
1166         reg.id = AARCH64_CORE_REG(spsr[i]);
1167         reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
1168         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1169         if (ret) {
1170             return ret;
1171         }
1172     }
1173 
1174     if (cpu_isar_feature(aa64_sve, cpu)) {
1175         ret = kvm_arch_put_sve(cs);
1176     } else {
1177         ret = kvm_arch_put_fpsimd(cs);
1178     }
1179     if (ret) {
1180         return ret;
1181     }
1182 
1183     reg.addr = (uintptr_t)(&fpr);
1184     fpr = vfp_get_fpsr(env);
1185     reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
1186     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1187     if (ret) {
1188         return ret;
1189     }
1190 
1191     reg.addr = (uintptr_t)(&fpr);
1192     fpr = vfp_get_fpcr(env);
1193     reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
1194     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1195     if (ret) {
1196         return ret;
1197     }
1198 
1199     write_cpustate_to_list(cpu, true);
1200 
1201     if (!write_list_to_kvmstate(cpu, level)) {
1202         return -EINVAL;
1203     }
1204 
1205    /*
1206     * Setting VCPU events should be triggered after syncing the registers
1207     * to avoid overwriting potential changes made by KVM upon calling
1208     * KVM_SET_VCPU_EVENTS ioctl
1209     */
1210     ret = kvm_put_vcpu_events(cpu);
1211     if (ret) {
1212         return ret;
1213     }
1214 
1215     kvm_arm_sync_mpstate_to_kvm(cpu);
1216 
1217     return ret;
1218 }
1219 
1220 static int kvm_arch_get_fpsimd(CPUState *cs)
1221 {
1222     CPUARMState *env = &ARM_CPU(cs)->env;
1223     struct kvm_one_reg reg;
1224     int i, ret;
1225 
1226     for (i = 0; i < 32; i++) {
1227         uint64_t *q = aa64_vfp_qreg(env, i);
1228         reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
1229         reg.addr = (uintptr_t)q;
1230         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1231         if (ret) {
1232             return ret;
1233         } else {
1234 #if HOST_BIG_ENDIAN
1235             uint64_t t;
1236             t = q[0], q[0] = q[1], q[1] = t;
1237 #endif
1238         }
1239     }
1240 
1241     return 0;
1242 }
1243 
1244 /*
1245  * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
1246  * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
1247  * code the slice index to zero for now as it's unlikely we'll need more than
1248  * one slice for quite some time.
1249  */
1250 static int kvm_arch_get_sve(CPUState *cs)
1251 {
1252     ARMCPU *cpu = ARM_CPU(cs);
1253     CPUARMState *env = &cpu->env;
1254     struct kvm_one_reg reg;
1255     uint64_t *r;
1256     int n, ret;
1257 
1258     for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
1259         r = &env->vfp.zregs[n].d[0];
1260         reg.addr = (uintptr_t)r;
1261         reg.id = KVM_REG_ARM64_SVE_ZREG(n, 0);
1262         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1263         if (ret) {
1264             return ret;
1265         }
1266         sve_bswap64(r, r, cpu->sve_max_vq * 2);
1267     }
1268 
1269     for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
1270         r = &env->vfp.pregs[n].p[0];
1271         reg.addr = (uintptr_t)r;
1272         reg.id = KVM_REG_ARM64_SVE_PREG(n, 0);
1273         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1274         if (ret) {
1275             return ret;
1276         }
1277         sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
1278     }
1279 
1280     r = &env->vfp.pregs[FFR_PRED_NUM].p[0];
1281     reg.addr = (uintptr_t)r;
1282     reg.id = KVM_REG_ARM64_SVE_FFR(0);
1283     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1284     if (ret) {
1285         return ret;
1286     }
1287     sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
1288 
1289     return 0;
1290 }
1291 
1292 int kvm_arch_get_registers(CPUState *cs)
1293 {
1294     struct kvm_one_reg reg;
1295     uint64_t val;
1296     unsigned int el;
1297     uint32_t fpr;
1298     int i, ret;
1299 
1300     ARMCPU *cpu = ARM_CPU(cs);
1301     CPUARMState *env = &cpu->env;
1302 
1303     for (i = 0; i < 31; i++) {
1304         reg.id = AARCH64_CORE_REG(regs.regs[i]);
1305         reg.addr = (uintptr_t) &env->xregs[i];
1306         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1307         if (ret) {
1308             return ret;
1309         }
1310     }
1311 
1312     reg.id = AARCH64_CORE_REG(regs.sp);
1313     reg.addr = (uintptr_t) &env->sp_el[0];
1314     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1315     if (ret) {
1316         return ret;
1317     }
1318 
1319     reg.id = AARCH64_CORE_REG(sp_el1);
1320     reg.addr = (uintptr_t) &env->sp_el[1];
1321     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1322     if (ret) {
1323         return ret;
1324     }
1325 
1326     reg.id = AARCH64_CORE_REG(regs.pstate);
1327     reg.addr = (uintptr_t) &val;
1328     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1329     if (ret) {
1330         return ret;
1331     }
1332 
1333     env->aarch64 = ((val & PSTATE_nRW) == 0);
1334     if (is_a64(env)) {
1335         pstate_write(env, val);
1336     } else {
1337         cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
1338     }
1339 
1340     /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
1341      * QEMU side we keep the current SP in xregs[31] as well.
1342      */
1343     aarch64_restore_sp(env, 1);
1344 
1345     reg.id = AARCH64_CORE_REG(regs.pc);
1346     reg.addr = (uintptr_t) &env->pc;
1347     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1348     if (ret) {
1349         return ret;
1350     }
1351 
1352     /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
1353      * incoming AArch64 regs received from 64-bit KVM.
1354      * We must perform this after all of the registers have been acquired from
1355      * the kernel.
1356      */
1357     if (!is_a64(env)) {
1358         aarch64_sync_64_to_32(env);
1359     }
1360 
1361     reg.id = AARCH64_CORE_REG(elr_el1);
1362     reg.addr = (uintptr_t) &env->elr_el[1];
1363     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1364     if (ret) {
1365         return ret;
1366     }
1367 
1368     /* Fetch the SPSR registers
1369      *
1370      * KVM SPSRs 0-4 map to QEMU banks 1-5
1371      */
1372     for (i = 0; i < KVM_NR_SPSR; i++) {
1373         reg.id = AARCH64_CORE_REG(spsr[i]);
1374         reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
1375         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1376         if (ret) {
1377             return ret;
1378         }
1379     }
1380 
1381     el = arm_current_el(env);
1382     if (el > 0 && !is_a64(env)) {
1383         i = bank_number(env->uncached_cpsr & CPSR_M);
1384         env->spsr = env->banked_spsr[i];
1385     }
1386 
1387     if (cpu_isar_feature(aa64_sve, cpu)) {
1388         ret = kvm_arch_get_sve(cs);
1389     } else {
1390         ret = kvm_arch_get_fpsimd(cs);
1391     }
1392     if (ret) {
1393         return ret;
1394     }
1395 
1396     reg.addr = (uintptr_t)(&fpr);
1397     reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
1398     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1399     if (ret) {
1400         return ret;
1401     }
1402     vfp_set_fpsr(env, fpr);
1403 
1404     reg.addr = (uintptr_t)(&fpr);
1405     reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
1406     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1407     if (ret) {
1408         return ret;
1409     }
1410     vfp_set_fpcr(env, fpr);
1411 
1412     ret = kvm_get_vcpu_events(cpu);
1413     if (ret) {
1414         return ret;
1415     }
1416 
1417     if (!write_kvmstate_to_list(cpu)) {
1418         return -EINVAL;
1419     }
1420     /* Note that it's OK to have registers which aren't in CPUState,
1421      * so we can ignore a failure return here.
1422      */
1423     write_list_to_cpustate(cpu);
1424 
1425     kvm_arm_sync_mpstate_to_qemu(cpu);
1426 
1427     /* TODO: other registers */
1428     return ret;
1429 }
1430 
1431 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
1432 {
1433     ram_addr_t ram_addr;
1434     hwaddr paddr;
1435 
1436     assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
1437 
1438     if (acpi_ghes_present() && addr) {
1439         ram_addr = qemu_ram_addr_from_host(addr);
1440         if (ram_addr != RAM_ADDR_INVALID &&
1441             kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
1442             kvm_hwpoison_page_add(ram_addr);
1443             /*
1444              * If this is a BUS_MCEERR_AR, we know we have been called
1445              * synchronously from the vCPU thread, so we can easily
1446              * synchronize the state and inject an error.
1447              *
1448              * TODO: we currently don't tell the guest at all about
1449              * BUS_MCEERR_AO. In that case we might either be being
1450              * called synchronously from the vCPU thread, or a bit
1451              * later from the main thread, so doing the injection of
1452              * the error would be more complicated.
1453              */
1454             if (code == BUS_MCEERR_AR) {
1455                 kvm_cpu_synchronize_state(c);
1456                 if (!acpi_ghes_record_errors(ACPI_HEST_SRC_ID_SEA, paddr)) {
1457                     kvm_inject_arm_sea(c);
1458                 } else {
1459                     error_report("failed to record the error");
1460                     abort();
1461                 }
1462             }
1463             return;
1464         }
1465         if (code == BUS_MCEERR_AO) {
1466             error_report("Hardware memory error at addr %p for memory used by "
1467                 "QEMU itself instead of guest system!", addr);
1468         }
1469     }
1470 
1471     if (code == BUS_MCEERR_AR) {
1472         error_report("Hardware memory error!");
1473         exit(1);
1474     }
1475 }
1476 
1477 /* C6.6.29 BRK instruction */
1478 static const uint32_t brk_insn = 0xd4200000;
1479 
1480 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1481 {
1482     if (have_guest_debug) {
1483         if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
1484             cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
1485             return -EINVAL;
1486         }
1487         return 0;
1488     } else {
1489         error_report("guest debug not supported on this kernel");
1490         return -EINVAL;
1491     }
1492 }
1493 
1494 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1495 {
1496     static uint32_t brk;
1497 
1498     if (have_guest_debug) {
1499         if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
1500             brk != brk_insn ||
1501             cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
1502             return -EINVAL;
1503         }
1504         return 0;
1505     } else {
1506         error_report("guest debug not supported on this kernel");
1507         return -EINVAL;
1508     }
1509 }
1510 
1511 /* See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register
1512  *
1513  * To minimise translating between kernel and user-space the kernel
1514  * ABI just provides user-space with the full exception syndrome
1515  * register value to be decoded in QEMU.
1516  */
1517 
1518 bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit)
1519 {
1520     int hsr_ec = syn_get_ec(debug_exit->hsr);
1521     ARMCPU *cpu = ARM_CPU(cs);
1522     CPUARMState *env = &cpu->env;
1523 
1524     /* Ensure PC is synchronised */
1525     kvm_cpu_synchronize_state(cs);
1526 
1527     switch (hsr_ec) {
1528     case EC_SOFTWARESTEP:
1529         if (cs->singlestep_enabled) {
1530             return true;
1531         } else {
1532             /*
1533              * The kernel should have suppressed the guest's ability to
1534              * single step at this point so something has gone wrong.
1535              */
1536             error_report("%s: guest single-step while debugging unsupported"
1537                          " (%"PRIx64", %"PRIx32")",
1538                          __func__, env->pc, debug_exit->hsr);
1539             return false;
1540         }
1541         break;
1542     case EC_AA64_BKPT:
1543         if (kvm_find_sw_breakpoint(cs, env->pc)) {
1544             return true;
1545         }
1546         break;
1547     case EC_BREAKPOINT:
1548         if (find_hw_breakpoint(cs, env->pc)) {
1549             return true;
1550         }
1551         break;
1552     case EC_WATCHPOINT:
1553     {
1554         CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far);
1555         if (wp) {
1556             cs->watchpoint_hit = wp;
1557             return true;
1558         }
1559         break;
1560     }
1561     default:
1562         error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")",
1563                      __func__, debug_exit->hsr, env->pc);
1564     }
1565 
1566     /* If we are not handling the debug exception it must belong to
1567      * the guest. Let's re-use the existing TCG interrupt code to set
1568      * everything up properly.
1569      */
1570     cs->exception_index = EXCP_BKPT;
1571     env->exception.syndrome = debug_exit->hsr;
1572     env->exception.vaddress = debug_exit->far;
1573     env->exception.target_el = 1;
1574     qemu_mutex_lock_iothread();
1575     arm_cpu_do_interrupt(cs);
1576     qemu_mutex_unlock_iothread();
1577 
1578     return false;
1579 }
1580 
1581 #define ARM64_REG_ESR_EL1 ARM64_SYS_REG(3, 0, 5, 2, 0)
1582 #define ARM64_REG_TCR_EL1 ARM64_SYS_REG(3, 0, 2, 0, 2)
1583 
1584 /*
1585  * ESR_EL1
1586  * ISS encoding
1587  * AARCH64: DFSC,   bits [5:0]
1588  * AARCH32:
1589  *      TTBCR.EAE == 0
1590  *          FS[4]   - DFSR[10]
1591  *          FS[3:0] - DFSR[3:0]
1592  *      TTBCR.EAE == 1
1593  *          FS, bits [5:0]
1594  */
1595 #define ESR_DFSC(aarch64, lpae, v)        \
1596     ((aarch64 || (lpae)) ? ((v) & 0x3F)   \
1597                : (((v) >> 6) | ((v) & 0x1F)))
1598 
1599 #define ESR_DFSC_EXTABT(aarch64, lpae) \
1600     ((aarch64) ? 0x10 : (lpae) ? 0x10 : 0x8)
1601 
1602 bool kvm_arm_verify_ext_dabt_pending(CPUState *cs)
1603 {
1604     uint64_t dfsr_val;
1605 
1606     if (!kvm_get_one_reg(cs, ARM64_REG_ESR_EL1, &dfsr_val)) {
1607         ARMCPU *cpu = ARM_CPU(cs);
1608         CPUARMState *env = &cpu->env;
1609         int aarch64_mode = arm_feature(env, ARM_FEATURE_AARCH64);
1610         int lpae = 0;
1611 
1612         if (!aarch64_mode) {
1613             uint64_t ttbcr;
1614 
1615             if (!kvm_get_one_reg(cs, ARM64_REG_TCR_EL1, &ttbcr)) {
1616                 lpae = arm_feature(env, ARM_FEATURE_LPAE)
1617                         && (ttbcr & TTBCR_EAE);
1618             }
1619         }
1620         /*
1621          * The verification here is based on the DFSC bits
1622          * of the ESR_EL1 reg only
1623          */
1624          return (ESR_DFSC(aarch64_mode, lpae, dfsr_val) ==
1625                 ESR_DFSC_EXTABT(aarch64_mode, lpae));
1626     }
1627     return false;
1628 }
1629