xref: /openbmc/qemu/target/arm/kvm.c (revision dda2441b)
1 /*
2  * ARM implementation of KVM hooks
3  *
4  * Copyright Christoffer Dall 2009-2010
5  *
6  * This work is licensed under the terms of the GNU GPL, version 2 or later.
7  * See the COPYING file in the top-level directory.
8  *
9  */
10 
11 #include "qemu/osdep.h"
12 #include <sys/ioctl.h>
13 
14 #include <linux/kvm.h>
15 
16 #include "qemu-common.h"
17 #include "qemu/timer.h"
18 #include "qemu/error-report.h"
19 #include "sysemu/sysemu.h"
20 #include "sysemu/kvm.h"
21 #include "kvm_arm.h"
22 #include "cpu.h"
23 #include "internals.h"
24 #include "hw/arm/arm.h"
25 #include "exec/memattrs.h"
26 #include "exec/address-spaces.h"
27 #include "hw/boards.h"
28 #include "qemu/log.h"
29 
30 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
31     KVM_CAP_LAST_INFO
32 };
33 
34 static bool cap_has_mp_state;
35 
36 static ARMHostCPUFeatures arm_host_cpu_features;
37 
38 int kvm_arm_vcpu_init(CPUState *cs)
39 {
40     ARMCPU *cpu = ARM_CPU(cs);
41     struct kvm_vcpu_init init;
42 
43     init.target = cpu->kvm_target;
44     memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
45 
46     return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
47 }
48 
49 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
50                                       int *fdarray,
51                                       struct kvm_vcpu_init *init)
52 {
53     int ret, kvmfd = -1, vmfd = -1, cpufd = -1;
54 
55     kvmfd = qemu_open("/dev/kvm", O_RDWR);
56     if (kvmfd < 0) {
57         goto err;
58     }
59     vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0);
60     if (vmfd < 0) {
61         goto err;
62     }
63     cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
64     if (cpufd < 0) {
65         goto err;
66     }
67 
68     if (!init) {
69         /* Caller doesn't want the VCPU to be initialized, so skip it */
70         goto finish;
71     }
72 
73     ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, init);
74     if (ret >= 0) {
75         ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
76         if (ret < 0) {
77             goto err;
78         }
79     } else if (cpus_to_try) {
80         /* Old kernel which doesn't know about the
81          * PREFERRED_TARGET ioctl: we know it will only support
82          * creating one kind of guest CPU which is its preferred
83          * CPU type.
84          */
85         while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
86             init->target = *cpus_to_try++;
87             memset(init->features, 0, sizeof(init->features));
88             ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
89             if (ret >= 0) {
90                 break;
91             }
92         }
93         if (ret < 0) {
94             goto err;
95         }
96     } else {
97         /* Treat a NULL cpus_to_try argument the same as an empty
98          * list, which means we will fail the call since this must
99          * be an old kernel which doesn't support PREFERRED_TARGET.
100          */
101         goto err;
102     }
103 
104 finish:
105     fdarray[0] = kvmfd;
106     fdarray[1] = vmfd;
107     fdarray[2] = cpufd;
108 
109     return true;
110 
111 err:
112     if (cpufd >= 0) {
113         close(cpufd);
114     }
115     if (vmfd >= 0) {
116         close(vmfd);
117     }
118     if (kvmfd >= 0) {
119         close(kvmfd);
120     }
121 
122     return false;
123 }
124 
125 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
126 {
127     int i;
128 
129     for (i = 2; i >= 0; i--) {
130         close(fdarray[i]);
131     }
132 }
133 
134 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
135 {
136     CPUARMState *env = &cpu->env;
137 
138     if (!arm_host_cpu_features.dtb_compatible) {
139         if (!kvm_enabled() ||
140             !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) {
141             /* We can't report this error yet, so flag that we need to
142              * in arm_cpu_realizefn().
143              */
144             cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
145             cpu->host_cpu_probe_failed = true;
146             return;
147         }
148     }
149 
150     cpu->kvm_target = arm_host_cpu_features.target;
151     cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
152     env->features = arm_host_cpu_features.features;
153 }
154 
155 int kvm_arch_init(MachineState *ms, KVMState *s)
156 {
157     /* For ARM interrupt delivery is always asynchronous,
158      * whether we are using an in-kernel VGIC or not.
159      */
160     kvm_async_interrupts_allowed = true;
161 
162     /*
163      * PSCI wakes up secondary cores, so we always need to
164      * have vCPUs waiting in kernel space
165      */
166     kvm_halt_in_kernel_allowed = true;
167 
168     cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
169 
170     return 0;
171 }
172 
173 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
174 {
175     return cpu->cpu_index;
176 }
177 
178 /* We track all the KVM devices which need their memory addresses
179  * passing to the kernel in a list of these structures.
180  * When board init is complete we run through the list and
181  * tell the kernel the base addresses of the memory regions.
182  * We use a MemoryListener to track mapping and unmapping of
183  * the regions during board creation, so the board models don't
184  * need to do anything special for the KVM case.
185  */
186 typedef struct KVMDevice {
187     struct kvm_arm_device_addr kda;
188     struct kvm_device_attr kdattr;
189     MemoryRegion *mr;
190     QSLIST_ENTRY(KVMDevice) entries;
191     int dev_fd;
192 } KVMDevice;
193 
194 static QSLIST_HEAD(kvm_devices_head, KVMDevice) kvm_devices_head;
195 
196 static void kvm_arm_devlistener_add(MemoryListener *listener,
197                                     MemoryRegionSection *section)
198 {
199     KVMDevice *kd;
200 
201     QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
202         if (section->mr == kd->mr) {
203             kd->kda.addr = section->offset_within_address_space;
204         }
205     }
206 }
207 
208 static void kvm_arm_devlistener_del(MemoryListener *listener,
209                                     MemoryRegionSection *section)
210 {
211     KVMDevice *kd;
212 
213     QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
214         if (section->mr == kd->mr) {
215             kd->kda.addr = -1;
216         }
217     }
218 }
219 
220 static MemoryListener devlistener = {
221     .region_add = kvm_arm_devlistener_add,
222     .region_del = kvm_arm_devlistener_del,
223 };
224 
225 static void kvm_arm_set_device_addr(KVMDevice *kd)
226 {
227     struct kvm_device_attr *attr = &kd->kdattr;
228     int ret;
229 
230     /* If the device control API is available and we have a device fd on the
231      * KVMDevice struct, let's use the newer API
232      */
233     if (kd->dev_fd >= 0) {
234         uint64_t addr = kd->kda.addr;
235         attr->addr = (uintptr_t)&addr;
236         ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
237     } else {
238         ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
239     }
240 
241     if (ret < 0) {
242         fprintf(stderr, "Failed to set device address: %s\n",
243                 strerror(-ret));
244         abort();
245     }
246 }
247 
248 static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
249 {
250     KVMDevice *kd, *tkd;
251 
252     QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
253         if (kd->kda.addr != -1) {
254             kvm_arm_set_device_addr(kd);
255         }
256         memory_region_unref(kd->mr);
257         g_free(kd);
258     }
259     memory_listener_unregister(&devlistener);
260 }
261 
262 static Notifier notify = {
263     .notify = kvm_arm_machine_init_done,
264 };
265 
266 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
267                              uint64_t attr, int dev_fd)
268 {
269     KVMDevice *kd;
270 
271     if (!kvm_irqchip_in_kernel()) {
272         return;
273     }
274 
275     if (QSLIST_EMPTY(&kvm_devices_head)) {
276         memory_listener_register(&devlistener, &address_space_memory);
277         qemu_add_machine_init_done_notifier(&notify);
278     }
279     kd = g_new0(KVMDevice, 1);
280     kd->mr = mr;
281     kd->kda.id = devid;
282     kd->kda.addr = -1;
283     kd->kdattr.flags = 0;
284     kd->kdattr.group = group;
285     kd->kdattr.attr = attr;
286     kd->dev_fd = dev_fd;
287     QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
288     memory_region_ref(kd->mr);
289 }
290 
291 static int compare_u64(const void *a, const void *b)
292 {
293     if (*(uint64_t *)a > *(uint64_t *)b) {
294         return 1;
295     }
296     if (*(uint64_t *)a < *(uint64_t *)b) {
297         return -1;
298     }
299     return 0;
300 }
301 
302 /* Initialize the CPUState's cpreg list according to the kernel's
303  * definition of what CPU registers it knows about (and throw away
304  * the previous TCG-created cpreg list).
305  */
306 int kvm_arm_init_cpreg_list(ARMCPU *cpu)
307 {
308     struct kvm_reg_list rl;
309     struct kvm_reg_list *rlp;
310     int i, ret, arraylen;
311     CPUState *cs = CPU(cpu);
312 
313     rl.n = 0;
314     ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
315     if (ret != -E2BIG) {
316         return ret;
317     }
318     rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
319     rlp->n = rl.n;
320     ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
321     if (ret) {
322         goto out;
323     }
324     /* Sort the list we get back from the kernel, since cpreg_tuples
325      * must be in strictly ascending order.
326      */
327     qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
328 
329     for (i = 0, arraylen = 0; i < rlp->n; i++) {
330         if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
331             continue;
332         }
333         switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
334         case KVM_REG_SIZE_U32:
335         case KVM_REG_SIZE_U64:
336             break;
337         default:
338             fprintf(stderr, "Can't handle size of register in kernel list\n");
339             ret = -EINVAL;
340             goto out;
341         }
342 
343         arraylen++;
344     }
345 
346     cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
347     cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
348     cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
349                                          arraylen);
350     cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
351                                         arraylen);
352     cpu->cpreg_array_len = arraylen;
353     cpu->cpreg_vmstate_array_len = arraylen;
354 
355     for (i = 0, arraylen = 0; i < rlp->n; i++) {
356         uint64_t regidx = rlp->reg[i];
357         if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
358             continue;
359         }
360         cpu->cpreg_indexes[arraylen] = regidx;
361         arraylen++;
362     }
363     assert(cpu->cpreg_array_len == arraylen);
364 
365     if (!write_kvmstate_to_list(cpu)) {
366         /* Shouldn't happen unless kernel is inconsistent about
367          * what registers exist.
368          */
369         fprintf(stderr, "Initial read of kernel register state failed\n");
370         ret = -EINVAL;
371         goto out;
372     }
373 
374 out:
375     g_free(rlp);
376     return ret;
377 }
378 
379 bool write_kvmstate_to_list(ARMCPU *cpu)
380 {
381     CPUState *cs = CPU(cpu);
382     int i;
383     bool ok = true;
384 
385     for (i = 0; i < cpu->cpreg_array_len; i++) {
386         struct kvm_one_reg r;
387         uint64_t regidx = cpu->cpreg_indexes[i];
388         uint32_t v32;
389         int ret;
390 
391         r.id = regidx;
392 
393         switch (regidx & KVM_REG_SIZE_MASK) {
394         case KVM_REG_SIZE_U32:
395             r.addr = (uintptr_t)&v32;
396             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
397             if (!ret) {
398                 cpu->cpreg_values[i] = v32;
399             }
400             break;
401         case KVM_REG_SIZE_U64:
402             r.addr = (uintptr_t)(cpu->cpreg_values + i);
403             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
404             break;
405         default:
406             abort();
407         }
408         if (ret) {
409             ok = false;
410         }
411     }
412     return ok;
413 }
414 
415 bool write_list_to_kvmstate(ARMCPU *cpu, int level)
416 {
417     CPUState *cs = CPU(cpu);
418     int i;
419     bool ok = true;
420 
421     for (i = 0; i < cpu->cpreg_array_len; i++) {
422         struct kvm_one_reg r;
423         uint64_t regidx = cpu->cpreg_indexes[i];
424         uint32_t v32;
425         int ret;
426 
427         if (kvm_arm_cpreg_level(regidx) > level) {
428             continue;
429         }
430 
431         r.id = regidx;
432         switch (regidx & KVM_REG_SIZE_MASK) {
433         case KVM_REG_SIZE_U32:
434             v32 = cpu->cpreg_values[i];
435             r.addr = (uintptr_t)&v32;
436             break;
437         case KVM_REG_SIZE_U64:
438             r.addr = (uintptr_t)(cpu->cpreg_values + i);
439             break;
440         default:
441             abort();
442         }
443         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
444         if (ret) {
445             /* We might fail for "unknown register" and also for
446              * "you tried to set a register which is constant with
447              * a different value from what it actually contains".
448              */
449             ok = false;
450         }
451     }
452     return ok;
453 }
454 
455 void kvm_arm_reset_vcpu(ARMCPU *cpu)
456 {
457     int ret;
458 
459     /* Re-init VCPU so that all registers are set to
460      * their respective reset values.
461      */
462     ret = kvm_arm_vcpu_init(CPU(cpu));
463     if (ret < 0) {
464         fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
465         abort();
466     }
467     if (!write_kvmstate_to_list(cpu)) {
468         fprintf(stderr, "write_kvmstate_to_list failed\n");
469         abort();
470     }
471 }
472 
473 /*
474  * Update KVM's MP_STATE based on what QEMU thinks it is
475  */
476 int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
477 {
478     if (cap_has_mp_state) {
479         struct kvm_mp_state mp_state = {
480             .mp_state = (cpu->power_state == PSCI_OFF) ?
481             KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
482         };
483         int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
484         if (ret) {
485             fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n",
486                     __func__, ret, strerror(-ret));
487             return -1;
488         }
489     }
490 
491     return 0;
492 }
493 
494 /*
495  * Sync the KVM MP_STATE into QEMU
496  */
497 int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
498 {
499     if (cap_has_mp_state) {
500         struct kvm_mp_state mp_state;
501         int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
502         if (ret) {
503             fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n",
504                     __func__, ret, strerror(-ret));
505             abort();
506         }
507         cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
508             PSCI_OFF : PSCI_ON;
509     }
510 
511     return 0;
512 }
513 
514 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
515 {
516 }
517 
518 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
519 {
520     ARMCPU *cpu;
521     uint32_t switched_level;
522 
523     if (kvm_irqchip_in_kernel()) {
524         /*
525          * We only need to sync timer states with user-space interrupt
526          * controllers, so return early and save cycles if we don't.
527          */
528         return MEMTXATTRS_UNSPECIFIED;
529     }
530 
531     cpu = ARM_CPU(cs);
532 
533     /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
534     if (run->s.regs.device_irq_level != cpu->device_irq_level) {
535         switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
536 
537         qemu_mutex_lock_iothread();
538 
539         if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
540             qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
541                          !!(run->s.regs.device_irq_level &
542                             KVM_ARM_DEV_EL1_VTIMER));
543             switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
544         }
545 
546         if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
547             qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
548                          !!(run->s.regs.device_irq_level &
549                             KVM_ARM_DEV_EL1_PTIMER));
550             switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
551         }
552 
553         if (switched_level & KVM_ARM_DEV_PMU) {
554             qemu_set_irq(cpu->pmu_interrupt,
555                          !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
556             switched_level &= ~KVM_ARM_DEV_PMU;
557         }
558 
559         if (switched_level) {
560             qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
561                           __func__, switched_level);
562         }
563 
564         /* We also mark unknown levels as processed to not waste cycles */
565         cpu->device_irq_level = run->s.regs.device_irq_level;
566         qemu_mutex_unlock_iothread();
567     }
568 
569     return MEMTXATTRS_UNSPECIFIED;
570 }
571 
572 
573 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
574 {
575     int ret = 0;
576 
577     switch (run->exit_reason) {
578     case KVM_EXIT_DEBUG:
579         if (kvm_arm_handle_debug(cs, &run->debug.arch)) {
580             ret = EXCP_DEBUG;
581         } /* otherwise return to guest */
582         break;
583     default:
584         qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
585                       __func__, run->exit_reason);
586         break;
587     }
588     return ret;
589 }
590 
591 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
592 {
593     return true;
594 }
595 
596 int kvm_arch_process_async_events(CPUState *cs)
597 {
598     return 0;
599 }
600 
601 /* The #ifdef protections are until 32bit headers are imported and can
602  * be removed once both 32 and 64 bit reach feature parity.
603  */
604 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
605 {
606 #ifdef KVM_GUESTDBG_USE_SW_BP
607     if (kvm_sw_breakpoints_active(cs)) {
608         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
609     }
610 #endif
611 #ifdef KVM_GUESTDBG_USE_HW
612     if (kvm_arm_hw_debug_active(cs)) {
613         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
614         kvm_arm_copy_hw_debug_data(&dbg->arch);
615     }
616 #endif
617 }
618 
619 void kvm_arch_init_irq_routing(KVMState *s)
620 {
621 }
622 
623 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
624 {
625      if (machine_kernel_irqchip_split(ms)) {
626          perror("-machine kernel_irqchip=split is not supported on ARM.");
627          exit(1);
628     }
629 
630     /* If we can create the VGIC using the newer device control API, we
631      * let the device do this when it initializes itself, otherwise we
632      * fall back to the old API */
633     return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
634 }
635 
636 int kvm_arm_vgic_probe(void)
637 {
638     if (kvm_create_device(kvm_state,
639                           KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
640         return 3;
641     } else if (kvm_create_device(kvm_state,
642                                  KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
643         return 2;
644     } else {
645         return 0;
646     }
647 }
648 
649 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
650                              uint64_t address, uint32_t data, PCIDevice *dev)
651 {
652     return 0;
653 }
654 
655 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
656                                 int vector, PCIDevice *dev)
657 {
658     return 0;
659 }
660 
661 int kvm_arch_release_virq_post(int virq)
662 {
663     return 0;
664 }
665 
666 int kvm_arch_msi_data_to_gsi(uint32_t data)
667 {
668     return (data - 32) & 0xffff;
669 }
670