xref: /openbmc/qemu/target/arm/kvm.c (revision e4ec5ad4)
1 /*
2  * ARM implementation of KVM hooks
3  *
4  * Copyright Christoffer Dall 2009-2010
5  *
6  * This work is licensed under the terms of the GNU GPL, version 2 or later.
7  * See the COPYING file in the top-level directory.
8  *
9  */
10 
11 #include "qemu/osdep.h"
12 #include <sys/ioctl.h>
13 
14 #include <linux/kvm.h>
15 
16 #include "qemu-common.h"
17 #include "qemu/timer.h"
18 #include "qemu/error-report.h"
19 #include "qemu/main-loop.h"
20 #include "sysemu/sysemu.h"
21 #include "sysemu/kvm.h"
22 #include "sysemu/kvm_int.h"
23 #include "kvm_arm.h"
24 #include "cpu.h"
25 #include "trace.h"
26 #include "internals.h"
27 #include "hw/pci/pci.h"
28 #include "exec/memattrs.h"
29 #include "exec/address-spaces.h"
30 #include "hw/boards.h"
31 #include "hw/irq.h"
32 #include "qemu/log.h"
33 
34 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
35     KVM_CAP_LAST_INFO
36 };
37 
38 static bool cap_has_mp_state;
39 static bool cap_has_inject_serror_esr;
40 
41 static ARMHostCPUFeatures arm_host_cpu_features;
42 
43 int kvm_arm_vcpu_init(CPUState *cs)
44 {
45     ARMCPU *cpu = ARM_CPU(cs);
46     struct kvm_vcpu_init init;
47 
48     init.target = cpu->kvm_target;
49     memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
50 
51     return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
52 }
53 
54 void kvm_arm_init_serror_injection(CPUState *cs)
55 {
56     cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state,
57                                     KVM_CAP_ARM_INJECT_SERROR_ESR);
58 }
59 
60 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
61                                       int *fdarray,
62                                       struct kvm_vcpu_init *init)
63 {
64     int ret, kvmfd = -1, vmfd = -1, cpufd = -1;
65 
66     kvmfd = qemu_open("/dev/kvm", O_RDWR);
67     if (kvmfd < 0) {
68         goto err;
69     }
70     vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0);
71     if (vmfd < 0) {
72         goto err;
73     }
74     cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
75     if (cpufd < 0) {
76         goto err;
77     }
78 
79     if (!init) {
80         /* Caller doesn't want the VCPU to be initialized, so skip it */
81         goto finish;
82     }
83 
84     ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, init);
85     if (ret >= 0) {
86         ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
87         if (ret < 0) {
88             goto err;
89         }
90     } else if (cpus_to_try) {
91         /* Old kernel which doesn't know about the
92          * PREFERRED_TARGET ioctl: we know it will only support
93          * creating one kind of guest CPU which is its preferred
94          * CPU type.
95          */
96         while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
97             init->target = *cpus_to_try++;
98             memset(init->features, 0, sizeof(init->features));
99             ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
100             if (ret >= 0) {
101                 break;
102             }
103         }
104         if (ret < 0) {
105             goto err;
106         }
107     } else {
108         /* Treat a NULL cpus_to_try argument the same as an empty
109          * list, which means we will fail the call since this must
110          * be an old kernel which doesn't support PREFERRED_TARGET.
111          */
112         goto err;
113     }
114 
115 finish:
116     fdarray[0] = kvmfd;
117     fdarray[1] = vmfd;
118     fdarray[2] = cpufd;
119 
120     return true;
121 
122 err:
123     if (cpufd >= 0) {
124         close(cpufd);
125     }
126     if (vmfd >= 0) {
127         close(vmfd);
128     }
129     if (kvmfd >= 0) {
130         close(kvmfd);
131     }
132 
133     return false;
134 }
135 
136 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
137 {
138     int i;
139 
140     for (i = 2; i >= 0; i--) {
141         close(fdarray[i]);
142     }
143 }
144 
145 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
146 {
147     CPUARMState *env = &cpu->env;
148 
149     if (!arm_host_cpu_features.dtb_compatible) {
150         if (!kvm_enabled() ||
151             !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) {
152             /* We can't report this error yet, so flag that we need to
153              * in arm_cpu_realizefn().
154              */
155             cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
156             cpu->host_cpu_probe_failed = true;
157             return;
158         }
159     }
160 
161     cpu->kvm_target = arm_host_cpu_features.target;
162     cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
163     cpu->isar = arm_host_cpu_features.isar;
164     env->features = arm_host_cpu_features.features;
165 }
166 
167 bool kvm_arm_pmu_supported(CPUState *cpu)
168 {
169     KVMState *s = KVM_STATE(current_machine->accelerator);
170 
171     return kvm_check_extension(s, KVM_CAP_ARM_PMU_V3);
172 }
173 
174 int kvm_arm_get_max_vm_ipa_size(MachineState *ms)
175 {
176     KVMState *s = KVM_STATE(ms->accelerator);
177     int ret;
178 
179     ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE);
180     return ret > 0 ? ret : 40;
181 }
182 
183 int kvm_arch_init(MachineState *ms, KVMState *s)
184 {
185     /* For ARM interrupt delivery is always asynchronous,
186      * whether we are using an in-kernel VGIC or not.
187      */
188     kvm_async_interrupts_allowed = true;
189 
190     /*
191      * PSCI wakes up secondary cores, so we always need to
192      * have vCPUs waiting in kernel space
193      */
194     kvm_halt_in_kernel_allowed = true;
195 
196     cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
197 
198     return 0;
199 }
200 
201 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
202 {
203     return cpu->cpu_index;
204 }
205 
206 /* We track all the KVM devices which need their memory addresses
207  * passing to the kernel in a list of these structures.
208  * When board init is complete we run through the list and
209  * tell the kernel the base addresses of the memory regions.
210  * We use a MemoryListener to track mapping and unmapping of
211  * the regions during board creation, so the board models don't
212  * need to do anything special for the KVM case.
213  *
214  * Sometimes the address must be OR'ed with some other fields
215  * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
216  * @kda_addr_ormask aims at storing the value of those fields.
217  */
218 typedef struct KVMDevice {
219     struct kvm_arm_device_addr kda;
220     struct kvm_device_attr kdattr;
221     uint64_t kda_addr_ormask;
222     MemoryRegion *mr;
223     QSLIST_ENTRY(KVMDevice) entries;
224     int dev_fd;
225 } KVMDevice;
226 
227 static QSLIST_HEAD(, KVMDevice) kvm_devices_head;
228 
229 static void kvm_arm_devlistener_add(MemoryListener *listener,
230                                     MemoryRegionSection *section)
231 {
232     KVMDevice *kd;
233 
234     QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
235         if (section->mr == kd->mr) {
236             kd->kda.addr = section->offset_within_address_space;
237         }
238     }
239 }
240 
241 static void kvm_arm_devlistener_del(MemoryListener *listener,
242                                     MemoryRegionSection *section)
243 {
244     KVMDevice *kd;
245 
246     QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
247         if (section->mr == kd->mr) {
248             kd->kda.addr = -1;
249         }
250     }
251 }
252 
253 static MemoryListener devlistener = {
254     .region_add = kvm_arm_devlistener_add,
255     .region_del = kvm_arm_devlistener_del,
256 };
257 
258 static void kvm_arm_set_device_addr(KVMDevice *kd)
259 {
260     struct kvm_device_attr *attr = &kd->kdattr;
261     int ret;
262 
263     /* If the device control API is available and we have a device fd on the
264      * KVMDevice struct, let's use the newer API
265      */
266     if (kd->dev_fd >= 0) {
267         uint64_t addr = kd->kda.addr;
268 
269         addr |= kd->kda_addr_ormask;
270         attr->addr = (uintptr_t)&addr;
271         ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
272     } else {
273         ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
274     }
275 
276     if (ret < 0) {
277         fprintf(stderr, "Failed to set device address: %s\n",
278                 strerror(-ret));
279         abort();
280     }
281 }
282 
283 static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
284 {
285     KVMDevice *kd, *tkd;
286 
287     QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
288         if (kd->kda.addr != -1) {
289             kvm_arm_set_device_addr(kd);
290         }
291         memory_region_unref(kd->mr);
292         QSLIST_REMOVE_HEAD(&kvm_devices_head, entries);
293         g_free(kd);
294     }
295     memory_listener_unregister(&devlistener);
296 }
297 
298 static Notifier notify = {
299     .notify = kvm_arm_machine_init_done,
300 };
301 
302 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
303                              uint64_t attr, int dev_fd, uint64_t addr_ormask)
304 {
305     KVMDevice *kd;
306 
307     if (!kvm_irqchip_in_kernel()) {
308         return;
309     }
310 
311     if (QSLIST_EMPTY(&kvm_devices_head)) {
312         memory_listener_register(&devlistener, &address_space_memory);
313         qemu_add_machine_init_done_notifier(&notify);
314     }
315     kd = g_new0(KVMDevice, 1);
316     kd->mr = mr;
317     kd->kda.id = devid;
318     kd->kda.addr = -1;
319     kd->kdattr.flags = 0;
320     kd->kdattr.group = group;
321     kd->kdattr.attr = attr;
322     kd->dev_fd = dev_fd;
323     kd->kda_addr_ormask = addr_ormask;
324     QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
325     memory_region_ref(kd->mr);
326 }
327 
328 static int compare_u64(const void *a, const void *b)
329 {
330     if (*(uint64_t *)a > *(uint64_t *)b) {
331         return 1;
332     }
333     if (*(uint64_t *)a < *(uint64_t *)b) {
334         return -1;
335     }
336     return 0;
337 }
338 
339 /* Initialize the ARMCPU cpreg list according to the kernel's
340  * definition of what CPU registers it knows about (and throw away
341  * the previous TCG-created cpreg list).
342  */
343 int kvm_arm_init_cpreg_list(ARMCPU *cpu)
344 {
345     struct kvm_reg_list rl;
346     struct kvm_reg_list *rlp;
347     int i, ret, arraylen;
348     CPUState *cs = CPU(cpu);
349 
350     rl.n = 0;
351     ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
352     if (ret != -E2BIG) {
353         return ret;
354     }
355     rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
356     rlp->n = rl.n;
357     ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
358     if (ret) {
359         goto out;
360     }
361     /* Sort the list we get back from the kernel, since cpreg_tuples
362      * must be in strictly ascending order.
363      */
364     qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
365 
366     for (i = 0, arraylen = 0; i < rlp->n; i++) {
367         if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
368             continue;
369         }
370         switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
371         case KVM_REG_SIZE_U32:
372         case KVM_REG_SIZE_U64:
373             break;
374         default:
375             fprintf(stderr, "Can't handle size of register in kernel list\n");
376             ret = -EINVAL;
377             goto out;
378         }
379 
380         arraylen++;
381     }
382 
383     cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
384     cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
385     cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
386                                          arraylen);
387     cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
388                                         arraylen);
389     cpu->cpreg_array_len = arraylen;
390     cpu->cpreg_vmstate_array_len = arraylen;
391 
392     for (i = 0, arraylen = 0; i < rlp->n; i++) {
393         uint64_t regidx = rlp->reg[i];
394         if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
395             continue;
396         }
397         cpu->cpreg_indexes[arraylen] = regidx;
398         arraylen++;
399     }
400     assert(cpu->cpreg_array_len == arraylen);
401 
402     if (!write_kvmstate_to_list(cpu)) {
403         /* Shouldn't happen unless kernel is inconsistent about
404          * what registers exist.
405          */
406         fprintf(stderr, "Initial read of kernel register state failed\n");
407         ret = -EINVAL;
408         goto out;
409     }
410 
411 out:
412     g_free(rlp);
413     return ret;
414 }
415 
416 bool write_kvmstate_to_list(ARMCPU *cpu)
417 {
418     CPUState *cs = CPU(cpu);
419     int i;
420     bool ok = true;
421 
422     for (i = 0; i < cpu->cpreg_array_len; i++) {
423         struct kvm_one_reg r;
424         uint64_t regidx = cpu->cpreg_indexes[i];
425         uint32_t v32;
426         int ret;
427 
428         r.id = regidx;
429 
430         switch (regidx & KVM_REG_SIZE_MASK) {
431         case KVM_REG_SIZE_U32:
432             r.addr = (uintptr_t)&v32;
433             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
434             if (!ret) {
435                 cpu->cpreg_values[i] = v32;
436             }
437             break;
438         case KVM_REG_SIZE_U64:
439             r.addr = (uintptr_t)(cpu->cpreg_values + i);
440             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
441             break;
442         default:
443             abort();
444         }
445         if (ret) {
446             ok = false;
447         }
448     }
449     return ok;
450 }
451 
452 bool write_list_to_kvmstate(ARMCPU *cpu, int level)
453 {
454     CPUState *cs = CPU(cpu);
455     int i;
456     bool ok = true;
457 
458     for (i = 0; i < cpu->cpreg_array_len; i++) {
459         struct kvm_one_reg r;
460         uint64_t regidx = cpu->cpreg_indexes[i];
461         uint32_t v32;
462         int ret;
463 
464         if (kvm_arm_cpreg_level(regidx) > level) {
465             continue;
466         }
467 
468         r.id = regidx;
469         switch (regidx & KVM_REG_SIZE_MASK) {
470         case KVM_REG_SIZE_U32:
471             v32 = cpu->cpreg_values[i];
472             r.addr = (uintptr_t)&v32;
473             break;
474         case KVM_REG_SIZE_U64:
475             r.addr = (uintptr_t)(cpu->cpreg_values + i);
476             break;
477         default:
478             abort();
479         }
480         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
481         if (ret) {
482             /* We might fail for "unknown register" and also for
483              * "you tried to set a register which is constant with
484              * a different value from what it actually contains".
485              */
486             ok = false;
487         }
488     }
489     return ok;
490 }
491 
492 void kvm_arm_reset_vcpu(ARMCPU *cpu)
493 {
494     int ret;
495 
496     /* Re-init VCPU so that all registers are set to
497      * their respective reset values.
498      */
499     ret = kvm_arm_vcpu_init(CPU(cpu));
500     if (ret < 0) {
501         fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
502         abort();
503     }
504     if (!write_kvmstate_to_list(cpu)) {
505         fprintf(stderr, "write_kvmstate_to_list failed\n");
506         abort();
507     }
508     /*
509      * Sync the reset values also into the CPUState. This is necessary
510      * because the next thing we do will be a kvm_arch_put_registers()
511      * which will update the list values from the CPUState before copying
512      * the list values back to KVM. It's OK to ignore failure returns here
513      * for the same reason we do so in kvm_arch_get_registers().
514      */
515     write_list_to_cpustate(cpu);
516 }
517 
518 /*
519  * Update KVM's MP_STATE based on what QEMU thinks it is
520  */
521 int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
522 {
523     if (cap_has_mp_state) {
524         struct kvm_mp_state mp_state = {
525             .mp_state = (cpu->power_state == PSCI_OFF) ?
526             KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
527         };
528         int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
529         if (ret) {
530             fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n",
531                     __func__, ret, strerror(-ret));
532             return -1;
533         }
534     }
535 
536     return 0;
537 }
538 
539 /*
540  * Sync the KVM MP_STATE into QEMU
541  */
542 int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
543 {
544     if (cap_has_mp_state) {
545         struct kvm_mp_state mp_state;
546         int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
547         if (ret) {
548             fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n",
549                     __func__, ret, strerror(-ret));
550             abort();
551         }
552         cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
553             PSCI_OFF : PSCI_ON;
554     }
555 
556     return 0;
557 }
558 
559 int kvm_put_vcpu_events(ARMCPU *cpu)
560 {
561     CPUARMState *env = &cpu->env;
562     struct kvm_vcpu_events events;
563     int ret;
564 
565     if (!kvm_has_vcpu_events()) {
566         return 0;
567     }
568 
569     memset(&events, 0, sizeof(events));
570     events.exception.serror_pending = env->serror.pending;
571 
572     /* Inject SError to guest with specified syndrome if host kernel
573      * supports it, otherwise inject SError without syndrome.
574      */
575     if (cap_has_inject_serror_esr) {
576         events.exception.serror_has_esr = env->serror.has_esr;
577         events.exception.serror_esr = env->serror.esr;
578     }
579 
580     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
581     if (ret) {
582         error_report("failed to put vcpu events");
583     }
584 
585     return ret;
586 }
587 
588 int kvm_get_vcpu_events(ARMCPU *cpu)
589 {
590     CPUARMState *env = &cpu->env;
591     struct kvm_vcpu_events events;
592     int ret;
593 
594     if (!kvm_has_vcpu_events()) {
595         return 0;
596     }
597 
598     memset(&events, 0, sizeof(events));
599     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
600     if (ret) {
601         error_report("failed to get vcpu events");
602         return ret;
603     }
604 
605     env->serror.pending = events.exception.serror_pending;
606     env->serror.has_esr = events.exception.serror_has_esr;
607     env->serror.esr = events.exception.serror_esr;
608 
609     return 0;
610 }
611 
612 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
613 {
614 }
615 
616 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
617 {
618     ARMCPU *cpu;
619     uint32_t switched_level;
620 
621     if (kvm_irqchip_in_kernel()) {
622         /*
623          * We only need to sync timer states with user-space interrupt
624          * controllers, so return early and save cycles if we don't.
625          */
626         return MEMTXATTRS_UNSPECIFIED;
627     }
628 
629     cpu = ARM_CPU(cs);
630 
631     /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
632     if (run->s.regs.device_irq_level != cpu->device_irq_level) {
633         switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
634 
635         qemu_mutex_lock_iothread();
636 
637         if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
638             qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
639                          !!(run->s.regs.device_irq_level &
640                             KVM_ARM_DEV_EL1_VTIMER));
641             switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
642         }
643 
644         if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
645             qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
646                          !!(run->s.regs.device_irq_level &
647                             KVM_ARM_DEV_EL1_PTIMER));
648             switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
649         }
650 
651         if (switched_level & KVM_ARM_DEV_PMU) {
652             qemu_set_irq(cpu->pmu_interrupt,
653                          !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
654             switched_level &= ~KVM_ARM_DEV_PMU;
655         }
656 
657         if (switched_level) {
658             qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
659                           __func__, switched_level);
660         }
661 
662         /* We also mark unknown levels as processed to not waste cycles */
663         cpu->device_irq_level = run->s.regs.device_irq_level;
664         qemu_mutex_unlock_iothread();
665     }
666 
667     return MEMTXATTRS_UNSPECIFIED;
668 }
669 
670 
671 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
672 {
673     int ret = 0;
674 
675     switch (run->exit_reason) {
676     case KVM_EXIT_DEBUG:
677         if (kvm_arm_handle_debug(cs, &run->debug.arch)) {
678             ret = EXCP_DEBUG;
679         } /* otherwise return to guest */
680         break;
681     default:
682         qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
683                       __func__, run->exit_reason);
684         break;
685     }
686     return ret;
687 }
688 
689 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
690 {
691     return true;
692 }
693 
694 int kvm_arch_process_async_events(CPUState *cs)
695 {
696     return 0;
697 }
698 
699 /* The #ifdef protections are until 32bit headers are imported and can
700  * be removed once both 32 and 64 bit reach feature parity.
701  */
702 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
703 {
704 #ifdef KVM_GUESTDBG_USE_SW_BP
705     if (kvm_sw_breakpoints_active(cs)) {
706         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
707     }
708 #endif
709 #ifdef KVM_GUESTDBG_USE_HW
710     if (kvm_arm_hw_debug_active(cs)) {
711         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
712         kvm_arm_copy_hw_debug_data(&dbg->arch);
713     }
714 #endif
715 }
716 
717 void kvm_arch_init_irq_routing(KVMState *s)
718 {
719 }
720 
721 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
722 {
723      if (machine_kernel_irqchip_split(ms)) {
724          perror("-machine kernel_irqchip=split is not supported on ARM.");
725          exit(1);
726     }
727 
728     /* If we can create the VGIC using the newer device control API, we
729      * let the device do this when it initializes itself, otherwise we
730      * fall back to the old API */
731     return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
732 }
733 
734 int kvm_arm_vgic_probe(void)
735 {
736     if (kvm_create_device(kvm_state,
737                           KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
738         return 3;
739     } else if (kvm_create_device(kvm_state,
740                                  KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
741         return 2;
742     } else {
743         return 0;
744     }
745 }
746 
747 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
748                              uint64_t address, uint32_t data, PCIDevice *dev)
749 {
750     AddressSpace *as = pci_device_iommu_address_space(dev);
751     hwaddr xlat, len, doorbell_gpa;
752     MemoryRegionSection mrs;
753     MemoryRegion *mr;
754     int ret = 1;
755 
756     if (as == &address_space_memory) {
757         return 0;
758     }
759 
760     /* MSI doorbell address is translated by an IOMMU */
761 
762     rcu_read_lock();
763     mr = address_space_translate(as, address, &xlat, &len, true,
764                                  MEMTXATTRS_UNSPECIFIED);
765     if (!mr) {
766         goto unlock;
767     }
768     mrs = memory_region_find(mr, xlat, 1);
769     if (!mrs.mr) {
770         goto unlock;
771     }
772 
773     doorbell_gpa = mrs.offset_within_address_space;
774     memory_region_unref(mrs.mr);
775 
776     route->u.msi.address_lo = doorbell_gpa;
777     route->u.msi.address_hi = doorbell_gpa >> 32;
778 
779     trace_kvm_arm_fixup_msi_route(address, doorbell_gpa);
780 
781     ret = 0;
782 
783 unlock:
784     rcu_read_unlock();
785     return ret;
786 }
787 
788 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
789                                 int vector, PCIDevice *dev)
790 {
791     return 0;
792 }
793 
794 int kvm_arch_release_virq_post(int virq)
795 {
796     return 0;
797 }
798 
799 int kvm_arch_msi_data_to_gsi(uint32_t data)
800 {
801     return (data - 32) & 0xffff;
802 }
803