1 /* 2 * ARM implementation of KVM hooks 3 * 4 * Copyright Christoffer Dall 2009-2010 5 * 6 * This work is licensed under the terms of the GNU GPL, version 2 or later. 7 * See the COPYING file in the top-level directory. 8 * 9 */ 10 11 #include "qemu/osdep.h" 12 #include <sys/ioctl.h> 13 14 #include <linux/kvm.h> 15 16 #include "qemu-common.h" 17 #include "qemu/timer.h" 18 #include "qemu/error-report.h" 19 #include "sysemu/sysemu.h" 20 #include "sysemu/kvm.h" 21 #include "kvm_arm.h" 22 #include "cpu.h" 23 #include "trace.h" 24 #include "internals.h" 25 #include "hw/arm/arm.h" 26 #include "hw/pci/pci.h" 27 #include "exec/memattrs.h" 28 #include "exec/address-spaces.h" 29 #include "hw/boards.h" 30 #include "qemu/log.h" 31 32 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 33 KVM_CAP_LAST_INFO 34 }; 35 36 static bool cap_has_mp_state; 37 38 static ARMHostCPUFeatures arm_host_cpu_features; 39 40 int kvm_arm_vcpu_init(CPUState *cs) 41 { 42 ARMCPU *cpu = ARM_CPU(cs); 43 struct kvm_vcpu_init init; 44 45 init.target = cpu->kvm_target; 46 memcpy(init.features, cpu->kvm_init_features, sizeof(init.features)); 47 48 return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init); 49 } 50 51 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try, 52 int *fdarray, 53 struct kvm_vcpu_init *init) 54 { 55 int ret, kvmfd = -1, vmfd = -1, cpufd = -1; 56 57 kvmfd = qemu_open("/dev/kvm", O_RDWR); 58 if (kvmfd < 0) { 59 goto err; 60 } 61 vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0); 62 if (vmfd < 0) { 63 goto err; 64 } 65 cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0); 66 if (cpufd < 0) { 67 goto err; 68 } 69 70 if (!init) { 71 /* Caller doesn't want the VCPU to be initialized, so skip it */ 72 goto finish; 73 } 74 75 ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, init); 76 if (ret >= 0) { 77 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init); 78 if (ret < 0) { 79 goto err; 80 } 81 } else if (cpus_to_try) { 82 /* Old kernel which doesn't know about the 83 * PREFERRED_TARGET ioctl: we know it will only support 84 * creating one kind of guest CPU which is its preferred 85 * CPU type. 86 */ 87 while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) { 88 init->target = *cpus_to_try++; 89 memset(init->features, 0, sizeof(init->features)); 90 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init); 91 if (ret >= 0) { 92 break; 93 } 94 } 95 if (ret < 0) { 96 goto err; 97 } 98 } else { 99 /* Treat a NULL cpus_to_try argument the same as an empty 100 * list, which means we will fail the call since this must 101 * be an old kernel which doesn't support PREFERRED_TARGET. 102 */ 103 goto err; 104 } 105 106 finish: 107 fdarray[0] = kvmfd; 108 fdarray[1] = vmfd; 109 fdarray[2] = cpufd; 110 111 return true; 112 113 err: 114 if (cpufd >= 0) { 115 close(cpufd); 116 } 117 if (vmfd >= 0) { 118 close(vmfd); 119 } 120 if (kvmfd >= 0) { 121 close(kvmfd); 122 } 123 124 return false; 125 } 126 127 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray) 128 { 129 int i; 130 131 for (i = 2; i >= 0; i--) { 132 close(fdarray[i]); 133 } 134 } 135 136 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu) 137 { 138 CPUARMState *env = &cpu->env; 139 140 if (!arm_host_cpu_features.dtb_compatible) { 141 if (!kvm_enabled() || 142 !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) { 143 /* We can't report this error yet, so flag that we need to 144 * in arm_cpu_realizefn(). 145 */ 146 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE; 147 cpu->host_cpu_probe_failed = true; 148 return; 149 } 150 } 151 152 cpu->kvm_target = arm_host_cpu_features.target; 153 cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible; 154 env->features = arm_host_cpu_features.features; 155 } 156 157 int kvm_arch_init(MachineState *ms, KVMState *s) 158 { 159 /* For ARM interrupt delivery is always asynchronous, 160 * whether we are using an in-kernel VGIC or not. 161 */ 162 kvm_async_interrupts_allowed = true; 163 164 /* 165 * PSCI wakes up secondary cores, so we always need to 166 * have vCPUs waiting in kernel space 167 */ 168 kvm_halt_in_kernel_allowed = true; 169 170 cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE); 171 172 return 0; 173 } 174 175 unsigned long kvm_arch_vcpu_id(CPUState *cpu) 176 { 177 return cpu->cpu_index; 178 } 179 180 /* We track all the KVM devices which need their memory addresses 181 * passing to the kernel in a list of these structures. 182 * When board init is complete we run through the list and 183 * tell the kernel the base addresses of the memory regions. 184 * We use a MemoryListener to track mapping and unmapping of 185 * the regions during board creation, so the board models don't 186 * need to do anything special for the KVM case. 187 * 188 * Sometimes the address must be OR'ed with some other fields 189 * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION). 190 * @kda_addr_ormask aims at storing the value of those fields. 191 */ 192 typedef struct KVMDevice { 193 struct kvm_arm_device_addr kda; 194 struct kvm_device_attr kdattr; 195 uint64_t kda_addr_ormask; 196 MemoryRegion *mr; 197 QSLIST_ENTRY(KVMDevice) entries; 198 int dev_fd; 199 } KVMDevice; 200 201 static QSLIST_HEAD(kvm_devices_head, KVMDevice) kvm_devices_head; 202 203 static void kvm_arm_devlistener_add(MemoryListener *listener, 204 MemoryRegionSection *section) 205 { 206 KVMDevice *kd; 207 208 QSLIST_FOREACH(kd, &kvm_devices_head, entries) { 209 if (section->mr == kd->mr) { 210 kd->kda.addr = section->offset_within_address_space; 211 } 212 } 213 } 214 215 static void kvm_arm_devlistener_del(MemoryListener *listener, 216 MemoryRegionSection *section) 217 { 218 KVMDevice *kd; 219 220 QSLIST_FOREACH(kd, &kvm_devices_head, entries) { 221 if (section->mr == kd->mr) { 222 kd->kda.addr = -1; 223 } 224 } 225 } 226 227 static MemoryListener devlistener = { 228 .region_add = kvm_arm_devlistener_add, 229 .region_del = kvm_arm_devlistener_del, 230 }; 231 232 static void kvm_arm_set_device_addr(KVMDevice *kd) 233 { 234 struct kvm_device_attr *attr = &kd->kdattr; 235 int ret; 236 237 /* If the device control API is available and we have a device fd on the 238 * KVMDevice struct, let's use the newer API 239 */ 240 if (kd->dev_fd >= 0) { 241 uint64_t addr = kd->kda.addr; 242 243 addr |= kd->kda_addr_ormask; 244 attr->addr = (uintptr_t)&addr; 245 ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr); 246 } else { 247 ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda); 248 } 249 250 if (ret < 0) { 251 fprintf(stderr, "Failed to set device address: %s\n", 252 strerror(-ret)); 253 abort(); 254 } 255 } 256 257 static void kvm_arm_machine_init_done(Notifier *notifier, void *data) 258 { 259 KVMDevice *kd, *tkd; 260 261 QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) { 262 if (kd->kda.addr != -1) { 263 kvm_arm_set_device_addr(kd); 264 } 265 memory_region_unref(kd->mr); 266 QSLIST_REMOVE_HEAD(&kvm_devices_head, entries); 267 g_free(kd); 268 } 269 memory_listener_unregister(&devlistener); 270 } 271 272 static Notifier notify = { 273 .notify = kvm_arm_machine_init_done, 274 }; 275 276 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group, 277 uint64_t attr, int dev_fd, uint64_t addr_ormask) 278 { 279 KVMDevice *kd; 280 281 if (!kvm_irqchip_in_kernel()) { 282 return; 283 } 284 285 if (QSLIST_EMPTY(&kvm_devices_head)) { 286 memory_listener_register(&devlistener, &address_space_memory); 287 qemu_add_machine_init_done_notifier(¬ify); 288 } 289 kd = g_new0(KVMDevice, 1); 290 kd->mr = mr; 291 kd->kda.id = devid; 292 kd->kda.addr = -1; 293 kd->kdattr.flags = 0; 294 kd->kdattr.group = group; 295 kd->kdattr.attr = attr; 296 kd->dev_fd = dev_fd; 297 kd->kda_addr_ormask = addr_ormask; 298 QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries); 299 memory_region_ref(kd->mr); 300 } 301 302 static int compare_u64(const void *a, const void *b) 303 { 304 if (*(uint64_t *)a > *(uint64_t *)b) { 305 return 1; 306 } 307 if (*(uint64_t *)a < *(uint64_t *)b) { 308 return -1; 309 } 310 return 0; 311 } 312 313 /* Initialize the CPUState's cpreg list according to the kernel's 314 * definition of what CPU registers it knows about (and throw away 315 * the previous TCG-created cpreg list). 316 */ 317 int kvm_arm_init_cpreg_list(ARMCPU *cpu) 318 { 319 struct kvm_reg_list rl; 320 struct kvm_reg_list *rlp; 321 int i, ret, arraylen; 322 CPUState *cs = CPU(cpu); 323 324 rl.n = 0; 325 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl); 326 if (ret != -E2BIG) { 327 return ret; 328 } 329 rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t)); 330 rlp->n = rl.n; 331 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp); 332 if (ret) { 333 goto out; 334 } 335 /* Sort the list we get back from the kernel, since cpreg_tuples 336 * must be in strictly ascending order. 337 */ 338 qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64); 339 340 for (i = 0, arraylen = 0; i < rlp->n; i++) { 341 if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) { 342 continue; 343 } 344 switch (rlp->reg[i] & KVM_REG_SIZE_MASK) { 345 case KVM_REG_SIZE_U32: 346 case KVM_REG_SIZE_U64: 347 break; 348 default: 349 fprintf(stderr, "Can't handle size of register in kernel list\n"); 350 ret = -EINVAL; 351 goto out; 352 } 353 354 arraylen++; 355 } 356 357 cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen); 358 cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen); 359 cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes, 360 arraylen); 361 cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values, 362 arraylen); 363 cpu->cpreg_array_len = arraylen; 364 cpu->cpreg_vmstate_array_len = arraylen; 365 366 for (i = 0, arraylen = 0; i < rlp->n; i++) { 367 uint64_t regidx = rlp->reg[i]; 368 if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) { 369 continue; 370 } 371 cpu->cpreg_indexes[arraylen] = regidx; 372 arraylen++; 373 } 374 assert(cpu->cpreg_array_len == arraylen); 375 376 if (!write_kvmstate_to_list(cpu)) { 377 /* Shouldn't happen unless kernel is inconsistent about 378 * what registers exist. 379 */ 380 fprintf(stderr, "Initial read of kernel register state failed\n"); 381 ret = -EINVAL; 382 goto out; 383 } 384 385 out: 386 g_free(rlp); 387 return ret; 388 } 389 390 bool write_kvmstate_to_list(ARMCPU *cpu) 391 { 392 CPUState *cs = CPU(cpu); 393 int i; 394 bool ok = true; 395 396 for (i = 0; i < cpu->cpreg_array_len; i++) { 397 struct kvm_one_reg r; 398 uint64_t regidx = cpu->cpreg_indexes[i]; 399 uint32_t v32; 400 int ret; 401 402 r.id = regidx; 403 404 switch (regidx & KVM_REG_SIZE_MASK) { 405 case KVM_REG_SIZE_U32: 406 r.addr = (uintptr_t)&v32; 407 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); 408 if (!ret) { 409 cpu->cpreg_values[i] = v32; 410 } 411 break; 412 case KVM_REG_SIZE_U64: 413 r.addr = (uintptr_t)(cpu->cpreg_values + i); 414 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); 415 break; 416 default: 417 abort(); 418 } 419 if (ret) { 420 ok = false; 421 } 422 } 423 return ok; 424 } 425 426 bool write_list_to_kvmstate(ARMCPU *cpu, int level) 427 { 428 CPUState *cs = CPU(cpu); 429 int i; 430 bool ok = true; 431 432 for (i = 0; i < cpu->cpreg_array_len; i++) { 433 struct kvm_one_reg r; 434 uint64_t regidx = cpu->cpreg_indexes[i]; 435 uint32_t v32; 436 int ret; 437 438 if (kvm_arm_cpreg_level(regidx) > level) { 439 continue; 440 } 441 442 r.id = regidx; 443 switch (regidx & KVM_REG_SIZE_MASK) { 444 case KVM_REG_SIZE_U32: 445 v32 = cpu->cpreg_values[i]; 446 r.addr = (uintptr_t)&v32; 447 break; 448 case KVM_REG_SIZE_U64: 449 r.addr = (uintptr_t)(cpu->cpreg_values + i); 450 break; 451 default: 452 abort(); 453 } 454 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); 455 if (ret) { 456 /* We might fail for "unknown register" and also for 457 * "you tried to set a register which is constant with 458 * a different value from what it actually contains". 459 */ 460 ok = false; 461 } 462 } 463 return ok; 464 } 465 466 void kvm_arm_reset_vcpu(ARMCPU *cpu) 467 { 468 int ret; 469 470 /* Re-init VCPU so that all registers are set to 471 * their respective reset values. 472 */ 473 ret = kvm_arm_vcpu_init(CPU(cpu)); 474 if (ret < 0) { 475 fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret)); 476 abort(); 477 } 478 if (!write_kvmstate_to_list(cpu)) { 479 fprintf(stderr, "write_kvmstate_to_list failed\n"); 480 abort(); 481 } 482 } 483 484 /* 485 * Update KVM's MP_STATE based on what QEMU thinks it is 486 */ 487 int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu) 488 { 489 if (cap_has_mp_state) { 490 struct kvm_mp_state mp_state = { 491 .mp_state = (cpu->power_state == PSCI_OFF) ? 492 KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE 493 }; 494 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); 495 if (ret) { 496 fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n", 497 __func__, ret, strerror(-ret)); 498 return -1; 499 } 500 } 501 502 return 0; 503 } 504 505 /* 506 * Sync the KVM MP_STATE into QEMU 507 */ 508 int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu) 509 { 510 if (cap_has_mp_state) { 511 struct kvm_mp_state mp_state; 512 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state); 513 if (ret) { 514 fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n", 515 __func__, ret, strerror(-ret)); 516 abort(); 517 } 518 cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ? 519 PSCI_OFF : PSCI_ON; 520 } 521 522 return 0; 523 } 524 525 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run) 526 { 527 } 528 529 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) 530 { 531 ARMCPU *cpu; 532 uint32_t switched_level; 533 534 if (kvm_irqchip_in_kernel()) { 535 /* 536 * We only need to sync timer states with user-space interrupt 537 * controllers, so return early and save cycles if we don't. 538 */ 539 return MEMTXATTRS_UNSPECIFIED; 540 } 541 542 cpu = ARM_CPU(cs); 543 544 /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */ 545 if (run->s.regs.device_irq_level != cpu->device_irq_level) { 546 switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level; 547 548 qemu_mutex_lock_iothread(); 549 550 if (switched_level & KVM_ARM_DEV_EL1_VTIMER) { 551 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT], 552 !!(run->s.regs.device_irq_level & 553 KVM_ARM_DEV_EL1_VTIMER)); 554 switched_level &= ~KVM_ARM_DEV_EL1_VTIMER; 555 } 556 557 if (switched_level & KVM_ARM_DEV_EL1_PTIMER) { 558 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS], 559 !!(run->s.regs.device_irq_level & 560 KVM_ARM_DEV_EL1_PTIMER)); 561 switched_level &= ~KVM_ARM_DEV_EL1_PTIMER; 562 } 563 564 if (switched_level & KVM_ARM_DEV_PMU) { 565 qemu_set_irq(cpu->pmu_interrupt, 566 !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU)); 567 switched_level &= ~KVM_ARM_DEV_PMU; 568 } 569 570 if (switched_level) { 571 qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n", 572 __func__, switched_level); 573 } 574 575 /* We also mark unknown levels as processed to not waste cycles */ 576 cpu->device_irq_level = run->s.regs.device_irq_level; 577 qemu_mutex_unlock_iothread(); 578 } 579 580 return MEMTXATTRS_UNSPECIFIED; 581 } 582 583 584 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 585 { 586 int ret = 0; 587 588 switch (run->exit_reason) { 589 case KVM_EXIT_DEBUG: 590 if (kvm_arm_handle_debug(cs, &run->debug.arch)) { 591 ret = EXCP_DEBUG; 592 } /* otherwise return to guest */ 593 break; 594 default: 595 qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n", 596 __func__, run->exit_reason); 597 break; 598 } 599 return ret; 600 } 601 602 bool kvm_arch_stop_on_emulation_error(CPUState *cs) 603 { 604 return true; 605 } 606 607 int kvm_arch_process_async_events(CPUState *cs) 608 { 609 return 0; 610 } 611 612 /* The #ifdef protections are until 32bit headers are imported and can 613 * be removed once both 32 and 64 bit reach feature parity. 614 */ 615 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg) 616 { 617 #ifdef KVM_GUESTDBG_USE_SW_BP 618 if (kvm_sw_breakpoints_active(cs)) { 619 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; 620 } 621 #endif 622 #ifdef KVM_GUESTDBG_USE_HW 623 if (kvm_arm_hw_debug_active(cs)) { 624 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW; 625 kvm_arm_copy_hw_debug_data(&dbg->arch); 626 } 627 #endif 628 } 629 630 void kvm_arch_init_irq_routing(KVMState *s) 631 { 632 } 633 634 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s) 635 { 636 if (machine_kernel_irqchip_split(ms)) { 637 perror("-machine kernel_irqchip=split is not supported on ARM."); 638 exit(1); 639 } 640 641 /* If we can create the VGIC using the newer device control API, we 642 * let the device do this when it initializes itself, otherwise we 643 * fall back to the old API */ 644 return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL); 645 } 646 647 int kvm_arm_vgic_probe(void) 648 { 649 if (kvm_create_device(kvm_state, 650 KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) { 651 return 3; 652 } else if (kvm_create_device(kvm_state, 653 KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) { 654 return 2; 655 } else { 656 return 0; 657 } 658 } 659 660 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 661 uint64_t address, uint32_t data, PCIDevice *dev) 662 { 663 AddressSpace *as = pci_device_iommu_address_space(dev); 664 hwaddr xlat, len, doorbell_gpa; 665 MemoryRegionSection mrs; 666 MemoryRegion *mr; 667 int ret = 1; 668 669 if (as == &address_space_memory) { 670 return 0; 671 } 672 673 /* MSI doorbell address is translated by an IOMMU */ 674 675 rcu_read_lock(); 676 mr = address_space_translate(as, address, &xlat, &len, true, 677 MEMTXATTRS_UNSPECIFIED); 678 if (!mr) { 679 goto unlock; 680 } 681 mrs = memory_region_find(mr, xlat, 1); 682 if (!mrs.mr) { 683 goto unlock; 684 } 685 686 doorbell_gpa = mrs.offset_within_address_space; 687 memory_region_unref(mrs.mr); 688 689 route->u.msi.address_lo = doorbell_gpa; 690 route->u.msi.address_hi = doorbell_gpa >> 32; 691 692 trace_kvm_arm_fixup_msi_route(address, doorbell_gpa); 693 694 ret = 0; 695 696 unlock: 697 rcu_read_unlock(); 698 return ret; 699 } 700 701 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 702 int vector, PCIDevice *dev) 703 { 704 return 0; 705 } 706 707 int kvm_arch_release_virq_post(int virq) 708 { 709 return 0; 710 } 711 712 int kvm_arch_msi_data_to_gsi(uint32_t data) 713 { 714 return (data - 32) & 0xffff; 715 } 716