1 /* 2 * ARM implementation of KVM hooks 3 * 4 * Copyright Christoffer Dall 2009-2010 5 * 6 * This work is licensed under the terms of the GNU GPL, version 2 or later. 7 * See the COPYING file in the top-level directory. 8 * 9 */ 10 11 #include "qemu/osdep.h" 12 #include <sys/ioctl.h> 13 14 #include <linux/kvm.h> 15 16 #include "qemu-common.h" 17 #include "qemu/timer.h" 18 #include "qemu/error-report.h" 19 #include "qemu/main-loop.h" 20 #include "qom/object.h" 21 #include "qapi/error.h" 22 #include "sysemu/sysemu.h" 23 #include "sysemu/kvm.h" 24 #include "sysemu/kvm_int.h" 25 #include "kvm_arm.h" 26 #include "cpu.h" 27 #include "trace.h" 28 #include "internals.h" 29 #include "hw/pci/pci.h" 30 #include "exec/memattrs.h" 31 #include "exec/address-spaces.h" 32 #include "hw/boards.h" 33 #include "hw/irq.h" 34 #include "qemu/log.h" 35 36 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 37 KVM_CAP_LAST_INFO 38 }; 39 40 static bool cap_has_mp_state; 41 static bool cap_has_inject_serror_esr; 42 43 static ARMHostCPUFeatures arm_host_cpu_features; 44 45 int kvm_arm_vcpu_init(CPUState *cs) 46 { 47 ARMCPU *cpu = ARM_CPU(cs); 48 struct kvm_vcpu_init init; 49 50 init.target = cpu->kvm_target; 51 memcpy(init.features, cpu->kvm_init_features, sizeof(init.features)); 52 53 return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init); 54 } 55 56 int kvm_arm_vcpu_finalize(CPUState *cs, int feature) 57 { 58 return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_FINALIZE, &feature); 59 } 60 61 void kvm_arm_init_serror_injection(CPUState *cs) 62 { 63 cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state, 64 KVM_CAP_ARM_INJECT_SERROR_ESR); 65 } 66 67 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try, 68 int *fdarray, 69 struct kvm_vcpu_init *init) 70 { 71 int ret = 0, kvmfd = -1, vmfd = -1, cpufd = -1; 72 73 kvmfd = qemu_open("/dev/kvm", O_RDWR); 74 if (kvmfd < 0) { 75 goto err; 76 } 77 vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0); 78 if (vmfd < 0) { 79 goto err; 80 } 81 cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0); 82 if (cpufd < 0) { 83 goto err; 84 } 85 86 if (!init) { 87 /* Caller doesn't want the VCPU to be initialized, so skip it */ 88 goto finish; 89 } 90 91 if (init->target == -1) { 92 struct kvm_vcpu_init preferred; 93 94 ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, &preferred); 95 if (!ret) { 96 init->target = preferred.target; 97 } 98 } 99 if (ret >= 0) { 100 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init); 101 if (ret < 0) { 102 goto err; 103 } 104 } else if (cpus_to_try) { 105 /* Old kernel which doesn't know about the 106 * PREFERRED_TARGET ioctl: we know it will only support 107 * creating one kind of guest CPU which is its preferred 108 * CPU type. 109 */ 110 struct kvm_vcpu_init try; 111 112 while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) { 113 try.target = *cpus_to_try++; 114 memcpy(try.features, init->features, sizeof(init->features)); 115 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, &try); 116 if (ret >= 0) { 117 break; 118 } 119 } 120 if (ret < 0) { 121 goto err; 122 } 123 init->target = try.target; 124 } else { 125 /* Treat a NULL cpus_to_try argument the same as an empty 126 * list, which means we will fail the call since this must 127 * be an old kernel which doesn't support PREFERRED_TARGET. 128 */ 129 goto err; 130 } 131 132 finish: 133 fdarray[0] = kvmfd; 134 fdarray[1] = vmfd; 135 fdarray[2] = cpufd; 136 137 return true; 138 139 err: 140 if (cpufd >= 0) { 141 close(cpufd); 142 } 143 if (vmfd >= 0) { 144 close(vmfd); 145 } 146 if (kvmfd >= 0) { 147 close(kvmfd); 148 } 149 150 return false; 151 } 152 153 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray) 154 { 155 int i; 156 157 for (i = 2; i >= 0; i--) { 158 close(fdarray[i]); 159 } 160 } 161 162 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu) 163 { 164 CPUARMState *env = &cpu->env; 165 166 if (!arm_host_cpu_features.dtb_compatible) { 167 if (!kvm_enabled() || 168 !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) { 169 /* We can't report this error yet, so flag that we need to 170 * in arm_cpu_realizefn(). 171 */ 172 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE; 173 cpu->host_cpu_probe_failed = true; 174 return; 175 } 176 } 177 178 cpu->kvm_target = arm_host_cpu_features.target; 179 cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible; 180 cpu->isar = arm_host_cpu_features.isar; 181 env->features = arm_host_cpu_features.features; 182 } 183 184 static bool kvm_no_adjvtime_get(Object *obj, Error **errp) 185 { 186 return !ARM_CPU(obj)->kvm_adjvtime; 187 } 188 189 static void kvm_no_adjvtime_set(Object *obj, bool value, Error **errp) 190 { 191 ARM_CPU(obj)->kvm_adjvtime = !value; 192 } 193 194 /* KVM VCPU properties should be prefixed with "kvm-". */ 195 void kvm_arm_add_vcpu_properties(Object *obj) 196 { 197 if (!kvm_enabled()) { 198 return; 199 } 200 201 ARM_CPU(obj)->kvm_adjvtime = true; 202 object_property_add_bool(obj, "kvm-no-adjvtime", kvm_no_adjvtime_get, 203 kvm_no_adjvtime_set, &error_abort); 204 object_property_set_description(obj, "kvm-no-adjvtime", 205 "Set on to disable the adjustment of " 206 "the virtual counter. VM stopped time " 207 "will be counted.", &error_abort); 208 } 209 210 bool kvm_arm_pmu_supported(CPUState *cpu) 211 { 212 return kvm_check_extension(cpu->kvm_state, KVM_CAP_ARM_PMU_V3); 213 } 214 215 int kvm_arm_get_max_vm_ipa_size(MachineState *ms) 216 { 217 KVMState *s = KVM_STATE(ms->accelerator); 218 int ret; 219 220 ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE); 221 return ret > 0 ? ret : 40; 222 } 223 224 int kvm_arch_init(MachineState *ms, KVMState *s) 225 { 226 int ret = 0; 227 /* For ARM interrupt delivery is always asynchronous, 228 * whether we are using an in-kernel VGIC or not. 229 */ 230 kvm_async_interrupts_allowed = true; 231 232 /* 233 * PSCI wakes up secondary cores, so we always need to 234 * have vCPUs waiting in kernel space 235 */ 236 kvm_halt_in_kernel_allowed = true; 237 238 cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE); 239 240 if (ms->smp.cpus > 256 && 241 !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) { 242 error_report("Using more than 256 vcpus requires a host kernel " 243 "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2"); 244 ret = -EINVAL; 245 } 246 247 return ret; 248 } 249 250 unsigned long kvm_arch_vcpu_id(CPUState *cpu) 251 { 252 return cpu->cpu_index; 253 } 254 255 /* We track all the KVM devices which need their memory addresses 256 * passing to the kernel in a list of these structures. 257 * When board init is complete we run through the list and 258 * tell the kernel the base addresses of the memory regions. 259 * We use a MemoryListener to track mapping and unmapping of 260 * the regions during board creation, so the board models don't 261 * need to do anything special for the KVM case. 262 * 263 * Sometimes the address must be OR'ed with some other fields 264 * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION). 265 * @kda_addr_ormask aims at storing the value of those fields. 266 */ 267 typedef struct KVMDevice { 268 struct kvm_arm_device_addr kda; 269 struct kvm_device_attr kdattr; 270 uint64_t kda_addr_ormask; 271 MemoryRegion *mr; 272 QSLIST_ENTRY(KVMDevice) entries; 273 int dev_fd; 274 } KVMDevice; 275 276 static QSLIST_HEAD(, KVMDevice) kvm_devices_head; 277 278 static void kvm_arm_devlistener_add(MemoryListener *listener, 279 MemoryRegionSection *section) 280 { 281 KVMDevice *kd; 282 283 QSLIST_FOREACH(kd, &kvm_devices_head, entries) { 284 if (section->mr == kd->mr) { 285 kd->kda.addr = section->offset_within_address_space; 286 } 287 } 288 } 289 290 static void kvm_arm_devlistener_del(MemoryListener *listener, 291 MemoryRegionSection *section) 292 { 293 KVMDevice *kd; 294 295 QSLIST_FOREACH(kd, &kvm_devices_head, entries) { 296 if (section->mr == kd->mr) { 297 kd->kda.addr = -1; 298 } 299 } 300 } 301 302 static MemoryListener devlistener = { 303 .region_add = kvm_arm_devlistener_add, 304 .region_del = kvm_arm_devlistener_del, 305 }; 306 307 static void kvm_arm_set_device_addr(KVMDevice *kd) 308 { 309 struct kvm_device_attr *attr = &kd->kdattr; 310 int ret; 311 312 /* If the device control API is available and we have a device fd on the 313 * KVMDevice struct, let's use the newer API 314 */ 315 if (kd->dev_fd >= 0) { 316 uint64_t addr = kd->kda.addr; 317 318 addr |= kd->kda_addr_ormask; 319 attr->addr = (uintptr_t)&addr; 320 ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr); 321 } else { 322 ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda); 323 } 324 325 if (ret < 0) { 326 fprintf(stderr, "Failed to set device address: %s\n", 327 strerror(-ret)); 328 abort(); 329 } 330 } 331 332 static void kvm_arm_machine_init_done(Notifier *notifier, void *data) 333 { 334 KVMDevice *kd, *tkd; 335 336 QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) { 337 if (kd->kda.addr != -1) { 338 kvm_arm_set_device_addr(kd); 339 } 340 memory_region_unref(kd->mr); 341 QSLIST_REMOVE_HEAD(&kvm_devices_head, entries); 342 g_free(kd); 343 } 344 memory_listener_unregister(&devlistener); 345 } 346 347 static Notifier notify = { 348 .notify = kvm_arm_machine_init_done, 349 }; 350 351 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group, 352 uint64_t attr, int dev_fd, uint64_t addr_ormask) 353 { 354 KVMDevice *kd; 355 356 if (!kvm_irqchip_in_kernel()) { 357 return; 358 } 359 360 if (QSLIST_EMPTY(&kvm_devices_head)) { 361 memory_listener_register(&devlistener, &address_space_memory); 362 qemu_add_machine_init_done_notifier(¬ify); 363 } 364 kd = g_new0(KVMDevice, 1); 365 kd->mr = mr; 366 kd->kda.id = devid; 367 kd->kda.addr = -1; 368 kd->kdattr.flags = 0; 369 kd->kdattr.group = group; 370 kd->kdattr.attr = attr; 371 kd->dev_fd = dev_fd; 372 kd->kda_addr_ormask = addr_ormask; 373 QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries); 374 memory_region_ref(kd->mr); 375 } 376 377 static int compare_u64(const void *a, const void *b) 378 { 379 if (*(uint64_t *)a > *(uint64_t *)b) { 380 return 1; 381 } 382 if (*(uint64_t *)a < *(uint64_t *)b) { 383 return -1; 384 } 385 return 0; 386 } 387 388 /* 389 * cpreg_values are sorted in ascending order by KVM register ID 390 * (see kvm_arm_init_cpreg_list). This allows us to cheaply find 391 * the storage for a KVM register by ID with a binary search. 392 */ 393 static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx) 394 { 395 uint64_t *res; 396 397 res = bsearch(®idx, cpu->cpreg_indexes, cpu->cpreg_array_len, 398 sizeof(uint64_t), compare_u64); 399 assert(res); 400 401 return &cpu->cpreg_values[res - cpu->cpreg_indexes]; 402 } 403 404 /* Initialize the ARMCPU cpreg list according to the kernel's 405 * definition of what CPU registers it knows about (and throw away 406 * the previous TCG-created cpreg list). 407 */ 408 int kvm_arm_init_cpreg_list(ARMCPU *cpu) 409 { 410 struct kvm_reg_list rl; 411 struct kvm_reg_list *rlp; 412 int i, ret, arraylen; 413 CPUState *cs = CPU(cpu); 414 415 rl.n = 0; 416 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl); 417 if (ret != -E2BIG) { 418 return ret; 419 } 420 rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t)); 421 rlp->n = rl.n; 422 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp); 423 if (ret) { 424 goto out; 425 } 426 /* Sort the list we get back from the kernel, since cpreg_tuples 427 * must be in strictly ascending order. 428 */ 429 qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64); 430 431 for (i = 0, arraylen = 0; i < rlp->n; i++) { 432 if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) { 433 continue; 434 } 435 switch (rlp->reg[i] & KVM_REG_SIZE_MASK) { 436 case KVM_REG_SIZE_U32: 437 case KVM_REG_SIZE_U64: 438 break; 439 default: 440 fprintf(stderr, "Can't handle size of register in kernel list\n"); 441 ret = -EINVAL; 442 goto out; 443 } 444 445 arraylen++; 446 } 447 448 cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen); 449 cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen); 450 cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes, 451 arraylen); 452 cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values, 453 arraylen); 454 cpu->cpreg_array_len = arraylen; 455 cpu->cpreg_vmstate_array_len = arraylen; 456 457 for (i = 0, arraylen = 0; i < rlp->n; i++) { 458 uint64_t regidx = rlp->reg[i]; 459 if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) { 460 continue; 461 } 462 cpu->cpreg_indexes[arraylen] = regidx; 463 arraylen++; 464 } 465 assert(cpu->cpreg_array_len == arraylen); 466 467 if (!write_kvmstate_to_list(cpu)) { 468 /* Shouldn't happen unless kernel is inconsistent about 469 * what registers exist. 470 */ 471 fprintf(stderr, "Initial read of kernel register state failed\n"); 472 ret = -EINVAL; 473 goto out; 474 } 475 476 out: 477 g_free(rlp); 478 return ret; 479 } 480 481 bool write_kvmstate_to_list(ARMCPU *cpu) 482 { 483 CPUState *cs = CPU(cpu); 484 int i; 485 bool ok = true; 486 487 for (i = 0; i < cpu->cpreg_array_len; i++) { 488 struct kvm_one_reg r; 489 uint64_t regidx = cpu->cpreg_indexes[i]; 490 uint32_t v32; 491 int ret; 492 493 r.id = regidx; 494 495 switch (regidx & KVM_REG_SIZE_MASK) { 496 case KVM_REG_SIZE_U32: 497 r.addr = (uintptr_t)&v32; 498 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); 499 if (!ret) { 500 cpu->cpreg_values[i] = v32; 501 } 502 break; 503 case KVM_REG_SIZE_U64: 504 r.addr = (uintptr_t)(cpu->cpreg_values + i); 505 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); 506 break; 507 default: 508 abort(); 509 } 510 if (ret) { 511 ok = false; 512 } 513 } 514 return ok; 515 } 516 517 bool write_list_to_kvmstate(ARMCPU *cpu, int level) 518 { 519 CPUState *cs = CPU(cpu); 520 int i; 521 bool ok = true; 522 523 for (i = 0; i < cpu->cpreg_array_len; i++) { 524 struct kvm_one_reg r; 525 uint64_t regidx = cpu->cpreg_indexes[i]; 526 uint32_t v32; 527 int ret; 528 529 if (kvm_arm_cpreg_level(regidx) > level) { 530 continue; 531 } 532 533 r.id = regidx; 534 switch (regidx & KVM_REG_SIZE_MASK) { 535 case KVM_REG_SIZE_U32: 536 v32 = cpu->cpreg_values[i]; 537 r.addr = (uintptr_t)&v32; 538 break; 539 case KVM_REG_SIZE_U64: 540 r.addr = (uintptr_t)(cpu->cpreg_values + i); 541 break; 542 default: 543 abort(); 544 } 545 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); 546 if (ret) { 547 /* We might fail for "unknown register" and also for 548 * "you tried to set a register which is constant with 549 * a different value from what it actually contains". 550 */ 551 ok = false; 552 } 553 } 554 return ok; 555 } 556 557 void kvm_arm_cpu_pre_save(ARMCPU *cpu) 558 { 559 /* KVM virtual time adjustment */ 560 if (cpu->kvm_vtime_dirty) { 561 *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT) = cpu->kvm_vtime; 562 } 563 } 564 565 void kvm_arm_cpu_post_load(ARMCPU *cpu) 566 { 567 /* KVM virtual time adjustment */ 568 if (cpu->kvm_adjvtime) { 569 cpu->kvm_vtime = *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT); 570 cpu->kvm_vtime_dirty = true; 571 } 572 } 573 574 void kvm_arm_reset_vcpu(ARMCPU *cpu) 575 { 576 int ret; 577 578 /* Re-init VCPU so that all registers are set to 579 * their respective reset values. 580 */ 581 ret = kvm_arm_vcpu_init(CPU(cpu)); 582 if (ret < 0) { 583 fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret)); 584 abort(); 585 } 586 if (!write_kvmstate_to_list(cpu)) { 587 fprintf(stderr, "write_kvmstate_to_list failed\n"); 588 abort(); 589 } 590 /* 591 * Sync the reset values also into the CPUState. This is necessary 592 * because the next thing we do will be a kvm_arch_put_registers() 593 * which will update the list values from the CPUState before copying 594 * the list values back to KVM. It's OK to ignore failure returns here 595 * for the same reason we do so in kvm_arch_get_registers(). 596 */ 597 write_list_to_cpustate(cpu); 598 } 599 600 /* 601 * Update KVM's MP_STATE based on what QEMU thinks it is 602 */ 603 int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu) 604 { 605 if (cap_has_mp_state) { 606 struct kvm_mp_state mp_state = { 607 .mp_state = (cpu->power_state == PSCI_OFF) ? 608 KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE 609 }; 610 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); 611 if (ret) { 612 fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n", 613 __func__, ret, strerror(-ret)); 614 return -1; 615 } 616 } 617 618 return 0; 619 } 620 621 /* 622 * Sync the KVM MP_STATE into QEMU 623 */ 624 int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu) 625 { 626 if (cap_has_mp_state) { 627 struct kvm_mp_state mp_state; 628 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state); 629 if (ret) { 630 fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n", 631 __func__, ret, strerror(-ret)); 632 abort(); 633 } 634 cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ? 635 PSCI_OFF : PSCI_ON; 636 } 637 638 return 0; 639 } 640 641 void kvm_arm_get_virtual_time(CPUState *cs) 642 { 643 ARMCPU *cpu = ARM_CPU(cs); 644 struct kvm_one_reg reg = { 645 .id = KVM_REG_ARM_TIMER_CNT, 646 .addr = (uintptr_t)&cpu->kvm_vtime, 647 }; 648 int ret; 649 650 if (cpu->kvm_vtime_dirty) { 651 return; 652 } 653 654 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 655 if (ret) { 656 error_report("Failed to get KVM_REG_ARM_TIMER_CNT"); 657 abort(); 658 } 659 660 cpu->kvm_vtime_dirty = true; 661 } 662 663 void kvm_arm_put_virtual_time(CPUState *cs) 664 { 665 ARMCPU *cpu = ARM_CPU(cs); 666 struct kvm_one_reg reg = { 667 .id = KVM_REG_ARM_TIMER_CNT, 668 .addr = (uintptr_t)&cpu->kvm_vtime, 669 }; 670 int ret; 671 672 if (!cpu->kvm_vtime_dirty) { 673 return; 674 } 675 676 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 677 if (ret) { 678 error_report("Failed to set KVM_REG_ARM_TIMER_CNT"); 679 abort(); 680 } 681 682 cpu->kvm_vtime_dirty = false; 683 } 684 685 int kvm_put_vcpu_events(ARMCPU *cpu) 686 { 687 CPUARMState *env = &cpu->env; 688 struct kvm_vcpu_events events; 689 int ret; 690 691 if (!kvm_has_vcpu_events()) { 692 return 0; 693 } 694 695 memset(&events, 0, sizeof(events)); 696 events.exception.serror_pending = env->serror.pending; 697 698 /* Inject SError to guest with specified syndrome if host kernel 699 * supports it, otherwise inject SError without syndrome. 700 */ 701 if (cap_has_inject_serror_esr) { 702 events.exception.serror_has_esr = env->serror.has_esr; 703 events.exception.serror_esr = env->serror.esr; 704 } 705 706 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); 707 if (ret) { 708 error_report("failed to put vcpu events"); 709 } 710 711 return ret; 712 } 713 714 int kvm_get_vcpu_events(ARMCPU *cpu) 715 { 716 CPUARMState *env = &cpu->env; 717 struct kvm_vcpu_events events; 718 int ret; 719 720 if (!kvm_has_vcpu_events()) { 721 return 0; 722 } 723 724 memset(&events, 0, sizeof(events)); 725 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); 726 if (ret) { 727 error_report("failed to get vcpu events"); 728 return ret; 729 } 730 731 env->serror.pending = events.exception.serror_pending; 732 env->serror.has_esr = events.exception.serror_has_esr; 733 env->serror.esr = events.exception.serror_esr; 734 735 return 0; 736 } 737 738 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run) 739 { 740 } 741 742 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) 743 { 744 ARMCPU *cpu; 745 uint32_t switched_level; 746 747 if (kvm_irqchip_in_kernel()) { 748 /* 749 * We only need to sync timer states with user-space interrupt 750 * controllers, so return early and save cycles if we don't. 751 */ 752 return MEMTXATTRS_UNSPECIFIED; 753 } 754 755 cpu = ARM_CPU(cs); 756 757 /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */ 758 if (run->s.regs.device_irq_level != cpu->device_irq_level) { 759 switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level; 760 761 qemu_mutex_lock_iothread(); 762 763 if (switched_level & KVM_ARM_DEV_EL1_VTIMER) { 764 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT], 765 !!(run->s.regs.device_irq_level & 766 KVM_ARM_DEV_EL1_VTIMER)); 767 switched_level &= ~KVM_ARM_DEV_EL1_VTIMER; 768 } 769 770 if (switched_level & KVM_ARM_DEV_EL1_PTIMER) { 771 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS], 772 !!(run->s.regs.device_irq_level & 773 KVM_ARM_DEV_EL1_PTIMER)); 774 switched_level &= ~KVM_ARM_DEV_EL1_PTIMER; 775 } 776 777 if (switched_level & KVM_ARM_DEV_PMU) { 778 qemu_set_irq(cpu->pmu_interrupt, 779 !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU)); 780 switched_level &= ~KVM_ARM_DEV_PMU; 781 } 782 783 if (switched_level) { 784 qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n", 785 __func__, switched_level); 786 } 787 788 /* We also mark unknown levels as processed to not waste cycles */ 789 cpu->device_irq_level = run->s.regs.device_irq_level; 790 qemu_mutex_unlock_iothread(); 791 } 792 793 return MEMTXATTRS_UNSPECIFIED; 794 } 795 796 void kvm_arm_vm_state_change(void *opaque, int running, RunState state) 797 { 798 CPUState *cs = opaque; 799 ARMCPU *cpu = ARM_CPU(cs); 800 801 if (running) { 802 if (cpu->kvm_adjvtime) { 803 kvm_arm_put_virtual_time(cs); 804 } 805 } else { 806 if (cpu->kvm_adjvtime) { 807 kvm_arm_get_virtual_time(cs); 808 } 809 } 810 } 811 812 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 813 { 814 int ret = 0; 815 816 switch (run->exit_reason) { 817 case KVM_EXIT_DEBUG: 818 if (kvm_arm_handle_debug(cs, &run->debug.arch)) { 819 ret = EXCP_DEBUG; 820 } /* otherwise return to guest */ 821 break; 822 default: 823 qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n", 824 __func__, run->exit_reason); 825 break; 826 } 827 return ret; 828 } 829 830 bool kvm_arch_stop_on_emulation_error(CPUState *cs) 831 { 832 return true; 833 } 834 835 int kvm_arch_process_async_events(CPUState *cs) 836 { 837 return 0; 838 } 839 840 /* The #ifdef protections are until 32bit headers are imported and can 841 * be removed once both 32 and 64 bit reach feature parity. 842 */ 843 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg) 844 { 845 #ifdef KVM_GUESTDBG_USE_SW_BP 846 if (kvm_sw_breakpoints_active(cs)) { 847 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; 848 } 849 #endif 850 #ifdef KVM_GUESTDBG_USE_HW 851 if (kvm_arm_hw_debug_active(cs)) { 852 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW; 853 kvm_arm_copy_hw_debug_data(&dbg->arch); 854 } 855 #endif 856 } 857 858 void kvm_arch_init_irq_routing(KVMState *s) 859 { 860 } 861 862 int kvm_arch_irqchip_create(KVMState *s) 863 { 864 if (kvm_kernel_irqchip_split()) { 865 perror("-machine kernel_irqchip=split is not supported on ARM."); 866 exit(1); 867 } 868 869 /* If we can create the VGIC using the newer device control API, we 870 * let the device do this when it initializes itself, otherwise we 871 * fall back to the old API */ 872 return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL); 873 } 874 875 int kvm_arm_vgic_probe(void) 876 { 877 if (kvm_create_device(kvm_state, 878 KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) { 879 return 3; 880 } else if (kvm_create_device(kvm_state, 881 KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) { 882 return 2; 883 } else { 884 return 0; 885 } 886 } 887 888 int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level) 889 { 890 int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq; 891 int cpu_idx1 = cpu % 256; 892 int cpu_idx2 = cpu / 256; 893 894 kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) | 895 (cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT); 896 897 return kvm_set_irq(kvm_state, kvm_irq, !!level); 898 } 899 900 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 901 uint64_t address, uint32_t data, PCIDevice *dev) 902 { 903 AddressSpace *as = pci_device_iommu_address_space(dev); 904 hwaddr xlat, len, doorbell_gpa; 905 MemoryRegionSection mrs; 906 MemoryRegion *mr; 907 int ret = 1; 908 909 if (as == &address_space_memory) { 910 return 0; 911 } 912 913 /* MSI doorbell address is translated by an IOMMU */ 914 915 rcu_read_lock(); 916 mr = address_space_translate(as, address, &xlat, &len, true, 917 MEMTXATTRS_UNSPECIFIED); 918 if (!mr) { 919 goto unlock; 920 } 921 mrs = memory_region_find(mr, xlat, 1); 922 if (!mrs.mr) { 923 goto unlock; 924 } 925 926 doorbell_gpa = mrs.offset_within_address_space; 927 memory_region_unref(mrs.mr); 928 929 route->u.msi.address_lo = doorbell_gpa; 930 route->u.msi.address_hi = doorbell_gpa >> 32; 931 932 trace_kvm_arm_fixup_msi_route(address, doorbell_gpa); 933 934 ret = 0; 935 936 unlock: 937 rcu_read_unlock(); 938 return ret; 939 } 940 941 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 942 int vector, PCIDevice *dev) 943 { 944 return 0; 945 } 946 947 int kvm_arch_release_virq_post(int virq) 948 { 949 return 0; 950 } 951 952 int kvm_arch_msi_data_to_gsi(uint32_t data) 953 { 954 return (data - 32) & 0xffff; 955 } 956