1 /* 2 * ARM implementation of KVM hooks 3 * 4 * Copyright Christoffer Dall 2009-2010 5 * 6 * This work is licensed under the terms of the GNU GPL, version 2 or later. 7 * See the COPYING file in the top-level directory. 8 * 9 */ 10 11 #include "qemu/osdep.h" 12 #include <sys/ioctl.h> 13 14 #include <linux/kvm.h> 15 16 #include "qemu-common.h" 17 #include "qemu/timer.h" 18 #include "qemu/error-report.h" 19 #include "qemu/main-loop.h" 20 #include "qom/object.h" 21 #include "qapi/error.h" 22 #include "sysemu/sysemu.h" 23 #include "sysemu/kvm.h" 24 #include "sysemu/kvm_int.h" 25 #include "kvm_arm.h" 26 #include "cpu.h" 27 #include "trace.h" 28 #include "internals.h" 29 #include "hw/pci/pci.h" 30 #include "exec/memattrs.h" 31 #include "exec/address-spaces.h" 32 #include "hw/boards.h" 33 #include "hw/irq.h" 34 #include "qemu/log.h" 35 36 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 37 KVM_CAP_LAST_INFO 38 }; 39 40 static bool cap_has_mp_state; 41 static bool cap_has_inject_serror_esr; 42 static bool cap_has_inject_ext_dabt; 43 44 static ARMHostCPUFeatures arm_host_cpu_features; 45 46 int kvm_arm_vcpu_init(CPUState *cs) 47 { 48 ARMCPU *cpu = ARM_CPU(cs); 49 struct kvm_vcpu_init init; 50 51 init.target = cpu->kvm_target; 52 memcpy(init.features, cpu->kvm_init_features, sizeof(init.features)); 53 54 return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init); 55 } 56 57 int kvm_arm_vcpu_finalize(CPUState *cs, int feature) 58 { 59 return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_FINALIZE, &feature); 60 } 61 62 void kvm_arm_init_serror_injection(CPUState *cs) 63 { 64 cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state, 65 KVM_CAP_ARM_INJECT_SERROR_ESR); 66 } 67 68 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try, 69 int *fdarray, 70 struct kvm_vcpu_init *init) 71 { 72 int ret = 0, kvmfd = -1, vmfd = -1, cpufd = -1; 73 74 kvmfd = qemu_open("/dev/kvm", O_RDWR); 75 if (kvmfd < 0) { 76 goto err; 77 } 78 vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0); 79 if (vmfd < 0) { 80 goto err; 81 } 82 cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0); 83 if (cpufd < 0) { 84 goto err; 85 } 86 87 if (!init) { 88 /* Caller doesn't want the VCPU to be initialized, so skip it */ 89 goto finish; 90 } 91 92 if (init->target == -1) { 93 struct kvm_vcpu_init preferred; 94 95 ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, &preferred); 96 if (!ret) { 97 init->target = preferred.target; 98 } 99 } 100 if (ret >= 0) { 101 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init); 102 if (ret < 0) { 103 goto err; 104 } 105 } else if (cpus_to_try) { 106 /* Old kernel which doesn't know about the 107 * PREFERRED_TARGET ioctl: we know it will only support 108 * creating one kind of guest CPU which is its preferred 109 * CPU type. 110 */ 111 struct kvm_vcpu_init try; 112 113 while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) { 114 try.target = *cpus_to_try++; 115 memcpy(try.features, init->features, sizeof(init->features)); 116 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, &try); 117 if (ret >= 0) { 118 break; 119 } 120 } 121 if (ret < 0) { 122 goto err; 123 } 124 init->target = try.target; 125 } else { 126 /* Treat a NULL cpus_to_try argument the same as an empty 127 * list, which means we will fail the call since this must 128 * be an old kernel which doesn't support PREFERRED_TARGET. 129 */ 130 goto err; 131 } 132 133 finish: 134 fdarray[0] = kvmfd; 135 fdarray[1] = vmfd; 136 fdarray[2] = cpufd; 137 138 return true; 139 140 err: 141 if (cpufd >= 0) { 142 close(cpufd); 143 } 144 if (vmfd >= 0) { 145 close(vmfd); 146 } 147 if (kvmfd >= 0) { 148 close(kvmfd); 149 } 150 151 return false; 152 } 153 154 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray) 155 { 156 int i; 157 158 for (i = 2; i >= 0; i--) { 159 close(fdarray[i]); 160 } 161 } 162 163 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu) 164 { 165 CPUARMState *env = &cpu->env; 166 167 if (!arm_host_cpu_features.dtb_compatible) { 168 if (!kvm_enabled() || 169 !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) { 170 /* We can't report this error yet, so flag that we need to 171 * in arm_cpu_realizefn(). 172 */ 173 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE; 174 cpu->host_cpu_probe_failed = true; 175 return; 176 } 177 } 178 179 cpu->kvm_target = arm_host_cpu_features.target; 180 cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible; 181 cpu->isar = arm_host_cpu_features.isar; 182 env->features = arm_host_cpu_features.features; 183 } 184 185 static bool kvm_no_adjvtime_get(Object *obj, Error **errp) 186 { 187 return !ARM_CPU(obj)->kvm_adjvtime; 188 } 189 190 static void kvm_no_adjvtime_set(Object *obj, bool value, Error **errp) 191 { 192 ARM_CPU(obj)->kvm_adjvtime = !value; 193 } 194 195 /* KVM VCPU properties should be prefixed with "kvm-". */ 196 void kvm_arm_add_vcpu_properties(Object *obj) 197 { 198 ARMCPU *cpu = ARM_CPU(obj); 199 CPUARMState *env = &cpu->env; 200 201 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 202 cpu->kvm_adjvtime = true; 203 object_property_add_bool(obj, "kvm-no-adjvtime", kvm_no_adjvtime_get, 204 kvm_no_adjvtime_set); 205 object_property_set_description(obj, "kvm-no-adjvtime", 206 "Set on to disable the adjustment of " 207 "the virtual counter. VM stopped time " 208 "will be counted."); 209 } 210 } 211 212 bool kvm_arm_pmu_supported(void) 213 { 214 return kvm_check_extension(kvm_state, KVM_CAP_ARM_PMU_V3); 215 } 216 217 int kvm_arm_get_max_vm_ipa_size(MachineState *ms) 218 { 219 KVMState *s = KVM_STATE(ms->accelerator); 220 int ret; 221 222 ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE); 223 return ret > 0 ? ret : 40; 224 } 225 226 int kvm_arch_init(MachineState *ms, KVMState *s) 227 { 228 int ret = 0; 229 /* For ARM interrupt delivery is always asynchronous, 230 * whether we are using an in-kernel VGIC or not. 231 */ 232 kvm_async_interrupts_allowed = true; 233 234 /* 235 * PSCI wakes up secondary cores, so we always need to 236 * have vCPUs waiting in kernel space 237 */ 238 kvm_halt_in_kernel_allowed = true; 239 240 cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE); 241 242 if (ms->smp.cpus > 256 && 243 !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) { 244 error_report("Using more than 256 vcpus requires a host kernel " 245 "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2"); 246 ret = -EINVAL; 247 } 248 249 if (kvm_check_extension(s, KVM_CAP_ARM_NISV_TO_USER)) { 250 if (kvm_vm_enable_cap(s, KVM_CAP_ARM_NISV_TO_USER, 0)) { 251 error_report("Failed to enable KVM_CAP_ARM_NISV_TO_USER cap"); 252 } else { 253 /* Set status for supporting the external dabt injection */ 254 cap_has_inject_ext_dabt = kvm_check_extension(s, 255 KVM_CAP_ARM_INJECT_EXT_DABT); 256 } 257 } 258 259 return ret; 260 } 261 262 unsigned long kvm_arch_vcpu_id(CPUState *cpu) 263 { 264 return cpu->cpu_index; 265 } 266 267 /* We track all the KVM devices which need their memory addresses 268 * passing to the kernel in a list of these structures. 269 * When board init is complete we run through the list and 270 * tell the kernel the base addresses of the memory regions. 271 * We use a MemoryListener to track mapping and unmapping of 272 * the regions during board creation, so the board models don't 273 * need to do anything special for the KVM case. 274 * 275 * Sometimes the address must be OR'ed with some other fields 276 * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION). 277 * @kda_addr_ormask aims at storing the value of those fields. 278 */ 279 typedef struct KVMDevice { 280 struct kvm_arm_device_addr kda; 281 struct kvm_device_attr kdattr; 282 uint64_t kda_addr_ormask; 283 MemoryRegion *mr; 284 QSLIST_ENTRY(KVMDevice) entries; 285 int dev_fd; 286 } KVMDevice; 287 288 static QSLIST_HEAD(, KVMDevice) kvm_devices_head; 289 290 static void kvm_arm_devlistener_add(MemoryListener *listener, 291 MemoryRegionSection *section) 292 { 293 KVMDevice *kd; 294 295 QSLIST_FOREACH(kd, &kvm_devices_head, entries) { 296 if (section->mr == kd->mr) { 297 kd->kda.addr = section->offset_within_address_space; 298 } 299 } 300 } 301 302 static void kvm_arm_devlistener_del(MemoryListener *listener, 303 MemoryRegionSection *section) 304 { 305 KVMDevice *kd; 306 307 QSLIST_FOREACH(kd, &kvm_devices_head, entries) { 308 if (section->mr == kd->mr) { 309 kd->kda.addr = -1; 310 } 311 } 312 } 313 314 static MemoryListener devlistener = { 315 .region_add = kvm_arm_devlistener_add, 316 .region_del = kvm_arm_devlistener_del, 317 }; 318 319 static void kvm_arm_set_device_addr(KVMDevice *kd) 320 { 321 struct kvm_device_attr *attr = &kd->kdattr; 322 int ret; 323 324 /* If the device control API is available and we have a device fd on the 325 * KVMDevice struct, let's use the newer API 326 */ 327 if (kd->dev_fd >= 0) { 328 uint64_t addr = kd->kda.addr; 329 330 addr |= kd->kda_addr_ormask; 331 attr->addr = (uintptr_t)&addr; 332 ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr); 333 } else { 334 ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda); 335 } 336 337 if (ret < 0) { 338 fprintf(stderr, "Failed to set device address: %s\n", 339 strerror(-ret)); 340 abort(); 341 } 342 } 343 344 static void kvm_arm_machine_init_done(Notifier *notifier, void *data) 345 { 346 KVMDevice *kd, *tkd; 347 348 QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) { 349 if (kd->kda.addr != -1) { 350 kvm_arm_set_device_addr(kd); 351 } 352 memory_region_unref(kd->mr); 353 QSLIST_REMOVE_HEAD(&kvm_devices_head, entries); 354 g_free(kd); 355 } 356 memory_listener_unregister(&devlistener); 357 } 358 359 static Notifier notify = { 360 .notify = kvm_arm_machine_init_done, 361 }; 362 363 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group, 364 uint64_t attr, int dev_fd, uint64_t addr_ormask) 365 { 366 KVMDevice *kd; 367 368 if (!kvm_irqchip_in_kernel()) { 369 return; 370 } 371 372 if (QSLIST_EMPTY(&kvm_devices_head)) { 373 memory_listener_register(&devlistener, &address_space_memory); 374 qemu_add_machine_init_done_notifier(¬ify); 375 } 376 kd = g_new0(KVMDevice, 1); 377 kd->mr = mr; 378 kd->kda.id = devid; 379 kd->kda.addr = -1; 380 kd->kdattr.flags = 0; 381 kd->kdattr.group = group; 382 kd->kdattr.attr = attr; 383 kd->dev_fd = dev_fd; 384 kd->kda_addr_ormask = addr_ormask; 385 QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries); 386 memory_region_ref(kd->mr); 387 } 388 389 static int compare_u64(const void *a, const void *b) 390 { 391 if (*(uint64_t *)a > *(uint64_t *)b) { 392 return 1; 393 } 394 if (*(uint64_t *)a < *(uint64_t *)b) { 395 return -1; 396 } 397 return 0; 398 } 399 400 /* 401 * cpreg_values are sorted in ascending order by KVM register ID 402 * (see kvm_arm_init_cpreg_list). This allows us to cheaply find 403 * the storage for a KVM register by ID with a binary search. 404 */ 405 static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx) 406 { 407 uint64_t *res; 408 409 res = bsearch(®idx, cpu->cpreg_indexes, cpu->cpreg_array_len, 410 sizeof(uint64_t), compare_u64); 411 assert(res); 412 413 return &cpu->cpreg_values[res - cpu->cpreg_indexes]; 414 } 415 416 /* Initialize the ARMCPU cpreg list according to the kernel's 417 * definition of what CPU registers it knows about (and throw away 418 * the previous TCG-created cpreg list). 419 */ 420 int kvm_arm_init_cpreg_list(ARMCPU *cpu) 421 { 422 struct kvm_reg_list rl; 423 struct kvm_reg_list *rlp; 424 int i, ret, arraylen; 425 CPUState *cs = CPU(cpu); 426 427 rl.n = 0; 428 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl); 429 if (ret != -E2BIG) { 430 return ret; 431 } 432 rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t)); 433 rlp->n = rl.n; 434 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp); 435 if (ret) { 436 goto out; 437 } 438 /* Sort the list we get back from the kernel, since cpreg_tuples 439 * must be in strictly ascending order. 440 */ 441 qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64); 442 443 for (i = 0, arraylen = 0; i < rlp->n; i++) { 444 if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) { 445 continue; 446 } 447 switch (rlp->reg[i] & KVM_REG_SIZE_MASK) { 448 case KVM_REG_SIZE_U32: 449 case KVM_REG_SIZE_U64: 450 break; 451 default: 452 fprintf(stderr, "Can't handle size of register in kernel list\n"); 453 ret = -EINVAL; 454 goto out; 455 } 456 457 arraylen++; 458 } 459 460 cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen); 461 cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen); 462 cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes, 463 arraylen); 464 cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values, 465 arraylen); 466 cpu->cpreg_array_len = arraylen; 467 cpu->cpreg_vmstate_array_len = arraylen; 468 469 for (i = 0, arraylen = 0; i < rlp->n; i++) { 470 uint64_t regidx = rlp->reg[i]; 471 if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) { 472 continue; 473 } 474 cpu->cpreg_indexes[arraylen] = regidx; 475 arraylen++; 476 } 477 assert(cpu->cpreg_array_len == arraylen); 478 479 if (!write_kvmstate_to_list(cpu)) { 480 /* Shouldn't happen unless kernel is inconsistent about 481 * what registers exist. 482 */ 483 fprintf(stderr, "Initial read of kernel register state failed\n"); 484 ret = -EINVAL; 485 goto out; 486 } 487 488 out: 489 g_free(rlp); 490 return ret; 491 } 492 493 bool write_kvmstate_to_list(ARMCPU *cpu) 494 { 495 CPUState *cs = CPU(cpu); 496 int i; 497 bool ok = true; 498 499 for (i = 0; i < cpu->cpreg_array_len; i++) { 500 struct kvm_one_reg r; 501 uint64_t regidx = cpu->cpreg_indexes[i]; 502 uint32_t v32; 503 int ret; 504 505 r.id = regidx; 506 507 switch (regidx & KVM_REG_SIZE_MASK) { 508 case KVM_REG_SIZE_U32: 509 r.addr = (uintptr_t)&v32; 510 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); 511 if (!ret) { 512 cpu->cpreg_values[i] = v32; 513 } 514 break; 515 case KVM_REG_SIZE_U64: 516 r.addr = (uintptr_t)(cpu->cpreg_values + i); 517 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); 518 break; 519 default: 520 abort(); 521 } 522 if (ret) { 523 ok = false; 524 } 525 } 526 return ok; 527 } 528 529 bool write_list_to_kvmstate(ARMCPU *cpu, int level) 530 { 531 CPUState *cs = CPU(cpu); 532 int i; 533 bool ok = true; 534 535 for (i = 0; i < cpu->cpreg_array_len; i++) { 536 struct kvm_one_reg r; 537 uint64_t regidx = cpu->cpreg_indexes[i]; 538 uint32_t v32; 539 int ret; 540 541 if (kvm_arm_cpreg_level(regidx) > level) { 542 continue; 543 } 544 545 r.id = regidx; 546 switch (regidx & KVM_REG_SIZE_MASK) { 547 case KVM_REG_SIZE_U32: 548 v32 = cpu->cpreg_values[i]; 549 r.addr = (uintptr_t)&v32; 550 break; 551 case KVM_REG_SIZE_U64: 552 r.addr = (uintptr_t)(cpu->cpreg_values + i); 553 break; 554 default: 555 abort(); 556 } 557 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); 558 if (ret) { 559 /* We might fail for "unknown register" and also for 560 * "you tried to set a register which is constant with 561 * a different value from what it actually contains". 562 */ 563 ok = false; 564 } 565 } 566 return ok; 567 } 568 569 void kvm_arm_cpu_pre_save(ARMCPU *cpu) 570 { 571 /* KVM virtual time adjustment */ 572 if (cpu->kvm_vtime_dirty) { 573 *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT) = cpu->kvm_vtime; 574 } 575 } 576 577 void kvm_arm_cpu_post_load(ARMCPU *cpu) 578 { 579 /* KVM virtual time adjustment */ 580 if (cpu->kvm_adjvtime) { 581 cpu->kvm_vtime = *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT); 582 cpu->kvm_vtime_dirty = true; 583 } 584 } 585 586 void kvm_arm_reset_vcpu(ARMCPU *cpu) 587 { 588 int ret; 589 590 /* Re-init VCPU so that all registers are set to 591 * their respective reset values. 592 */ 593 ret = kvm_arm_vcpu_init(CPU(cpu)); 594 if (ret < 0) { 595 fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret)); 596 abort(); 597 } 598 if (!write_kvmstate_to_list(cpu)) { 599 fprintf(stderr, "write_kvmstate_to_list failed\n"); 600 abort(); 601 } 602 /* 603 * Sync the reset values also into the CPUState. This is necessary 604 * because the next thing we do will be a kvm_arch_put_registers() 605 * which will update the list values from the CPUState before copying 606 * the list values back to KVM. It's OK to ignore failure returns here 607 * for the same reason we do so in kvm_arch_get_registers(). 608 */ 609 write_list_to_cpustate(cpu); 610 } 611 612 /* 613 * Update KVM's MP_STATE based on what QEMU thinks it is 614 */ 615 int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu) 616 { 617 if (cap_has_mp_state) { 618 struct kvm_mp_state mp_state = { 619 .mp_state = (cpu->power_state == PSCI_OFF) ? 620 KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE 621 }; 622 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); 623 if (ret) { 624 fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n", 625 __func__, ret, strerror(-ret)); 626 return -1; 627 } 628 } 629 630 return 0; 631 } 632 633 /* 634 * Sync the KVM MP_STATE into QEMU 635 */ 636 int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu) 637 { 638 if (cap_has_mp_state) { 639 struct kvm_mp_state mp_state; 640 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state); 641 if (ret) { 642 fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n", 643 __func__, ret, strerror(-ret)); 644 abort(); 645 } 646 cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ? 647 PSCI_OFF : PSCI_ON; 648 } 649 650 return 0; 651 } 652 653 void kvm_arm_get_virtual_time(CPUState *cs) 654 { 655 ARMCPU *cpu = ARM_CPU(cs); 656 struct kvm_one_reg reg = { 657 .id = KVM_REG_ARM_TIMER_CNT, 658 .addr = (uintptr_t)&cpu->kvm_vtime, 659 }; 660 int ret; 661 662 if (cpu->kvm_vtime_dirty) { 663 return; 664 } 665 666 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 667 if (ret) { 668 error_report("Failed to get KVM_REG_ARM_TIMER_CNT"); 669 abort(); 670 } 671 672 cpu->kvm_vtime_dirty = true; 673 } 674 675 void kvm_arm_put_virtual_time(CPUState *cs) 676 { 677 ARMCPU *cpu = ARM_CPU(cs); 678 struct kvm_one_reg reg = { 679 .id = KVM_REG_ARM_TIMER_CNT, 680 .addr = (uintptr_t)&cpu->kvm_vtime, 681 }; 682 int ret; 683 684 if (!cpu->kvm_vtime_dirty) { 685 return; 686 } 687 688 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 689 if (ret) { 690 error_report("Failed to set KVM_REG_ARM_TIMER_CNT"); 691 abort(); 692 } 693 694 cpu->kvm_vtime_dirty = false; 695 } 696 697 int kvm_put_vcpu_events(ARMCPU *cpu) 698 { 699 CPUARMState *env = &cpu->env; 700 struct kvm_vcpu_events events; 701 int ret; 702 703 if (!kvm_has_vcpu_events()) { 704 return 0; 705 } 706 707 memset(&events, 0, sizeof(events)); 708 events.exception.serror_pending = env->serror.pending; 709 710 /* Inject SError to guest with specified syndrome if host kernel 711 * supports it, otherwise inject SError without syndrome. 712 */ 713 if (cap_has_inject_serror_esr) { 714 events.exception.serror_has_esr = env->serror.has_esr; 715 events.exception.serror_esr = env->serror.esr; 716 } 717 718 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); 719 if (ret) { 720 error_report("failed to put vcpu events"); 721 } 722 723 return ret; 724 } 725 726 int kvm_get_vcpu_events(ARMCPU *cpu) 727 { 728 CPUARMState *env = &cpu->env; 729 struct kvm_vcpu_events events; 730 int ret; 731 732 if (!kvm_has_vcpu_events()) { 733 return 0; 734 } 735 736 memset(&events, 0, sizeof(events)); 737 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); 738 if (ret) { 739 error_report("failed to get vcpu events"); 740 return ret; 741 } 742 743 env->serror.pending = events.exception.serror_pending; 744 env->serror.has_esr = events.exception.serror_has_esr; 745 env->serror.esr = events.exception.serror_esr; 746 747 return 0; 748 } 749 750 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run) 751 { 752 ARMCPU *cpu = ARM_CPU(cs); 753 CPUARMState *env = &cpu->env; 754 755 if (unlikely(env->ext_dabt_raised)) { 756 /* 757 * Verifying that the ext DABT has been properly injected, 758 * otherwise risking indefinitely re-running the faulting instruction 759 * Covering a very narrow case for kernels 5.5..5.5.4 760 * when injected abort was misconfigured to be 761 * an IMPLEMENTATION DEFINED exception (for 32-bit EL1) 762 */ 763 if (!arm_feature(env, ARM_FEATURE_AARCH64) && 764 unlikely(!kvm_arm_verify_ext_dabt_pending(cs))) { 765 766 error_report("Data abort exception with no valid ISS generated by " 767 "guest memory access. KVM unable to emulate faulting " 768 "instruction. Failed to inject an external data abort " 769 "into the guest."); 770 abort(); 771 } 772 /* Clear the status */ 773 env->ext_dabt_raised = 0; 774 } 775 } 776 777 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) 778 { 779 ARMCPU *cpu; 780 uint32_t switched_level; 781 782 if (kvm_irqchip_in_kernel()) { 783 /* 784 * We only need to sync timer states with user-space interrupt 785 * controllers, so return early and save cycles if we don't. 786 */ 787 return MEMTXATTRS_UNSPECIFIED; 788 } 789 790 cpu = ARM_CPU(cs); 791 792 /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */ 793 if (run->s.regs.device_irq_level != cpu->device_irq_level) { 794 switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level; 795 796 qemu_mutex_lock_iothread(); 797 798 if (switched_level & KVM_ARM_DEV_EL1_VTIMER) { 799 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT], 800 !!(run->s.regs.device_irq_level & 801 KVM_ARM_DEV_EL1_VTIMER)); 802 switched_level &= ~KVM_ARM_DEV_EL1_VTIMER; 803 } 804 805 if (switched_level & KVM_ARM_DEV_EL1_PTIMER) { 806 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS], 807 !!(run->s.regs.device_irq_level & 808 KVM_ARM_DEV_EL1_PTIMER)); 809 switched_level &= ~KVM_ARM_DEV_EL1_PTIMER; 810 } 811 812 if (switched_level & KVM_ARM_DEV_PMU) { 813 qemu_set_irq(cpu->pmu_interrupt, 814 !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU)); 815 switched_level &= ~KVM_ARM_DEV_PMU; 816 } 817 818 if (switched_level) { 819 qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n", 820 __func__, switched_level); 821 } 822 823 /* We also mark unknown levels as processed to not waste cycles */ 824 cpu->device_irq_level = run->s.regs.device_irq_level; 825 qemu_mutex_unlock_iothread(); 826 } 827 828 return MEMTXATTRS_UNSPECIFIED; 829 } 830 831 void kvm_arm_vm_state_change(void *opaque, int running, RunState state) 832 { 833 CPUState *cs = opaque; 834 ARMCPU *cpu = ARM_CPU(cs); 835 836 if (running) { 837 if (cpu->kvm_adjvtime) { 838 kvm_arm_put_virtual_time(cs); 839 } 840 } else { 841 if (cpu->kvm_adjvtime) { 842 kvm_arm_get_virtual_time(cs); 843 } 844 } 845 } 846 847 /** 848 * kvm_arm_handle_dabt_nisv: 849 * @cs: CPUState 850 * @esr_iss: ISS encoding (limited) for the exception from Data Abort 851 * ISV bit set to '0b0' -> no valid instruction syndrome 852 * @fault_ipa: faulting address for the synchronous data abort 853 * 854 * Returns: 0 if the exception has been handled, < 0 otherwise 855 */ 856 static int kvm_arm_handle_dabt_nisv(CPUState *cs, uint64_t esr_iss, 857 uint64_t fault_ipa) 858 { 859 ARMCPU *cpu = ARM_CPU(cs); 860 CPUARMState *env = &cpu->env; 861 /* 862 * Request KVM to inject the external data abort into the guest 863 */ 864 if (cap_has_inject_ext_dabt) { 865 struct kvm_vcpu_events events = { }; 866 /* 867 * The external data abort event will be handled immediately by KVM 868 * using the address fault that triggered the exit on given VCPU. 869 * Requesting injection of the external data abort does not rely 870 * on any other VCPU state. Therefore, in this particular case, the VCPU 871 * synchronization can be exceptionally skipped. 872 */ 873 events.exception.ext_dabt_pending = 1; 874 /* KVM_CAP_ARM_INJECT_EXT_DABT implies KVM_CAP_VCPU_EVENTS */ 875 if (!kvm_vcpu_ioctl(cs, KVM_SET_VCPU_EVENTS, &events)) { 876 env->ext_dabt_raised = 1; 877 return 0; 878 } 879 } else { 880 error_report("Data abort exception triggered by guest memory access " 881 "at physical address: 0x" TARGET_FMT_lx, 882 (target_ulong)fault_ipa); 883 error_printf("KVM unable to emulate faulting instruction.\n"); 884 } 885 return -1; 886 } 887 888 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 889 { 890 int ret = 0; 891 892 switch (run->exit_reason) { 893 case KVM_EXIT_DEBUG: 894 if (kvm_arm_handle_debug(cs, &run->debug.arch)) { 895 ret = EXCP_DEBUG; 896 } /* otherwise return to guest */ 897 break; 898 case KVM_EXIT_ARM_NISV: 899 /* External DABT with no valid iss to decode */ 900 ret = kvm_arm_handle_dabt_nisv(cs, run->arm_nisv.esr_iss, 901 run->arm_nisv.fault_ipa); 902 break; 903 default: 904 qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n", 905 __func__, run->exit_reason); 906 break; 907 } 908 return ret; 909 } 910 911 bool kvm_arch_stop_on_emulation_error(CPUState *cs) 912 { 913 return true; 914 } 915 916 int kvm_arch_process_async_events(CPUState *cs) 917 { 918 return 0; 919 } 920 921 /* The #ifdef protections are until 32bit headers are imported and can 922 * be removed once both 32 and 64 bit reach feature parity. 923 */ 924 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg) 925 { 926 #ifdef KVM_GUESTDBG_USE_SW_BP 927 if (kvm_sw_breakpoints_active(cs)) { 928 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; 929 } 930 #endif 931 #ifdef KVM_GUESTDBG_USE_HW 932 if (kvm_arm_hw_debug_active(cs)) { 933 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW; 934 kvm_arm_copy_hw_debug_data(&dbg->arch); 935 } 936 #endif 937 } 938 939 void kvm_arch_init_irq_routing(KVMState *s) 940 { 941 } 942 943 int kvm_arch_irqchip_create(KVMState *s) 944 { 945 if (kvm_kernel_irqchip_split()) { 946 perror("-machine kernel_irqchip=split is not supported on ARM."); 947 exit(1); 948 } 949 950 /* If we can create the VGIC using the newer device control API, we 951 * let the device do this when it initializes itself, otherwise we 952 * fall back to the old API */ 953 return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL); 954 } 955 956 int kvm_arm_vgic_probe(void) 957 { 958 int val = 0; 959 960 if (kvm_create_device(kvm_state, 961 KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) { 962 val |= KVM_ARM_VGIC_V3; 963 } 964 if (kvm_create_device(kvm_state, 965 KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) { 966 val |= KVM_ARM_VGIC_V2; 967 } 968 return val; 969 } 970 971 int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level) 972 { 973 int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq; 974 int cpu_idx1 = cpu % 256; 975 int cpu_idx2 = cpu / 256; 976 977 kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) | 978 (cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT); 979 980 return kvm_set_irq(kvm_state, kvm_irq, !!level); 981 } 982 983 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 984 uint64_t address, uint32_t data, PCIDevice *dev) 985 { 986 AddressSpace *as = pci_device_iommu_address_space(dev); 987 hwaddr xlat, len, doorbell_gpa; 988 MemoryRegionSection mrs; 989 MemoryRegion *mr; 990 int ret = 1; 991 992 if (as == &address_space_memory) { 993 return 0; 994 } 995 996 /* MSI doorbell address is translated by an IOMMU */ 997 998 rcu_read_lock(); 999 mr = address_space_translate(as, address, &xlat, &len, true, 1000 MEMTXATTRS_UNSPECIFIED); 1001 if (!mr) { 1002 goto unlock; 1003 } 1004 mrs = memory_region_find(mr, xlat, 1); 1005 if (!mrs.mr) { 1006 goto unlock; 1007 } 1008 1009 doorbell_gpa = mrs.offset_within_address_space; 1010 memory_region_unref(mrs.mr); 1011 1012 route->u.msi.address_lo = doorbell_gpa; 1013 route->u.msi.address_hi = doorbell_gpa >> 32; 1014 1015 trace_kvm_arm_fixup_msi_route(address, doorbell_gpa); 1016 1017 ret = 0; 1018 1019 unlock: 1020 rcu_read_unlock(); 1021 return ret; 1022 } 1023 1024 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 1025 int vector, PCIDevice *dev) 1026 { 1027 return 0; 1028 } 1029 1030 int kvm_arch_release_virq_post(int virq) 1031 { 1032 return 0; 1033 } 1034 1035 int kvm_arch_msi_data_to_gsi(uint32_t data) 1036 { 1037 return (data - 32) & 0xffff; 1038 } 1039