xref: /openbmc/qemu/target/arm/kvm64.c (revision 073d9f2c)
1 /*
2  * ARM implementation of KVM hooks, 64 bit specific code
3  *
4  * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
5  * Copyright Alex Bennée 2014, Linaro
6  *
7  * This work is licensed under the terms of the GNU GPL, version 2 or later.
8  * See the COPYING file in the top-level directory.
9  *
10  */
11 
12 #include "qemu/osdep.h"
13 #include <sys/ioctl.h>
14 #include <sys/ptrace.h>
15 
16 #include <linux/elf.h>
17 #include <linux/kvm.h>
18 
19 #include "qemu-common.h"
20 #include "cpu.h"
21 #include "qemu/timer.h"
22 #include "qemu/error-report.h"
23 #include "qemu/host-utils.h"
24 #include "exec/gdbstub.h"
25 #include "sysemu/sysemu.h"
26 #include "sysemu/kvm.h"
27 #include "kvm_arm.h"
28 #include "internals.h"
29 #include "hw/arm/arm.h"
30 
31 static bool have_guest_debug;
32 
33 /*
34  * Although the ARM implementation of hardware assisted debugging
35  * allows for different breakpoints per-core, the current GDB
36  * interface treats them as a global pool of registers (which seems to
37  * be the case for x86, ppc and s390). As a result we store one copy
38  * of registers which is used for all active cores.
39  *
40  * Write access is serialised by virtue of the GDB protocol which
41  * updates things. Read access (i.e. when the values are copied to the
42  * vCPU) is also gated by GDB's run control.
43  *
44  * This is not unreasonable as most of the time debugging kernels you
45  * never know which core will eventually execute your function.
46  */
47 
48 typedef struct {
49     uint64_t bcr;
50     uint64_t bvr;
51 } HWBreakpoint;
52 
53 /* The watchpoint registers can cover more area than the requested
54  * watchpoint so we need to store the additional information
55  * somewhere. We also need to supply a CPUWatchpoint to the GDB stub
56  * when the watchpoint is hit.
57  */
58 typedef struct {
59     uint64_t wcr;
60     uint64_t wvr;
61     CPUWatchpoint details;
62 } HWWatchpoint;
63 
64 /* Maximum and current break/watch point counts */
65 int max_hw_bps, max_hw_wps;
66 GArray *hw_breakpoints, *hw_watchpoints;
67 
68 #define cur_hw_wps      (hw_watchpoints->len)
69 #define cur_hw_bps      (hw_breakpoints->len)
70 #define get_hw_bp(i)    (&g_array_index(hw_breakpoints, HWBreakpoint, i))
71 #define get_hw_wp(i)    (&g_array_index(hw_watchpoints, HWWatchpoint, i))
72 
73 /**
74  * kvm_arm_init_debug() - check for guest debug capabilities
75  * @cs: CPUState
76  *
77  * kvm_check_extension returns the number of debug registers we have
78  * or 0 if we have none.
79  *
80  */
81 static void kvm_arm_init_debug(CPUState *cs)
82 {
83     have_guest_debug = kvm_check_extension(cs->kvm_state,
84                                            KVM_CAP_SET_GUEST_DEBUG);
85 
86     max_hw_wps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_WPS);
87     hw_watchpoints = g_array_sized_new(true, true,
88                                        sizeof(HWWatchpoint), max_hw_wps);
89 
90     max_hw_bps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_BPS);
91     hw_breakpoints = g_array_sized_new(true, true,
92                                        sizeof(HWBreakpoint), max_hw_bps);
93     return;
94 }
95 
96 /**
97  * insert_hw_breakpoint()
98  * @addr: address of breakpoint
99  *
100  * See ARM ARM D2.9.1 for details but here we are only going to create
101  * simple un-linked breakpoints (i.e. we don't chain breakpoints
102  * together to match address and context or vmid). The hardware is
103  * capable of fancier matching but that will require exposing that
104  * fanciness to GDB's interface
105  *
106  * DBGBCR<n>_EL1, Debug Breakpoint Control Registers
107  *
108  *  31  24 23  20 19   16 15 14  13  12   9 8   5 4    3 2   1  0
109  * +------+------+-------+-----+----+------+-----+------+-----+---+
110  * | RES0 |  BT  |  LBN  | SSC | HMC| RES0 | BAS | RES0 | PMC | E |
111  * +------+------+-------+-----+----+------+-----+------+-----+---+
112  *
113  * BT: Breakpoint type (0 = unlinked address match)
114  * LBN: Linked BP number (0 = unused)
115  * SSC/HMC/PMC: Security, Higher and Priv access control (Table D-12)
116  * BAS: Byte Address Select (RES1 for AArch64)
117  * E: Enable bit
118  *
119  * DBGBVR<n>_EL1, Debug Breakpoint Value Registers
120  *
121  *  63  53 52       49 48       2  1 0
122  * +------+-----------+----------+-----+
123  * | RESS | VA[52:49] | VA[48:2] | 0 0 |
124  * +------+-----------+----------+-----+
125  *
126  * Depending on the addressing mode bits the top bits of the register
127  * are a sign extension of the highest applicable VA bit. Some
128  * versions of GDB don't do it correctly so we ensure they are correct
129  * here so future PC comparisons will work properly.
130  */
131 
132 static int insert_hw_breakpoint(target_ulong addr)
133 {
134     HWBreakpoint brk = {
135         .bcr = 0x1,                             /* BCR E=1, enable */
136         .bvr = sextract64(addr, 0, 53)
137     };
138 
139     if (cur_hw_bps >= max_hw_bps) {
140         return -ENOBUFS;
141     }
142 
143     brk.bcr = deposit32(brk.bcr, 1, 2, 0x3);   /* PMC = 11 */
144     brk.bcr = deposit32(brk.bcr, 5, 4, 0xf);   /* BAS = RES1 */
145 
146     g_array_append_val(hw_breakpoints, brk);
147 
148     return 0;
149 }
150 
151 /**
152  * delete_hw_breakpoint()
153  * @pc: address of breakpoint
154  *
155  * Delete a breakpoint and shuffle any above down
156  */
157 
158 static int delete_hw_breakpoint(target_ulong pc)
159 {
160     int i;
161     for (i = 0; i < hw_breakpoints->len; i++) {
162         HWBreakpoint *brk = get_hw_bp(i);
163         if (brk->bvr == pc) {
164             g_array_remove_index(hw_breakpoints, i);
165             return 0;
166         }
167     }
168     return -ENOENT;
169 }
170 
171 /**
172  * insert_hw_watchpoint()
173  * @addr: address of watch point
174  * @len: size of area
175  * @type: type of watch point
176  *
177  * See ARM ARM D2.10. As with the breakpoints we can do some advanced
178  * stuff if we want to. The watch points can be linked with the break
179  * points above to make them context aware. However for simplicity
180  * currently we only deal with simple read/write watch points.
181  *
182  * D7.3.11 DBGWCR<n>_EL1, Debug Watchpoint Control Registers
183  *
184  *  31  29 28   24 23  21  20  19 16 15 14  13   12  5 4   3 2   1  0
185  * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
186  * | RES0 |  MASK | RES0 | WT | LBN | SSC | HMC | BAS | LSC | PAC | E |
187  * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
188  *
189  * MASK: num bits addr mask (0=none,01/10=res,11=3 bits (8 bytes))
190  * WT: 0 - unlinked, 1 - linked (not currently used)
191  * LBN: Linked BP number (not currently used)
192  * SSC/HMC/PAC: Security, Higher and Priv access control (Table D2-11)
193  * BAS: Byte Address Select
194  * LSC: Load/Store control (01: load, 10: store, 11: both)
195  * E: Enable
196  *
197  * The bottom 2 bits of the value register are masked. Therefore to
198  * break on any sizes smaller than an unaligned word you need to set
199  * MASK=0, BAS=bit per byte in question. For larger regions (^2) you
200  * need to ensure you mask the address as required and set BAS=0xff
201  */
202 
203 static int insert_hw_watchpoint(target_ulong addr,
204                                 target_ulong len, int type)
205 {
206     HWWatchpoint wp = {
207         .wcr = 1, /* E=1, enable */
208         .wvr = addr & (~0x7ULL),
209         .details = { .vaddr = addr, .len = len }
210     };
211 
212     if (cur_hw_wps >= max_hw_wps) {
213         return -ENOBUFS;
214     }
215 
216     /*
217      * HMC=0 SSC=0 PAC=3 will hit EL0 or EL1, any security state,
218      * valid whether EL3 is implemented or not
219      */
220     wp.wcr = deposit32(wp.wcr, 1, 2, 3);
221 
222     switch (type) {
223     case GDB_WATCHPOINT_READ:
224         wp.wcr = deposit32(wp.wcr, 3, 2, 1);
225         wp.details.flags = BP_MEM_READ;
226         break;
227     case GDB_WATCHPOINT_WRITE:
228         wp.wcr = deposit32(wp.wcr, 3, 2, 2);
229         wp.details.flags = BP_MEM_WRITE;
230         break;
231     case GDB_WATCHPOINT_ACCESS:
232         wp.wcr = deposit32(wp.wcr, 3, 2, 3);
233         wp.details.flags = BP_MEM_ACCESS;
234         break;
235     default:
236         g_assert_not_reached();
237         break;
238     }
239     if (len <= 8) {
240         /* we align the address and set the bits in BAS */
241         int off = addr & 0x7;
242         int bas = (1 << len) - 1;
243 
244         wp.wcr = deposit32(wp.wcr, 5 + off, 8 - off, bas);
245     } else {
246         /* For ranges above 8 bytes we need to be a power of 2 */
247         if (is_power_of_2(len)) {
248             int bits = ctz64(len);
249 
250             wp.wvr &= ~((1 << bits) - 1);
251             wp.wcr = deposit32(wp.wcr, 24, 4, bits);
252             wp.wcr = deposit32(wp.wcr, 5, 8, 0xff);
253         } else {
254             return -ENOBUFS;
255         }
256     }
257 
258     g_array_append_val(hw_watchpoints, wp);
259     return 0;
260 }
261 
262 
263 static bool check_watchpoint_in_range(int i, target_ulong addr)
264 {
265     HWWatchpoint *wp = get_hw_wp(i);
266     uint64_t addr_top, addr_bottom = wp->wvr;
267     int bas = extract32(wp->wcr, 5, 8);
268     int mask = extract32(wp->wcr, 24, 4);
269 
270     if (mask) {
271         addr_top = addr_bottom + (1 << mask);
272     } else {
273         /* BAS must be contiguous but can offset against the base
274          * address in DBGWVR */
275         addr_bottom = addr_bottom + ctz32(bas);
276         addr_top = addr_bottom + clo32(bas);
277     }
278 
279     if (addr >= addr_bottom && addr <= addr_top) {
280         return true;
281     }
282 
283     return false;
284 }
285 
286 /**
287  * delete_hw_watchpoint()
288  * @addr: address of breakpoint
289  *
290  * Delete a breakpoint and shuffle any above down
291  */
292 
293 static int delete_hw_watchpoint(target_ulong addr,
294                                 target_ulong len, int type)
295 {
296     int i;
297     for (i = 0; i < cur_hw_wps; i++) {
298         if (check_watchpoint_in_range(i, addr)) {
299             g_array_remove_index(hw_watchpoints, i);
300             return 0;
301         }
302     }
303     return -ENOENT;
304 }
305 
306 
307 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
308                                   target_ulong len, int type)
309 {
310     switch (type) {
311     case GDB_BREAKPOINT_HW:
312         return insert_hw_breakpoint(addr);
313         break;
314     case GDB_WATCHPOINT_READ:
315     case GDB_WATCHPOINT_WRITE:
316     case GDB_WATCHPOINT_ACCESS:
317         return insert_hw_watchpoint(addr, len, type);
318     default:
319         return -ENOSYS;
320     }
321 }
322 
323 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
324                                   target_ulong len, int type)
325 {
326     switch (type) {
327     case GDB_BREAKPOINT_HW:
328         return delete_hw_breakpoint(addr);
329         break;
330     case GDB_WATCHPOINT_READ:
331     case GDB_WATCHPOINT_WRITE:
332     case GDB_WATCHPOINT_ACCESS:
333         return delete_hw_watchpoint(addr, len, type);
334     default:
335         return -ENOSYS;
336     }
337 }
338 
339 
340 void kvm_arch_remove_all_hw_breakpoints(void)
341 {
342     if (cur_hw_wps > 0) {
343         g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
344     }
345     if (cur_hw_bps > 0) {
346         g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
347     }
348 }
349 
350 void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
351 {
352     int i;
353     memset(ptr, 0, sizeof(struct kvm_guest_debug_arch));
354 
355     for (i = 0; i < max_hw_wps; i++) {
356         HWWatchpoint *wp = get_hw_wp(i);
357         ptr->dbg_wcr[i] = wp->wcr;
358         ptr->dbg_wvr[i] = wp->wvr;
359     }
360     for (i = 0; i < max_hw_bps; i++) {
361         HWBreakpoint *bp = get_hw_bp(i);
362         ptr->dbg_bcr[i] = bp->bcr;
363         ptr->dbg_bvr[i] = bp->bvr;
364     }
365 }
366 
367 bool kvm_arm_hw_debug_active(CPUState *cs)
368 {
369     return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
370 }
371 
372 static bool find_hw_breakpoint(CPUState *cpu, target_ulong pc)
373 {
374     int i;
375 
376     for (i = 0; i < cur_hw_bps; i++) {
377         HWBreakpoint *bp = get_hw_bp(i);
378         if (bp->bvr == pc) {
379             return true;
380         }
381     }
382     return false;
383 }
384 
385 static CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr)
386 {
387     int i;
388 
389     for (i = 0; i < cur_hw_wps; i++) {
390         if (check_watchpoint_in_range(i, addr)) {
391             return &get_hw_wp(i)->details;
392         }
393     }
394     return NULL;
395 }
396 
397 static bool kvm_arm_pmu_set_attr(CPUState *cs, struct kvm_device_attr *attr)
398 {
399     int err;
400 
401     err = kvm_vcpu_ioctl(cs, KVM_HAS_DEVICE_ATTR, attr);
402     if (err != 0) {
403         error_report("PMU: KVM_HAS_DEVICE_ATTR: %s", strerror(-err));
404         return false;
405     }
406 
407     err = kvm_vcpu_ioctl(cs, KVM_SET_DEVICE_ATTR, attr);
408     if (err != 0) {
409         error_report("PMU: KVM_SET_DEVICE_ATTR: %s", strerror(-err));
410         return false;
411     }
412 
413     return true;
414 }
415 
416 void kvm_arm_pmu_init(CPUState *cs)
417 {
418     struct kvm_device_attr attr = {
419         .group = KVM_ARM_VCPU_PMU_V3_CTRL,
420         .attr = KVM_ARM_VCPU_PMU_V3_INIT,
421     };
422 
423     if (!ARM_CPU(cs)->has_pmu) {
424         return;
425     }
426     if (!kvm_arm_pmu_set_attr(cs, &attr)) {
427         error_report("failed to init PMU");
428         abort();
429     }
430 }
431 
432 void kvm_arm_pmu_set_irq(CPUState *cs, int irq)
433 {
434     struct kvm_device_attr attr = {
435         .group = KVM_ARM_VCPU_PMU_V3_CTRL,
436         .addr = (intptr_t)&irq,
437         .attr = KVM_ARM_VCPU_PMU_V3_IRQ,
438     };
439 
440     if (!ARM_CPU(cs)->has_pmu) {
441         return;
442     }
443     if (!kvm_arm_pmu_set_attr(cs, &attr)) {
444         error_report("failed to set irq for PMU");
445         abort();
446     }
447 }
448 
449 static inline void set_feature(uint64_t *features, int feature)
450 {
451     *features |= 1ULL << feature;
452 }
453 
454 static inline void unset_feature(uint64_t *features, int feature)
455 {
456     *features &= ~(1ULL << feature);
457 }
458 
459 static int read_sys_reg32(int fd, uint32_t *pret, uint64_t id)
460 {
461     uint64_t ret;
462     struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)&ret };
463     int err;
464 
465     assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
466     err = ioctl(fd, KVM_GET_ONE_REG, &idreg);
467     if (err < 0) {
468         return -1;
469     }
470     *pret = ret;
471     return 0;
472 }
473 
474 static int read_sys_reg64(int fd, uint64_t *pret, uint64_t id)
475 {
476     struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)pret };
477 
478     assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
479     return ioctl(fd, KVM_GET_ONE_REG, &idreg);
480 }
481 
482 bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
483 {
484     /* Identify the feature bits corresponding to the host CPU, and
485      * fill out the ARMHostCPUClass fields accordingly. To do this
486      * we have to create a scratch VM, create a single CPU inside it,
487      * and then query that CPU for the relevant ID registers.
488      */
489     int fdarray[3];
490     uint64_t features = 0;
491     int err;
492 
493     /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
494      * we know these will only support creating one kind of guest CPU,
495      * which is its preferred CPU type. Fortunately these old kernels
496      * support only a very limited number of CPUs.
497      */
498     static const uint32_t cpus_to_try[] = {
499         KVM_ARM_TARGET_AEM_V8,
500         KVM_ARM_TARGET_FOUNDATION_V8,
501         KVM_ARM_TARGET_CORTEX_A57,
502         QEMU_KVM_ARM_TARGET_NONE
503     };
504     struct kvm_vcpu_init init;
505 
506     if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
507         return false;
508     }
509 
510     ahcf->target = init.target;
511     ahcf->dtb_compatible = "arm,arm-v8";
512 
513     err = read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr0,
514                          ARM64_SYS_REG(3, 0, 0, 4, 0));
515     if (unlikely(err < 0)) {
516         /*
517          * Before v4.15, the kernel only exposed a limited number of system
518          * registers, not including any of the interesting AArch64 ID regs.
519          * For the most part we could leave these fields as zero with minimal
520          * effect, since this does not affect the values seen by the guest.
521          *
522          * However, it could cause problems down the line for QEMU,
523          * so provide a minimal v8.0 default.
524          *
525          * ??? Could read MIDR and use knowledge from cpu64.c.
526          * ??? Could map a page of memory into our temp guest and
527          *     run the tiniest of hand-crafted kernels to extract
528          *     the values seen by the guest.
529          * ??? Either of these sounds like too much effort just
530          *     to work around running a modern host kernel.
531          */
532         ahcf->isar.id_aa64pfr0 = 0x00000011; /* EL1&0, AArch64 only */
533         err = 0;
534     } else {
535         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr1,
536                               ARM64_SYS_REG(3, 0, 0, 4, 1));
537         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar0,
538                               ARM64_SYS_REG(3, 0, 0, 6, 0));
539         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar1,
540                               ARM64_SYS_REG(3, 0, 0, 6, 1));
541         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr0,
542                               ARM64_SYS_REG(3, 0, 0, 7, 0));
543         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr1,
544                               ARM64_SYS_REG(3, 0, 0, 7, 1));
545 
546         /*
547          * Note that if AArch32 support is not present in the host,
548          * the AArch32 sysregs are present to be read, but will
549          * return UNKNOWN values.  This is neither better nor worse
550          * than skipping the reads and leaving 0, as we must avoid
551          * considering the values in every case.
552          */
553         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar0,
554                               ARM64_SYS_REG(3, 0, 0, 2, 0));
555         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar1,
556                               ARM64_SYS_REG(3, 0, 0, 2, 1));
557         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar2,
558                               ARM64_SYS_REG(3, 0, 0, 2, 2));
559         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar3,
560                               ARM64_SYS_REG(3, 0, 0, 2, 3));
561         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar4,
562                               ARM64_SYS_REG(3, 0, 0, 2, 4));
563         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar5,
564                               ARM64_SYS_REG(3, 0, 0, 2, 5));
565         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar6,
566                               ARM64_SYS_REG(3, 0, 0, 2, 7));
567 
568         err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr0,
569                               ARM64_SYS_REG(3, 0, 0, 3, 0));
570         err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr1,
571                               ARM64_SYS_REG(3, 0, 0, 3, 1));
572         err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr2,
573                               ARM64_SYS_REG(3, 0, 0, 3, 2));
574     }
575 
576     kvm_arm_destroy_scratch_host_vcpu(fdarray);
577 
578     if (err < 0) {
579         return false;
580     }
581 
582    /* We can assume any KVM supporting CPU is at least a v8
583      * with VFPv4+Neon; this in turn implies most of the other
584      * feature bits.
585      */
586     set_feature(&features, ARM_FEATURE_V8);
587     set_feature(&features, ARM_FEATURE_VFP4);
588     set_feature(&features, ARM_FEATURE_NEON);
589     set_feature(&features, ARM_FEATURE_AARCH64);
590     set_feature(&features, ARM_FEATURE_PMU);
591 
592     ahcf->features = features;
593 
594     return true;
595 }
596 
597 #define ARM_CPU_ID_MPIDR       3, 0, 0, 0, 5
598 
599 int kvm_arch_init_vcpu(CPUState *cs)
600 {
601     int ret;
602     uint64_t mpidr;
603     ARMCPU *cpu = ARM_CPU(cs);
604     CPUARMState *env = &cpu->env;
605 
606     if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
607         !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
608         fprintf(stderr, "KVM is not supported for this guest CPU type\n");
609         return -EINVAL;
610     }
611 
612     /* Determine init features for this CPU */
613     memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
614     if (cpu->start_powered_off) {
615         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
616     }
617     if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
618         cpu->psci_version = 2;
619         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
620     }
621     if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
622         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
623     }
624     if (!kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PMU_V3)) {
625             cpu->has_pmu = false;
626     }
627     if (cpu->has_pmu) {
628         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
629     } else {
630         unset_feature(&env->features, ARM_FEATURE_PMU);
631     }
632 
633     /* Do KVM_ARM_VCPU_INIT ioctl */
634     ret = kvm_arm_vcpu_init(cs);
635     if (ret) {
636         return ret;
637     }
638 
639     /*
640      * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
641      * Currently KVM has its own idea about MPIDR assignment, so we
642      * override our defaults with what we get from KVM.
643      */
644     ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
645     if (ret) {
646         return ret;
647     }
648     cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
649 
650     kvm_arm_init_debug(cs);
651 
652     /* Check whether user space can specify guest syndrome value */
653     kvm_arm_init_serror_injection(cs);
654 
655     return kvm_arm_init_cpreg_list(cpu);
656 }
657 
658 bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
659 {
660     /* Return true if the regidx is a register we should synchronize
661      * via the cpreg_tuples array (ie is not a core reg we sync by
662      * hand in kvm_arch_get/put_registers())
663      */
664     switch (regidx & KVM_REG_ARM_COPROC_MASK) {
665     case KVM_REG_ARM_CORE:
666         return false;
667     default:
668         return true;
669     }
670 }
671 
672 typedef struct CPRegStateLevel {
673     uint64_t regidx;
674     int level;
675 } CPRegStateLevel;
676 
677 /* All system registers not listed in the following table are assumed to be
678  * of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
679  * often, you must add it to this table with a state of either
680  * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
681  */
682 static const CPRegStateLevel non_runtime_cpregs[] = {
683     { KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE },
684 };
685 
686 int kvm_arm_cpreg_level(uint64_t regidx)
687 {
688     int i;
689 
690     for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) {
691         const CPRegStateLevel *l = &non_runtime_cpregs[i];
692         if (l->regidx == regidx) {
693             return l->level;
694         }
695     }
696 
697     return KVM_PUT_RUNTIME_STATE;
698 }
699 
700 #define AARCH64_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
701                  KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
702 
703 #define AARCH64_SIMD_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
704                  KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
705 
706 #define AARCH64_SIMD_CTRL_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
707                  KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
708 
709 int kvm_arch_put_registers(CPUState *cs, int level)
710 {
711     struct kvm_one_reg reg;
712     uint32_t fpr;
713     uint64_t val;
714     int i;
715     int ret;
716     unsigned int el;
717 
718     ARMCPU *cpu = ARM_CPU(cs);
719     CPUARMState *env = &cpu->env;
720 
721     /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
722      * AArch64 registers before pushing them out to 64-bit KVM.
723      */
724     if (!is_a64(env)) {
725         aarch64_sync_32_to_64(env);
726     }
727 
728     for (i = 0; i < 31; i++) {
729         reg.id = AARCH64_CORE_REG(regs.regs[i]);
730         reg.addr = (uintptr_t) &env->xregs[i];
731         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
732         if (ret) {
733             return ret;
734         }
735     }
736 
737     /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
738      * QEMU side we keep the current SP in xregs[31] as well.
739      */
740     aarch64_save_sp(env, 1);
741 
742     reg.id = AARCH64_CORE_REG(regs.sp);
743     reg.addr = (uintptr_t) &env->sp_el[0];
744     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
745     if (ret) {
746         return ret;
747     }
748 
749     reg.id = AARCH64_CORE_REG(sp_el1);
750     reg.addr = (uintptr_t) &env->sp_el[1];
751     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
752     if (ret) {
753         return ret;
754     }
755 
756     /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
757     if (is_a64(env)) {
758         val = pstate_read(env);
759     } else {
760         val = cpsr_read(env);
761     }
762     reg.id = AARCH64_CORE_REG(regs.pstate);
763     reg.addr = (uintptr_t) &val;
764     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
765     if (ret) {
766         return ret;
767     }
768 
769     reg.id = AARCH64_CORE_REG(regs.pc);
770     reg.addr = (uintptr_t) &env->pc;
771     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
772     if (ret) {
773         return ret;
774     }
775 
776     reg.id = AARCH64_CORE_REG(elr_el1);
777     reg.addr = (uintptr_t) &env->elr_el[1];
778     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
779     if (ret) {
780         return ret;
781     }
782 
783     /* Saved Program State Registers
784      *
785      * Before we restore from the banked_spsr[] array we need to
786      * ensure that any modifications to env->spsr are correctly
787      * reflected in the banks.
788      */
789     el = arm_current_el(env);
790     if (el > 0 && !is_a64(env)) {
791         i = bank_number(env->uncached_cpsr & CPSR_M);
792         env->banked_spsr[i] = env->spsr;
793     }
794 
795     /* KVM 0-4 map to QEMU banks 1-5 */
796     for (i = 0; i < KVM_NR_SPSR; i++) {
797         reg.id = AARCH64_CORE_REG(spsr[i]);
798         reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
799         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
800         if (ret) {
801             return ret;
802         }
803     }
804 
805     /* Advanced SIMD and FP registers. */
806     for (i = 0; i < 32; i++) {
807         uint64_t *q = aa64_vfp_qreg(env, i);
808 #ifdef HOST_WORDS_BIGENDIAN
809         uint64_t fp_val[2] = { q[1], q[0] };
810         reg.addr = (uintptr_t)fp_val;
811 #else
812         reg.addr = (uintptr_t)q;
813 #endif
814         reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
815         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
816         if (ret) {
817             return ret;
818         }
819     }
820 
821     reg.addr = (uintptr_t)(&fpr);
822     fpr = vfp_get_fpsr(env);
823     reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
824     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
825     if (ret) {
826         return ret;
827     }
828 
829     fpr = vfp_get_fpcr(env);
830     reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
831     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
832     if (ret) {
833         return ret;
834     }
835 
836     ret = kvm_put_vcpu_events(cpu);
837     if (ret) {
838         return ret;
839     }
840 
841     if (!write_list_to_kvmstate(cpu, level)) {
842         return EINVAL;
843     }
844 
845     kvm_arm_sync_mpstate_to_kvm(cpu);
846 
847     return ret;
848 }
849 
850 int kvm_arch_get_registers(CPUState *cs)
851 {
852     struct kvm_one_reg reg;
853     uint64_t val;
854     uint32_t fpr;
855     unsigned int el;
856     int i;
857     int ret;
858 
859     ARMCPU *cpu = ARM_CPU(cs);
860     CPUARMState *env = &cpu->env;
861 
862     for (i = 0; i < 31; i++) {
863         reg.id = AARCH64_CORE_REG(regs.regs[i]);
864         reg.addr = (uintptr_t) &env->xregs[i];
865         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
866         if (ret) {
867             return ret;
868         }
869     }
870 
871     reg.id = AARCH64_CORE_REG(regs.sp);
872     reg.addr = (uintptr_t) &env->sp_el[0];
873     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
874     if (ret) {
875         return ret;
876     }
877 
878     reg.id = AARCH64_CORE_REG(sp_el1);
879     reg.addr = (uintptr_t) &env->sp_el[1];
880     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
881     if (ret) {
882         return ret;
883     }
884 
885     reg.id = AARCH64_CORE_REG(regs.pstate);
886     reg.addr = (uintptr_t) &val;
887     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
888     if (ret) {
889         return ret;
890     }
891 
892     env->aarch64 = ((val & PSTATE_nRW) == 0);
893     if (is_a64(env)) {
894         pstate_write(env, val);
895     } else {
896         cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
897     }
898 
899     /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
900      * QEMU side we keep the current SP in xregs[31] as well.
901      */
902     aarch64_restore_sp(env, 1);
903 
904     reg.id = AARCH64_CORE_REG(regs.pc);
905     reg.addr = (uintptr_t) &env->pc;
906     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
907     if (ret) {
908         return ret;
909     }
910 
911     /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
912      * incoming AArch64 regs received from 64-bit KVM.
913      * We must perform this after all of the registers have been acquired from
914      * the kernel.
915      */
916     if (!is_a64(env)) {
917         aarch64_sync_64_to_32(env);
918     }
919 
920     reg.id = AARCH64_CORE_REG(elr_el1);
921     reg.addr = (uintptr_t) &env->elr_el[1];
922     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
923     if (ret) {
924         return ret;
925     }
926 
927     /* Fetch the SPSR registers
928      *
929      * KVM SPSRs 0-4 map to QEMU banks 1-5
930      */
931     for (i = 0; i < KVM_NR_SPSR; i++) {
932         reg.id = AARCH64_CORE_REG(spsr[i]);
933         reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
934         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
935         if (ret) {
936             return ret;
937         }
938     }
939 
940     el = arm_current_el(env);
941     if (el > 0 && !is_a64(env)) {
942         i = bank_number(env->uncached_cpsr & CPSR_M);
943         env->spsr = env->banked_spsr[i];
944     }
945 
946     /* Advanced SIMD and FP registers */
947     for (i = 0; i < 32; i++) {
948         uint64_t *q = aa64_vfp_qreg(env, i);
949         reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
950         reg.addr = (uintptr_t)q;
951         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
952         if (ret) {
953             return ret;
954         } else {
955 #ifdef HOST_WORDS_BIGENDIAN
956             uint64_t t;
957             t = q[0], q[0] = q[1], q[1] = t;
958 #endif
959         }
960     }
961 
962     reg.addr = (uintptr_t)(&fpr);
963     reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
964     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
965     if (ret) {
966         return ret;
967     }
968     vfp_set_fpsr(env, fpr);
969 
970     reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
971     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
972     if (ret) {
973         return ret;
974     }
975     vfp_set_fpcr(env, fpr);
976 
977     ret = kvm_get_vcpu_events(cpu);
978     if (ret) {
979         return ret;
980     }
981 
982     if (!write_kvmstate_to_list(cpu)) {
983         return EINVAL;
984     }
985     /* Note that it's OK to have registers which aren't in CPUState,
986      * so we can ignore a failure return here.
987      */
988     write_list_to_cpustate(cpu);
989 
990     kvm_arm_sync_mpstate_to_qemu(cpu);
991 
992     /* TODO: other registers */
993     return ret;
994 }
995 
996 /* C6.6.29 BRK instruction */
997 static const uint32_t brk_insn = 0xd4200000;
998 
999 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1000 {
1001     if (have_guest_debug) {
1002         if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
1003             cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
1004             return -EINVAL;
1005         }
1006         return 0;
1007     } else {
1008         error_report("guest debug not supported on this kernel");
1009         return -EINVAL;
1010     }
1011 }
1012 
1013 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1014 {
1015     static uint32_t brk;
1016 
1017     if (have_guest_debug) {
1018         if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
1019             brk != brk_insn ||
1020             cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
1021             return -EINVAL;
1022         }
1023         return 0;
1024     } else {
1025         error_report("guest debug not supported on this kernel");
1026         return -EINVAL;
1027     }
1028 }
1029 
1030 /* See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register
1031  *
1032  * To minimise translating between kernel and user-space the kernel
1033  * ABI just provides user-space with the full exception syndrome
1034  * register value to be decoded in QEMU.
1035  */
1036 
1037 bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit)
1038 {
1039     int hsr_ec = syn_get_ec(debug_exit->hsr);
1040     ARMCPU *cpu = ARM_CPU(cs);
1041     CPUClass *cc = CPU_GET_CLASS(cs);
1042     CPUARMState *env = &cpu->env;
1043 
1044     /* Ensure PC is synchronised */
1045     kvm_cpu_synchronize_state(cs);
1046 
1047     switch (hsr_ec) {
1048     case EC_SOFTWARESTEP:
1049         if (cs->singlestep_enabled) {
1050             return true;
1051         } else {
1052             /*
1053              * The kernel should have suppressed the guest's ability to
1054              * single step at this point so something has gone wrong.
1055              */
1056             error_report("%s: guest single-step while debugging unsupported"
1057                          " (%"PRIx64", %"PRIx32")",
1058                          __func__, env->pc, debug_exit->hsr);
1059             return false;
1060         }
1061         break;
1062     case EC_AA64_BKPT:
1063         if (kvm_find_sw_breakpoint(cs, env->pc)) {
1064             return true;
1065         }
1066         break;
1067     case EC_BREAKPOINT:
1068         if (find_hw_breakpoint(cs, env->pc)) {
1069             return true;
1070         }
1071         break;
1072     case EC_WATCHPOINT:
1073     {
1074         CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far);
1075         if (wp) {
1076             cs->watchpoint_hit = wp;
1077             return true;
1078         }
1079         break;
1080     }
1081     default:
1082         error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")",
1083                      __func__, debug_exit->hsr, env->pc);
1084     }
1085 
1086     /* If we are not handling the debug exception it must belong to
1087      * the guest. Let's re-use the existing TCG interrupt code to set
1088      * everything up properly.
1089      */
1090     cs->exception_index = EXCP_BKPT;
1091     env->exception.syndrome = debug_exit->hsr;
1092     env->exception.vaddress = debug_exit->far;
1093     env->exception.target_el = 1;
1094     qemu_mutex_lock_iothread();
1095     cc->do_interrupt(cs);
1096     qemu_mutex_unlock_iothread();
1097 
1098     return false;
1099 }
1100