1 /* 2 * ARM implementation of KVM hooks 3 * 4 * Copyright Christoffer Dall 2009-2010 5 * 6 * This work is licensed under the terms of the GNU GPL, version 2 or later. 7 * See the COPYING file in the top-level directory. 8 * 9 */ 10 11 #include "qemu/osdep.h" 12 #include <sys/ioctl.h> 13 14 #include <linux/kvm.h> 15 16 #include "qemu-common.h" 17 #include "qemu/timer.h" 18 #include "qemu/error-report.h" 19 #include "qemu/main-loop.h" 20 #include "sysemu/sysemu.h" 21 #include "sysemu/kvm.h" 22 #include "sysemu/kvm_int.h" 23 #include "kvm_arm.h" 24 #include "cpu.h" 25 #include "trace.h" 26 #include "internals.h" 27 #include "hw/pci/pci.h" 28 #include "exec/memattrs.h" 29 #include "exec/address-spaces.h" 30 #include "hw/boards.h" 31 #include "hw/irq.h" 32 #include "qemu/log.h" 33 34 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 35 KVM_CAP_LAST_INFO 36 }; 37 38 static bool cap_has_mp_state; 39 static bool cap_has_inject_serror_esr; 40 41 static ARMHostCPUFeatures arm_host_cpu_features; 42 43 int kvm_arm_vcpu_init(CPUState *cs) 44 { 45 ARMCPU *cpu = ARM_CPU(cs); 46 struct kvm_vcpu_init init; 47 48 init.target = cpu->kvm_target; 49 memcpy(init.features, cpu->kvm_init_features, sizeof(init.features)); 50 51 return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init); 52 } 53 54 void kvm_arm_init_serror_injection(CPUState *cs) 55 { 56 cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state, 57 KVM_CAP_ARM_INJECT_SERROR_ESR); 58 } 59 60 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try, 61 int *fdarray, 62 struct kvm_vcpu_init *init) 63 { 64 int ret, kvmfd = -1, vmfd = -1, cpufd = -1; 65 66 kvmfd = qemu_open("/dev/kvm", O_RDWR); 67 if (kvmfd < 0) { 68 goto err; 69 } 70 vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0); 71 if (vmfd < 0) { 72 goto err; 73 } 74 cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0); 75 if (cpufd < 0) { 76 goto err; 77 } 78 79 if (!init) { 80 /* Caller doesn't want the VCPU to be initialized, so skip it */ 81 goto finish; 82 } 83 84 ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, init); 85 if (ret >= 0) { 86 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init); 87 if (ret < 0) { 88 goto err; 89 } 90 } else if (cpus_to_try) { 91 /* Old kernel which doesn't know about the 92 * PREFERRED_TARGET ioctl: we know it will only support 93 * creating one kind of guest CPU which is its preferred 94 * CPU type. 95 */ 96 while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) { 97 init->target = *cpus_to_try++; 98 memset(init->features, 0, sizeof(init->features)); 99 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init); 100 if (ret >= 0) { 101 break; 102 } 103 } 104 if (ret < 0) { 105 goto err; 106 } 107 } else { 108 /* Treat a NULL cpus_to_try argument the same as an empty 109 * list, which means we will fail the call since this must 110 * be an old kernel which doesn't support PREFERRED_TARGET. 111 */ 112 goto err; 113 } 114 115 finish: 116 fdarray[0] = kvmfd; 117 fdarray[1] = vmfd; 118 fdarray[2] = cpufd; 119 120 return true; 121 122 err: 123 if (cpufd >= 0) { 124 close(cpufd); 125 } 126 if (vmfd >= 0) { 127 close(vmfd); 128 } 129 if (kvmfd >= 0) { 130 close(kvmfd); 131 } 132 133 return false; 134 } 135 136 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray) 137 { 138 int i; 139 140 for (i = 2; i >= 0; i--) { 141 close(fdarray[i]); 142 } 143 } 144 145 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu) 146 { 147 CPUARMState *env = &cpu->env; 148 149 if (!arm_host_cpu_features.dtb_compatible) { 150 if (!kvm_enabled() || 151 !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) { 152 /* We can't report this error yet, so flag that we need to 153 * in arm_cpu_realizefn(). 154 */ 155 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE; 156 cpu->host_cpu_probe_failed = true; 157 return; 158 } 159 } 160 161 cpu->kvm_target = arm_host_cpu_features.target; 162 cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible; 163 cpu->isar = arm_host_cpu_features.isar; 164 env->features = arm_host_cpu_features.features; 165 } 166 167 bool kvm_arm_pmu_supported(CPUState *cpu) 168 { 169 KVMState *s = KVM_STATE(current_machine->accelerator); 170 171 return kvm_check_extension(s, KVM_CAP_ARM_PMU_V3); 172 } 173 174 int kvm_arm_get_max_vm_ipa_size(MachineState *ms) 175 { 176 KVMState *s = KVM_STATE(ms->accelerator); 177 int ret; 178 179 ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE); 180 return ret > 0 ? ret : 40; 181 } 182 183 int kvm_arch_init(MachineState *ms, KVMState *s) 184 { 185 /* For ARM interrupt delivery is always asynchronous, 186 * whether we are using an in-kernel VGIC or not. 187 */ 188 kvm_async_interrupts_allowed = true; 189 190 /* 191 * PSCI wakes up secondary cores, so we always need to 192 * have vCPUs waiting in kernel space 193 */ 194 kvm_halt_in_kernel_allowed = true; 195 196 cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE); 197 198 return 0; 199 } 200 201 unsigned long kvm_arch_vcpu_id(CPUState *cpu) 202 { 203 return cpu->cpu_index; 204 } 205 206 /* We track all the KVM devices which need their memory addresses 207 * passing to the kernel in a list of these structures. 208 * When board init is complete we run through the list and 209 * tell the kernel the base addresses of the memory regions. 210 * We use a MemoryListener to track mapping and unmapping of 211 * the regions during board creation, so the board models don't 212 * need to do anything special for the KVM case. 213 * 214 * Sometimes the address must be OR'ed with some other fields 215 * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION). 216 * @kda_addr_ormask aims at storing the value of those fields. 217 */ 218 typedef struct KVMDevice { 219 struct kvm_arm_device_addr kda; 220 struct kvm_device_attr kdattr; 221 uint64_t kda_addr_ormask; 222 MemoryRegion *mr; 223 QSLIST_ENTRY(KVMDevice) entries; 224 int dev_fd; 225 } KVMDevice; 226 227 static QSLIST_HEAD(, KVMDevice) kvm_devices_head; 228 229 static void kvm_arm_devlistener_add(MemoryListener *listener, 230 MemoryRegionSection *section) 231 { 232 KVMDevice *kd; 233 234 QSLIST_FOREACH(kd, &kvm_devices_head, entries) { 235 if (section->mr == kd->mr) { 236 kd->kda.addr = section->offset_within_address_space; 237 } 238 } 239 } 240 241 static void kvm_arm_devlistener_del(MemoryListener *listener, 242 MemoryRegionSection *section) 243 { 244 KVMDevice *kd; 245 246 QSLIST_FOREACH(kd, &kvm_devices_head, entries) { 247 if (section->mr == kd->mr) { 248 kd->kda.addr = -1; 249 } 250 } 251 } 252 253 static MemoryListener devlistener = { 254 .region_add = kvm_arm_devlistener_add, 255 .region_del = kvm_arm_devlistener_del, 256 }; 257 258 static void kvm_arm_set_device_addr(KVMDevice *kd) 259 { 260 struct kvm_device_attr *attr = &kd->kdattr; 261 int ret; 262 263 /* If the device control API is available and we have a device fd on the 264 * KVMDevice struct, let's use the newer API 265 */ 266 if (kd->dev_fd >= 0) { 267 uint64_t addr = kd->kda.addr; 268 269 addr |= kd->kda_addr_ormask; 270 attr->addr = (uintptr_t)&addr; 271 ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr); 272 } else { 273 ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda); 274 } 275 276 if (ret < 0) { 277 fprintf(stderr, "Failed to set device address: %s\n", 278 strerror(-ret)); 279 abort(); 280 } 281 } 282 283 static void kvm_arm_machine_init_done(Notifier *notifier, void *data) 284 { 285 KVMDevice *kd, *tkd; 286 287 QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) { 288 if (kd->kda.addr != -1) { 289 kvm_arm_set_device_addr(kd); 290 } 291 memory_region_unref(kd->mr); 292 QSLIST_REMOVE_HEAD(&kvm_devices_head, entries); 293 g_free(kd); 294 } 295 memory_listener_unregister(&devlistener); 296 } 297 298 static Notifier notify = { 299 .notify = kvm_arm_machine_init_done, 300 }; 301 302 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group, 303 uint64_t attr, int dev_fd, uint64_t addr_ormask) 304 { 305 KVMDevice *kd; 306 307 if (!kvm_irqchip_in_kernel()) { 308 return; 309 } 310 311 if (QSLIST_EMPTY(&kvm_devices_head)) { 312 memory_listener_register(&devlistener, &address_space_memory); 313 qemu_add_machine_init_done_notifier(¬ify); 314 } 315 kd = g_new0(KVMDevice, 1); 316 kd->mr = mr; 317 kd->kda.id = devid; 318 kd->kda.addr = -1; 319 kd->kdattr.flags = 0; 320 kd->kdattr.group = group; 321 kd->kdattr.attr = attr; 322 kd->dev_fd = dev_fd; 323 kd->kda_addr_ormask = addr_ormask; 324 QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries); 325 memory_region_ref(kd->mr); 326 } 327 328 static int compare_u64(const void *a, const void *b) 329 { 330 if (*(uint64_t *)a > *(uint64_t *)b) { 331 return 1; 332 } 333 if (*(uint64_t *)a < *(uint64_t *)b) { 334 return -1; 335 } 336 return 0; 337 } 338 339 /* Initialize the ARMCPU cpreg list according to the kernel's 340 * definition of what CPU registers it knows about (and throw away 341 * the previous TCG-created cpreg list). 342 */ 343 int kvm_arm_init_cpreg_list(ARMCPU *cpu) 344 { 345 struct kvm_reg_list rl; 346 struct kvm_reg_list *rlp; 347 int i, ret, arraylen; 348 CPUState *cs = CPU(cpu); 349 350 rl.n = 0; 351 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl); 352 if (ret != -E2BIG) { 353 return ret; 354 } 355 rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t)); 356 rlp->n = rl.n; 357 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp); 358 if (ret) { 359 goto out; 360 } 361 /* Sort the list we get back from the kernel, since cpreg_tuples 362 * must be in strictly ascending order. 363 */ 364 qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64); 365 366 for (i = 0, arraylen = 0; i < rlp->n; i++) { 367 if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) { 368 continue; 369 } 370 switch (rlp->reg[i] & KVM_REG_SIZE_MASK) { 371 case KVM_REG_SIZE_U32: 372 case KVM_REG_SIZE_U64: 373 break; 374 default: 375 fprintf(stderr, "Can't handle size of register in kernel list\n"); 376 ret = -EINVAL; 377 goto out; 378 } 379 380 arraylen++; 381 } 382 383 cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen); 384 cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen); 385 cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes, 386 arraylen); 387 cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values, 388 arraylen); 389 cpu->cpreg_array_len = arraylen; 390 cpu->cpreg_vmstate_array_len = arraylen; 391 392 for (i = 0, arraylen = 0; i < rlp->n; i++) { 393 uint64_t regidx = rlp->reg[i]; 394 if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) { 395 continue; 396 } 397 cpu->cpreg_indexes[arraylen] = regidx; 398 arraylen++; 399 } 400 assert(cpu->cpreg_array_len == arraylen); 401 402 if (!write_kvmstate_to_list(cpu)) { 403 /* Shouldn't happen unless kernel is inconsistent about 404 * what registers exist. 405 */ 406 fprintf(stderr, "Initial read of kernel register state failed\n"); 407 ret = -EINVAL; 408 goto out; 409 } 410 411 out: 412 g_free(rlp); 413 return ret; 414 } 415 416 bool write_kvmstate_to_list(ARMCPU *cpu) 417 { 418 CPUState *cs = CPU(cpu); 419 int i; 420 bool ok = true; 421 422 for (i = 0; i < cpu->cpreg_array_len; i++) { 423 struct kvm_one_reg r; 424 uint64_t regidx = cpu->cpreg_indexes[i]; 425 uint32_t v32; 426 int ret; 427 428 r.id = regidx; 429 430 switch (regidx & KVM_REG_SIZE_MASK) { 431 case KVM_REG_SIZE_U32: 432 r.addr = (uintptr_t)&v32; 433 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); 434 if (!ret) { 435 cpu->cpreg_values[i] = v32; 436 } 437 break; 438 case KVM_REG_SIZE_U64: 439 r.addr = (uintptr_t)(cpu->cpreg_values + i); 440 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); 441 break; 442 default: 443 abort(); 444 } 445 if (ret) { 446 ok = false; 447 } 448 } 449 return ok; 450 } 451 452 bool write_list_to_kvmstate(ARMCPU *cpu, int level) 453 { 454 CPUState *cs = CPU(cpu); 455 int i; 456 bool ok = true; 457 458 for (i = 0; i < cpu->cpreg_array_len; i++) { 459 struct kvm_one_reg r; 460 uint64_t regidx = cpu->cpreg_indexes[i]; 461 uint32_t v32; 462 int ret; 463 464 if (kvm_arm_cpreg_level(regidx) > level) { 465 continue; 466 } 467 468 r.id = regidx; 469 switch (regidx & KVM_REG_SIZE_MASK) { 470 case KVM_REG_SIZE_U32: 471 v32 = cpu->cpreg_values[i]; 472 r.addr = (uintptr_t)&v32; 473 break; 474 case KVM_REG_SIZE_U64: 475 r.addr = (uintptr_t)(cpu->cpreg_values + i); 476 break; 477 default: 478 abort(); 479 } 480 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); 481 if (ret) { 482 /* We might fail for "unknown register" and also for 483 * "you tried to set a register which is constant with 484 * a different value from what it actually contains". 485 */ 486 ok = false; 487 } 488 } 489 return ok; 490 } 491 492 void kvm_arm_reset_vcpu(ARMCPU *cpu) 493 { 494 int ret; 495 496 /* Re-init VCPU so that all registers are set to 497 * their respective reset values. 498 */ 499 ret = kvm_arm_vcpu_init(CPU(cpu)); 500 if (ret < 0) { 501 fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret)); 502 abort(); 503 } 504 if (!write_kvmstate_to_list(cpu)) { 505 fprintf(stderr, "write_kvmstate_to_list failed\n"); 506 abort(); 507 } 508 /* 509 * Sync the reset values also into the CPUState. This is necessary 510 * because the next thing we do will be a kvm_arch_put_registers() 511 * which will update the list values from the CPUState before copying 512 * the list values back to KVM. It's OK to ignore failure returns here 513 * for the same reason we do so in kvm_arch_get_registers(). 514 */ 515 write_list_to_cpustate(cpu); 516 } 517 518 /* 519 * Update KVM's MP_STATE based on what QEMU thinks it is 520 */ 521 int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu) 522 { 523 if (cap_has_mp_state) { 524 struct kvm_mp_state mp_state = { 525 .mp_state = (cpu->power_state == PSCI_OFF) ? 526 KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE 527 }; 528 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); 529 if (ret) { 530 fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n", 531 __func__, ret, strerror(-ret)); 532 return -1; 533 } 534 } 535 536 return 0; 537 } 538 539 /* 540 * Sync the KVM MP_STATE into QEMU 541 */ 542 int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu) 543 { 544 if (cap_has_mp_state) { 545 struct kvm_mp_state mp_state; 546 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state); 547 if (ret) { 548 fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n", 549 __func__, ret, strerror(-ret)); 550 abort(); 551 } 552 cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ? 553 PSCI_OFF : PSCI_ON; 554 } 555 556 return 0; 557 } 558 559 int kvm_put_vcpu_events(ARMCPU *cpu) 560 { 561 CPUARMState *env = &cpu->env; 562 struct kvm_vcpu_events events; 563 int ret; 564 565 if (!kvm_has_vcpu_events()) { 566 return 0; 567 } 568 569 memset(&events, 0, sizeof(events)); 570 events.exception.serror_pending = env->serror.pending; 571 572 /* Inject SError to guest with specified syndrome if host kernel 573 * supports it, otherwise inject SError without syndrome. 574 */ 575 if (cap_has_inject_serror_esr) { 576 events.exception.serror_has_esr = env->serror.has_esr; 577 events.exception.serror_esr = env->serror.esr; 578 } 579 580 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); 581 if (ret) { 582 error_report("failed to put vcpu events"); 583 } 584 585 return ret; 586 } 587 588 int kvm_get_vcpu_events(ARMCPU *cpu) 589 { 590 CPUARMState *env = &cpu->env; 591 struct kvm_vcpu_events events; 592 int ret; 593 594 if (!kvm_has_vcpu_events()) { 595 return 0; 596 } 597 598 memset(&events, 0, sizeof(events)); 599 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); 600 if (ret) { 601 error_report("failed to get vcpu events"); 602 return ret; 603 } 604 605 env->serror.pending = events.exception.serror_pending; 606 env->serror.has_esr = events.exception.serror_has_esr; 607 env->serror.esr = events.exception.serror_esr; 608 609 return 0; 610 } 611 612 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run) 613 { 614 } 615 616 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) 617 { 618 ARMCPU *cpu; 619 uint32_t switched_level; 620 621 if (kvm_irqchip_in_kernel()) { 622 /* 623 * We only need to sync timer states with user-space interrupt 624 * controllers, so return early and save cycles if we don't. 625 */ 626 return MEMTXATTRS_UNSPECIFIED; 627 } 628 629 cpu = ARM_CPU(cs); 630 631 /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */ 632 if (run->s.regs.device_irq_level != cpu->device_irq_level) { 633 switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level; 634 635 qemu_mutex_lock_iothread(); 636 637 if (switched_level & KVM_ARM_DEV_EL1_VTIMER) { 638 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT], 639 !!(run->s.regs.device_irq_level & 640 KVM_ARM_DEV_EL1_VTIMER)); 641 switched_level &= ~KVM_ARM_DEV_EL1_VTIMER; 642 } 643 644 if (switched_level & KVM_ARM_DEV_EL1_PTIMER) { 645 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS], 646 !!(run->s.regs.device_irq_level & 647 KVM_ARM_DEV_EL1_PTIMER)); 648 switched_level &= ~KVM_ARM_DEV_EL1_PTIMER; 649 } 650 651 if (switched_level & KVM_ARM_DEV_PMU) { 652 qemu_set_irq(cpu->pmu_interrupt, 653 !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU)); 654 switched_level &= ~KVM_ARM_DEV_PMU; 655 } 656 657 if (switched_level) { 658 qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n", 659 __func__, switched_level); 660 } 661 662 /* We also mark unknown levels as processed to not waste cycles */ 663 cpu->device_irq_level = run->s.regs.device_irq_level; 664 qemu_mutex_unlock_iothread(); 665 } 666 667 return MEMTXATTRS_UNSPECIFIED; 668 } 669 670 671 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 672 { 673 int ret = 0; 674 675 switch (run->exit_reason) { 676 case KVM_EXIT_DEBUG: 677 if (kvm_arm_handle_debug(cs, &run->debug.arch)) { 678 ret = EXCP_DEBUG; 679 } /* otherwise return to guest */ 680 break; 681 default: 682 qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n", 683 __func__, run->exit_reason); 684 break; 685 } 686 return ret; 687 } 688 689 bool kvm_arch_stop_on_emulation_error(CPUState *cs) 690 { 691 return true; 692 } 693 694 int kvm_arch_process_async_events(CPUState *cs) 695 { 696 return 0; 697 } 698 699 /* The #ifdef protections are until 32bit headers are imported and can 700 * be removed once both 32 and 64 bit reach feature parity. 701 */ 702 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg) 703 { 704 #ifdef KVM_GUESTDBG_USE_SW_BP 705 if (kvm_sw_breakpoints_active(cs)) { 706 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; 707 } 708 #endif 709 #ifdef KVM_GUESTDBG_USE_HW 710 if (kvm_arm_hw_debug_active(cs)) { 711 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW; 712 kvm_arm_copy_hw_debug_data(&dbg->arch); 713 } 714 #endif 715 } 716 717 void kvm_arch_init_irq_routing(KVMState *s) 718 { 719 } 720 721 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s) 722 { 723 if (machine_kernel_irqchip_split(ms)) { 724 perror("-machine kernel_irqchip=split is not supported on ARM."); 725 exit(1); 726 } 727 728 /* If we can create the VGIC using the newer device control API, we 729 * let the device do this when it initializes itself, otherwise we 730 * fall back to the old API */ 731 return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL); 732 } 733 734 int kvm_arm_vgic_probe(void) 735 { 736 if (kvm_create_device(kvm_state, 737 KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) { 738 return 3; 739 } else if (kvm_create_device(kvm_state, 740 KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) { 741 return 2; 742 } else { 743 return 0; 744 } 745 } 746 747 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 748 uint64_t address, uint32_t data, PCIDevice *dev) 749 { 750 AddressSpace *as = pci_device_iommu_address_space(dev); 751 hwaddr xlat, len, doorbell_gpa; 752 MemoryRegionSection mrs; 753 MemoryRegion *mr; 754 int ret = 1; 755 756 if (as == &address_space_memory) { 757 return 0; 758 } 759 760 /* MSI doorbell address is translated by an IOMMU */ 761 762 rcu_read_lock(); 763 mr = address_space_translate(as, address, &xlat, &len, true, 764 MEMTXATTRS_UNSPECIFIED); 765 if (!mr) { 766 goto unlock; 767 } 768 mrs = memory_region_find(mr, xlat, 1); 769 if (!mrs.mr) { 770 goto unlock; 771 } 772 773 doorbell_gpa = mrs.offset_within_address_space; 774 memory_region_unref(mrs.mr); 775 776 route->u.msi.address_lo = doorbell_gpa; 777 route->u.msi.address_hi = doorbell_gpa >> 32; 778 779 trace_kvm_arm_fixup_msi_route(address, doorbell_gpa); 780 781 ret = 0; 782 783 unlock: 784 rcu_read_unlock(); 785 return ret; 786 } 787 788 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 789 int vector, PCIDevice *dev) 790 { 791 return 0; 792 } 793 794 int kvm_arch_release_virq_post(int virq) 795 { 796 return 0; 797 } 798 799 int kvm_arch_msi_data_to_gsi(uint32_t data) 800 { 801 return (data - 32) & 0xffff; 802 } 803