1 /* 2 * ARM implementation of KVM hooks 3 * 4 * Copyright Christoffer Dall 2009-2010 5 * 6 * This work is licensed under the terms of the GNU GPL, version 2 or later. 7 * See the COPYING file in the top-level directory. 8 * 9 */ 10 11 #include "qemu/osdep.h" 12 #include <sys/ioctl.h> 13 14 #include <linux/kvm.h> 15 16 #include "qemu/timer.h" 17 #include "qemu/error-report.h" 18 #include "qemu/main-loop.h" 19 #include "qom/object.h" 20 #include "qapi/error.h" 21 #include "sysemu/sysemu.h" 22 #include "sysemu/kvm.h" 23 #include "sysemu/kvm_int.h" 24 #include "kvm_arm.h" 25 #include "cpu.h" 26 #include "trace.h" 27 #include "internals.h" 28 #include "hw/pci/pci.h" 29 #include "exec/memattrs.h" 30 #include "exec/address-spaces.h" 31 #include "hw/boards.h" 32 #include "hw/irq.h" 33 #include "qemu/log.h" 34 35 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 36 KVM_CAP_LAST_INFO 37 }; 38 39 static bool cap_has_mp_state; 40 static bool cap_has_inject_serror_esr; 41 static bool cap_has_inject_ext_dabt; 42 43 static ARMHostCPUFeatures arm_host_cpu_features; 44 45 int kvm_arm_vcpu_init(CPUState *cs) 46 { 47 ARMCPU *cpu = ARM_CPU(cs); 48 struct kvm_vcpu_init init; 49 50 init.target = cpu->kvm_target; 51 memcpy(init.features, cpu->kvm_init_features, sizeof(init.features)); 52 53 return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init); 54 } 55 56 int kvm_arm_vcpu_finalize(CPUState *cs, int feature) 57 { 58 return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_FINALIZE, &feature); 59 } 60 61 void kvm_arm_init_serror_injection(CPUState *cs) 62 { 63 cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state, 64 KVM_CAP_ARM_INJECT_SERROR_ESR); 65 } 66 67 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try, 68 int *fdarray, 69 struct kvm_vcpu_init *init) 70 { 71 int ret = 0, kvmfd = -1, vmfd = -1, cpufd = -1; 72 int max_vm_pa_size; 73 74 kvmfd = qemu_open_old("/dev/kvm", O_RDWR); 75 if (kvmfd < 0) { 76 goto err; 77 } 78 max_vm_pa_size = ioctl(kvmfd, KVM_CHECK_EXTENSION, KVM_CAP_ARM_VM_IPA_SIZE); 79 if (max_vm_pa_size < 0) { 80 max_vm_pa_size = 0; 81 } 82 vmfd = ioctl(kvmfd, KVM_CREATE_VM, max_vm_pa_size); 83 if (vmfd < 0) { 84 goto err; 85 } 86 cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0); 87 if (cpufd < 0) { 88 goto err; 89 } 90 91 if (!init) { 92 /* Caller doesn't want the VCPU to be initialized, so skip it */ 93 goto finish; 94 } 95 96 if (init->target == -1) { 97 struct kvm_vcpu_init preferred; 98 99 ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, &preferred); 100 if (!ret) { 101 init->target = preferred.target; 102 } 103 } 104 if (ret >= 0) { 105 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init); 106 if (ret < 0) { 107 goto err; 108 } 109 } else if (cpus_to_try) { 110 /* Old kernel which doesn't know about the 111 * PREFERRED_TARGET ioctl: we know it will only support 112 * creating one kind of guest CPU which is its preferred 113 * CPU type. 114 */ 115 struct kvm_vcpu_init try; 116 117 while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) { 118 try.target = *cpus_to_try++; 119 memcpy(try.features, init->features, sizeof(init->features)); 120 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, &try); 121 if (ret >= 0) { 122 break; 123 } 124 } 125 if (ret < 0) { 126 goto err; 127 } 128 init->target = try.target; 129 } else { 130 /* Treat a NULL cpus_to_try argument the same as an empty 131 * list, which means we will fail the call since this must 132 * be an old kernel which doesn't support PREFERRED_TARGET. 133 */ 134 goto err; 135 } 136 137 finish: 138 fdarray[0] = kvmfd; 139 fdarray[1] = vmfd; 140 fdarray[2] = cpufd; 141 142 return true; 143 144 err: 145 if (cpufd >= 0) { 146 close(cpufd); 147 } 148 if (vmfd >= 0) { 149 close(vmfd); 150 } 151 if (kvmfd >= 0) { 152 close(kvmfd); 153 } 154 155 return false; 156 } 157 158 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray) 159 { 160 int i; 161 162 for (i = 2; i >= 0; i--) { 163 close(fdarray[i]); 164 } 165 } 166 167 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu) 168 { 169 CPUARMState *env = &cpu->env; 170 171 if (!arm_host_cpu_features.dtb_compatible) { 172 if (!kvm_enabled() || 173 !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) { 174 /* We can't report this error yet, so flag that we need to 175 * in arm_cpu_realizefn(). 176 */ 177 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE; 178 cpu->host_cpu_probe_failed = true; 179 return; 180 } 181 } 182 183 cpu->kvm_target = arm_host_cpu_features.target; 184 cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible; 185 cpu->isar = arm_host_cpu_features.isar; 186 env->features = arm_host_cpu_features.features; 187 } 188 189 static bool kvm_no_adjvtime_get(Object *obj, Error **errp) 190 { 191 return !ARM_CPU(obj)->kvm_adjvtime; 192 } 193 194 static void kvm_no_adjvtime_set(Object *obj, bool value, Error **errp) 195 { 196 ARM_CPU(obj)->kvm_adjvtime = !value; 197 } 198 199 static bool kvm_steal_time_get(Object *obj, Error **errp) 200 { 201 return ARM_CPU(obj)->kvm_steal_time != ON_OFF_AUTO_OFF; 202 } 203 204 static void kvm_steal_time_set(Object *obj, bool value, Error **errp) 205 { 206 ARM_CPU(obj)->kvm_steal_time = value ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 207 } 208 209 /* KVM VCPU properties should be prefixed with "kvm-". */ 210 void kvm_arm_add_vcpu_properties(Object *obj) 211 { 212 ARMCPU *cpu = ARM_CPU(obj); 213 CPUARMState *env = &cpu->env; 214 215 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 216 cpu->kvm_adjvtime = true; 217 object_property_add_bool(obj, "kvm-no-adjvtime", kvm_no_adjvtime_get, 218 kvm_no_adjvtime_set); 219 object_property_set_description(obj, "kvm-no-adjvtime", 220 "Set on to disable the adjustment of " 221 "the virtual counter. VM stopped time " 222 "will be counted."); 223 } 224 225 cpu->kvm_steal_time = ON_OFF_AUTO_AUTO; 226 object_property_add_bool(obj, "kvm-steal-time", kvm_steal_time_get, 227 kvm_steal_time_set); 228 object_property_set_description(obj, "kvm-steal-time", 229 "Set off to disable KVM steal time."); 230 } 231 232 bool kvm_arm_pmu_supported(void) 233 { 234 return kvm_check_extension(kvm_state, KVM_CAP_ARM_PMU_V3); 235 } 236 237 int kvm_arm_get_max_vm_ipa_size(MachineState *ms, bool *fixed_ipa) 238 { 239 KVMState *s = KVM_STATE(ms->accelerator); 240 int ret; 241 242 ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE); 243 *fixed_ipa = ret <= 0; 244 245 return ret > 0 ? ret : 40; 246 } 247 248 int kvm_arch_init(MachineState *ms, KVMState *s) 249 { 250 int ret = 0; 251 /* For ARM interrupt delivery is always asynchronous, 252 * whether we are using an in-kernel VGIC or not. 253 */ 254 kvm_async_interrupts_allowed = true; 255 256 /* 257 * PSCI wakes up secondary cores, so we always need to 258 * have vCPUs waiting in kernel space 259 */ 260 kvm_halt_in_kernel_allowed = true; 261 262 cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE); 263 264 if (ms->smp.cpus > 256 && 265 !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) { 266 error_report("Using more than 256 vcpus requires a host kernel " 267 "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2"); 268 ret = -EINVAL; 269 } 270 271 if (kvm_check_extension(s, KVM_CAP_ARM_NISV_TO_USER)) { 272 if (kvm_vm_enable_cap(s, KVM_CAP_ARM_NISV_TO_USER, 0)) { 273 error_report("Failed to enable KVM_CAP_ARM_NISV_TO_USER cap"); 274 } else { 275 /* Set status for supporting the external dabt injection */ 276 cap_has_inject_ext_dabt = kvm_check_extension(s, 277 KVM_CAP_ARM_INJECT_EXT_DABT); 278 } 279 } 280 281 return ret; 282 } 283 284 unsigned long kvm_arch_vcpu_id(CPUState *cpu) 285 { 286 return cpu->cpu_index; 287 } 288 289 /* We track all the KVM devices which need their memory addresses 290 * passing to the kernel in a list of these structures. 291 * When board init is complete we run through the list and 292 * tell the kernel the base addresses of the memory regions. 293 * We use a MemoryListener to track mapping and unmapping of 294 * the regions during board creation, so the board models don't 295 * need to do anything special for the KVM case. 296 * 297 * Sometimes the address must be OR'ed with some other fields 298 * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION). 299 * @kda_addr_ormask aims at storing the value of those fields. 300 */ 301 typedef struct KVMDevice { 302 struct kvm_arm_device_addr kda; 303 struct kvm_device_attr kdattr; 304 uint64_t kda_addr_ormask; 305 MemoryRegion *mr; 306 QSLIST_ENTRY(KVMDevice) entries; 307 int dev_fd; 308 } KVMDevice; 309 310 static QSLIST_HEAD(, KVMDevice) kvm_devices_head; 311 312 static void kvm_arm_devlistener_add(MemoryListener *listener, 313 MemoryRegionSection *section) 314 { 315 KVMDevice *kd; 316 317 QSLIST_FOREACH(kd, &kvm_devices_head, entries) { 318 if (section->mr == kd->mr) { 319 kd->kda.addr = section->offset_within_address_space; 320 } 321 } 322 } 323 324 static void kvm_arm_devlistener_del(MemoryListener *listener, 325 MemoryRegionSection *section) 326 { 327 KVMDevice *kd; 328 329 QSLIST_FOREACH(kd, &kvm_devices_head, entries) { 330 if (section->mr == kd->mr) { 331 kd->kda.addr = -1; 332 } 333 } 334 } 335 336 static MemoryListener devlistener = { 337 .name = "kvm-arm", 338 .region_add = kvm_arm_devlistener_add, 339 .region_del = kvm_arm_devlistener_del, 340 }; 341 342 static void kvm_arm_set_device_addr(KVMDevice *kd) 343 { 344 struct kvm_device_attr *attr = &kd->kdattr; 345 int ret; 346 347 /* If the device control API is available and we have a device fd on the 348 * KVMDevice struct, let's use the newer API 349 */ 350 if (kd->dev_fd >= 0) { 351 uint64_t addr = kd->kda.addr; 352 353 addr |= kd->kda_addr_ormask; 354 attr->addr = (uintptr_t)&addr; 355 ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr); 356 } else { 357 ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda); 358 } 359 360 if (ret < 0) { 361 fprintf(stderr, "Failed to set device address: %s\n", 362 strerror(-ret)); 363 abort(); 364 } 365 } 366 367 static void kvm_arm_machine_init_done(Notifier *notifier, void *data) 368 { 369 KVMDevice *kd, *tkd; 370 371 QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) { 372 if (kd->kda.addr != -1) { 373 kvm_arm_set_device_addr(kd); 374 } 375 memory_region_unref(kd->mr); 376 QSLIST_REMOVE_HEAD(&kvm_devices_head, entries); 377 g_free(kd); 378 } 379 memory_listener_unregister(&devlistener); 380 } 381 382 static Notifier notify = { 383 .notify = kvm_arm_machine_init_done, 384 }; 385 386 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group, 387 uint64_t attr, int dev_fd, uint64_t addr_ormask) 388 { 389 KVMDevice *kd; 390 391 if (!kvm_irqchip_in_kernel()) { 392 return; 393 } 394 395 if (QSLIST_EMPTY(&kvm_devices_head)) { 396 memory_listener_register(&devlistener, &address_space_memory); 397 qemu_add_machine_init_done_notifier(¬ify); 398 } 399 kd = g_new0(KVMDevice, 1); 400 kd->mr = mr; 401 kd->kda.id = devid; 402 kd->kda.addr = -1; 403 kd->kdattr.flags = 0; 404 kd->kdattr.group = group; 405 kd->kdattr.attr = attr; 406 kd->dev_fd = dev_fd; 407 kd->kda_addr_ormask = addr_ormask; 408 QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries); 409 memory_region_ref(kd->mr); 410 } 411 412 static int compare_u64(const void *a, const void *b) 413 { 414 if (*(uint64_t *)a > *(uint64_t *)b) { 415 return 1; 416 } 417 if (*(uint64_t *)a < *(uint64_t *)b) { 418 return -1; 419 } 420 return 0; 421 } 422 423 /* 424 * cpreg_values are sorted in ascending order by KVM register ID 425 * (see kvm_arm_init_cpreg_list). This allows us to cheaply find 426 * the storage for a KVM register by ID with a binary search. 427 */ 428 static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx) 429 { 430 uint64_t *res; 431 432 res = bsearch(®idx, cpu->cpreg_indexes, cpu->cpreg_array_len, 433 sizeof(uint64_t), compare_u64); 434 assert(res); 435 436 return &cpu->cpreg_values[res - cpu->cpreg_indexes]; 437 } 438 439 /* Initialize the ARMCPU cpreg list according to the kernel's 440 * definition of what CPU registers it knows about (and throw away 441 * the previous TCG-created cpreg list). 442 */ 443 int kvm_arm_init_cpreg_list(ARMCPU *cpu) 444 { 445 struct kvm_reg_list rl; 446 struct kvm_reg_list *rlp; 447 int i, ret, arraylen; 448 CPUState *cs = CPU(cpu); 449 450 rl.n = 0; 451 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl); 452 if (ret != -E2BIG) { 453 return ret; 454 } 455 rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t)); 456 rlp->n = rl.n; 457 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp); 458 if (ret) { 459 goto out; 460 } 461 /* Sort the list we get back from the kernel, since cpreg_tuples 462 * must be in strictly ascending order. 463 */ 464 qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64); 465 466 for (i = 0, arraylen = 0; i < rlp->n; i++) { 467 if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) { 468 continue; 469 } 470 switch (rlp->reg[i] & KVM_REG_SIZE_MASK) { 471 case KVM_REG_SIZE_U32: 472 case KVM_REG_SIZE_U64: 473 break; 474 default: 475 fprintf(stderr, "Can't handle size of register in kernel list\n"); 476 ret = -EINVAL; 477 goto out; 478 } 479 480 arraylen++; 481 } 482 483 cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen); 484 cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen); 485 cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes, 486 arraylen); 487 cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values, 488 arraylen); 489 cpu->cpreg_array_len = arraylen; 490 cpu->cpreg_vmstate_array_len = arraylen; 491 492 for (i = 0, arraylen = 0; i < rlp->n; i++) { 493 uint64_t regidx = rlp->reg[i]; 494 if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) { 495 continue; 496 } 497 cpu->cpreg_indexes[arraylen] = regidx; 498 arraylen++; 499 } 500 assert(cpu->cpreg_array_len == arraylen); 501 502 if (!write_kvmstate_to_list(cpu)) { 503 /* Shouldn't happen unless kernel is inconsistent about 504 * what registers exist. 505 */ 506 fprintf(stderr, "Initial read of kernel register state failed\n"); 507 ret = -EINVAL; 508 goto out; 509 } 510 511 out: 512 g_free(rlp); 513 return ret; 514 } 515 516 bool write_kvmstate_to_list(ARMCPU *cpu) 517 { 518 CPUState *cs = CPU(cpu); 519 int i; 520 bool ok = true; 521 522 for (i = 0; i < cpu->cpreg_array_len; i++) { 523 struct kvm_one_reg r; 524 uint64_t regidx = cpu->cpreg_indexes[i]; 525 uint32_t v32; 526 int ret; 527 528 r.id = regidx; 529 530 switch (regidx & KVM_REG_SIZE_MASK) { 531 case KVM_REG_SIZE_U32: 532 r.addr = (uintptr_t)&v32; 533 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); 534 if (!ret) { 535 cpu->cpreg_values[i] = v32; 536 } 537 break; 538 case KVM_REG_SIZE_U64: 539 r.addr = (uintptr_t)(cpu->cpreg_values + i); 540 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); 541 break; 542 default: 543 g_assert_not_reached(); 544 } 545 if (ret) { 546 ok = false; 547 } 548 } 549 return ok; 550 } 551 552 bool write_list_to_kvmstate(ARMCPU *cpu, int level) 553 { 554 CPUState *cs = CPU(cpu); 555 int i; 556 bool ok = true; 557 558 for (i = 0; i < cpu->cpreg_array_len; i++) { 559 struct kvm_one_reg r; 560 uint64_t regidx = cpu->cpreg_indexes[i]; 561 uint32_t v32; 562 int ret; 563 564 if (kvm_arm_cpreg_level(regidx) > level) { 565 continue; 566 } 567 568 r.id = regidx; 569 switch (regidx & KVM_REG_SIZE_MASK) { 570 case KVM_REG_SIZE_U32: 571 v32 = cpu->cpreg_values[i]; 572 r.addr = (uintptr_t)&v32; 573 break; 574 case KVM_REG_SIZE_U64: 575 r.addr = (uintptr_t)(cpu->cpreg_values + i); 576 break; 577 default: 578 g_assert_not_reached(); 579 } 580 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); 581 if (ret) { 582 /* We might fail for "unknown register" and also for 583 * "you tried to set a register which is constant with 584 * a different value from what it actually contains". 585 */ 586 ok = false; 587 } 588 } 589 return ok; 590 } 591 592 void kvm_arm_cpu_pre_save(ARMCPU *cpu) 593 { 594 /* KVM virtual time adjustment */ 595 if (cpu->kvm_vtime_dirty) { 596 *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT) = cpu->kvm_vtime; 597 } 598 } 599 600 void kvm_arm_cpu_post_load(ARMCPU *cpu) 601 { 602 /* KVM virtual time adjustment */ 603 if (cpu->kvm_adjvtime) { 604 cpu->kvm_vtime = *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT); 605 cpu->kvm_vtime_dirty = true; 606 } 607 } 608 609 void kvm_arm_reset_vcpu(ARMCPU *cpu) 610 { 611 int ret; 612 613 /* Re-init VCPU so that all registers are set to 614 * their respective reset values. 615 */ 616 ret = kvm_arm_vcpu_init(CPU(cpu)); 617 if (ret < 0) { 618 fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret)); 619 abort(); 620 } 621 if (!write_kvmstate_to_list(cpu)) { 622 fprintf(stderr, "write_kvmstate_to_list failed\n"); 623 abort(); 624 } 625 /* 626 * Sync the reset values also into the CPUState. This is necessary 627 * because the next thing we do will be a kvm_arch_put_registers() 628 * which will update the list values from the CPUState before copying 629 * the list values back to KVM. It's OK to ignore failure returns here 630 * for the same reason we do so in kvm_arch_get_registers(). 631 */ 632 write_list_to_cpustate(cpu); 633 } 634 635 /* 636 * Update KVM's MP_STATE based on what QEMU thinks it is 637 */ 638 int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu) 639 { 640 if (cap_has_mp_state) { 641 struct kvm_mp_state mp_state = { 642 .mp_state = (cpu->power_state == PSCI_OFF) ? 643 KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE 644 }; 645 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); 646 if (ret) { 647 fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n", 648 __func__, ret, strerror(-ret)); 649 return -1; 650 } 651 } 652 653 return 0; 654 } 655 656 /* 657 * Sync the KVM MP_STATE into QEMU 658 */ 659 int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu) 660 { 661 if (cap_has_mp_state) { 662 struct kvm_mp_state mp_state; 663 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state); 664 if (ret) { 665 fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n", 666 __func__, ret, strerror(-ret)); 667 abort(); 668 } 669 cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ? 670 PSCI_OFF : PSCI_ON; 671 } 672 673 return 0; 674 } 675 676 void kvm_arm_get_virtual_time(CPUState *cs) 677 { 678 ARMCPU *cpu = ARM_CPU(cs); 679 struct kvm_one_reg reg = { 680 .id = KVM_REG_ARM_TIMER_CNT, 681 .addr = (uintptr_t)&cpu->kvm_vtime, 682 }; 683 int ret; 684 685 if (cpu->kvm_vtime_dirty) { 686 return; 687 } 688 689 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 690 if (ret) { 691 error_report("Failed to get KVM_REG_ARM_TIMER_CNT"); 692 abort(); 693 } 694 695 cpu->kvm_vtime_dirty = true; 696 } 697 698 void kvm_arm_put_virtual_time(CPUState *cs) 699 { 700 ARMCPU *cpu = ARM_CPU(cs); 701 struct kvm_one_reg reg = { 702 .id = KVM_REG_ARM_TIMER_CNT, 703 .addr = (uintptr_t)&cpu->kvm_vtime, 704 }; 705 int ret; 706 707 if (!cpu->kvm_vtime_dirty) { 708 return; 709 } 710 711 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 712 if (ret) { 713 error_report("Failed to set KVM_REG_ARM_TIMER_CNT"); 714 abort(); 715 } 716 717 cpu->kvm_vtime_dirty = false; 718 } 719 720 int kvm_put_vcpu_events(ARMCPU *cpu) 721 { 722 CPUARMState *env = &cpu->env; 723 struct kvm_vcpu_events events; 724 int ret; 725 726 if (!kvm_has_vcpu_events()) { 727 return 0; 728 } 729 730 memset(&events, 0, sizeof(events)); 731 events.exception.serror_pending = env->serror.pending; 732 733 /* Inject SError to guest with specified syndrome if host kernel 734 * supports it, otherwise inject SError without syndrome. 735 */ 736 if (cap_has_inject_serror_esr) { 737 events.exception.serror_has_esr = env->serror.has_esr; 738 events.exception.serror_esr = env->serror.esr; 739 } 740 741 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); 742 if (ret) { 743 error_report("failed to put vcpu events"); 744 } 745 746 return ret; 747 } 748 749 int kvm_get_vcpu_events(ARMCPU *cpu) 750 { 751 CPUARMState *env = &cpu->env; 752 struct kvm_vcpu_events events; 753 int ret; 754 755 if (!kvm_has_vcpu_events()) { 756 return 0; 757 } 758 759 memset(&events, 0, sizeof(events)); 760 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); 761 if (ret) { 762 error_report("failed to get vcpu events"); 763 return ret; 764 } 765 766 env->serror.pending = events.exception.serror_pending; 767 env->serror.has_esr = events.exception.serror_has_esr; 768 env->serror.esr = events.exception.serror_esr; 769 770 return 0; 771 } 772 773 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run) 774 { 775 ARMCPU *cpu = ARM_CPU(cs); 776 CPUARMState *env = &cpu->env; 777 778 if (unlikely(env->ext_dabt_raised)) { 779 /* 780 * Verifying that the ext DABT has been properly injected, 781 * otherwise risking indefinitely re-running the faulting instruction 782 * Covering a very narrow case for kernels 5.5..5.5.4 783 * when injected abort was misconfigured to be 784 * an IMPLEMENTATION DEFINED exception (for 32-bit EL1) 785 */ 786 if (!arm_feature(env, ARM_FEATURE_AARCH64) && 787 unlikely(!kvm_arm_verify_ext_dabt_pending(cs))) { 788 789 error_report("Data abort exception with no valid ISS generated by " 790 "guest memory access. KVM unable to emulate faulting " 791 "instruction. Failed to inject an external data abort " 792 "into the guest."); 793 abort(); 794 } 795 /* Clear the status */ 796 env->ext_dabt_raised = 0; 797 } 798 } 799 800 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) 801 { 802 ARMCPU *cpu; 803 uint32_t switched_level; 804 805 if (kvm_irqchip_in_kernel()) { 806 /* 807 * We only need to sync timer states with user-space interrupt 808 * controllers, so return early and save cycles if we don't. 809 */ 810 return MEMTXATTRS_UNSPECIFIED; 811 } 812 813 cpu = ARM_CPU(cs); 814 815 /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */ 816 if (run->s.regs.device_irq_level != cpu->device_irq_level) { 817 switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level; 818 819 qemu_mutex_lock_iothread(); 820 821 if (switched_level & KVM_ARM_DEV_EL1_VTIMER) { 822 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT], 823 !!(run->s.regs.device_irq_level & 824 KVM_ARM_DEV_EL1_VTIMER)); 825 switched_level &= ~KVM_ARM_DEV_EL1_VTIMER; 826 } 827 828 if (switched_level & KVM_ARM_DEV_EL1_PTIMER) { 829 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS], 830 !!(run->s.regs.device_irq_level & 831 KVM_ARM_DEV_EL1_PTIMER)); 832 switched_level &= ~KVM_ARM_DEV_EL1_PTIMER; 833 } 834 835 if (switched_level & KVM_ARM_DEV_PMU) { 836 qemu_set_irq(cpu->pmu_interrupt, 837 !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU)); 838 switched_level &= ~KVM_ARM_DEV_PMU; 839 } 840 841 if (switched_level) { 842 qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n", 843 __func__, switched_level); 844 } 845 846 /* We also mark unknown levels as processed to not waste cycles */ 847 cpu->device_irq_level = run->s.regs.device_irq_level; 848 qemu_mutex_unlock_iothread(); 849 } 850 851 return MEMTXATTRS_UNSPECIFIED; 852 } 853 854 void kvm_arm_vm_state_change(void *opaque, bool running, RunState state) 855 { 856 CPUState *cs = opaque; 857 ARMCPU *cpu = ARM_CPU(cs); 858 859 if (running) { 860 if (cpu->kvm_adjvtime) { 861 kvm_arm_put_virtual_time(cs); 862 } 863 } else { 864 if (cpu->kvm_adjvtime) { 865 kvm_arm_get_virtual_time(cs); 866 } 867 } 868 } 869 870 /** 871 * kvm_arm_handle_dabt_nisv: 872 * @cs: CPUState 873 * @esr_iss: ISS encoding (limited) for the exception from Data Abort 874 * ISV bit set to '0b0' -> no valid instruction syndrome 875 * @fault_ipa: faulting address for the synchronous data abort 876 * 877 * Returns: 0 if the exception has been handled, < 0 otherwise 878 */ 879 static int kvm_arm_handle_dabt_nisv(CPUState *cs, uint64_t esr_iss, 880 uint64_t fault_ipa) 881 { 882 ARMCPU *cpu = ARM_CPU(cs); 883 CPUARMState *env = &cpu->env; 884 /* 885 * Request KVM to inject the external data abort into the guest 886 */ 887 if (cap_has_inject_ext_dabt) { 888 struct kvm_vcpu_events events = { }; 889 /* 890 * The external data abort event will be handled immediately by KVM 891 * using the address fault that triggered the exit on given VCPU. 892 * Requesting injection of the external data abort does not rely 893 * on any other VCPU state. Therefore, in this particular case, the VCPU 894 * synchronization can be exceptionally skipped. 895 */ 896 events.exception.ext_dabt_pending = 1; 897 /* KVM_CAP_ARM_INJECT_EXT_DABT implies KVM_CAP_VCPU_EVENTS */ 898 if (!kvm_vcpu_ioctl(cs, KVM_SET_VCPU_EVENTS, &events)) { 899 env->ext_dabt_raised = 1; 900 return 0; 901 } 902 } else { 903 error_report("Data abort exception triggered by guest memory access " 904 "at physical address: 0x" TARGET_FMT_lx, 905 (target_ulong)fault_ipa); 906 error_printf("KVM unable to emulate faulting instruction.\n"); 907 } 908 return -1; 909 } 910 911 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 912 { 913 int ret = 0; 914 915 switch (run->exit_reason) { 916 case KVM_EXIT_DEBUG: 917 if (kvm_arm_handle_debug(cs, &run->debug.arch)) { 918 ret = EXCP_DEBUG; 919 } /* otherwise return to guest */ 920 break; 921 case KVM_EXIT_ARM_NISV: 922 /* External DABT with no valid iss to decode */ 923 ret = kvm_arm_handle_dabt_nisv(cs, run->arm_nisv.esr_iss, 924 run->arm_nisv.fault_ipa); 925 break; 926 default: 927 qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n", 928 __func__, run->exit_reason); 929 break; 930 } 931 return ret; 932 } 933 934 bool kvm_arch_stop_on_emulation_error(CPUState *cs) 935 { 936 return true; 937 } 938 939 int kvm_arch_process_async_events(CPUState *cs) 940 { 941 return 0; 942 } 943 944 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg) 945 { 946 if (kvm_sw_breakpoints_active(cs)) { 947 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; 948 } 949 if (kvm_arm_hw_debug_active(cs)) { 950 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW; 951 kvm_arm_copy_hw_debug_data(&dbg->arch); 952 } 953 } 954 955 void kvm_arch_init_irq_routing(KVMState *s) 956 { 957 } 958 959 int kvm_arch_irqchip_create(KVMState *s) 960 { 961 if (kvm_kernel_irqchip_split()) { 962 perror("-machine kernel_irqchip=split is not supported on ARM."); 963 exit(1); 964 } 965 966 /* If we can create the VGIC using the newer device control API, we 967 * let the device do this when it initializes itself, otherwise we 968 * fall back to the old API */ 969 return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL); 970 } 971 972 int kvm_arm_vgic_probe(void) 973 { 974 int val = 0; 975 976 if (kvm_create_device(kvm_state, 977 KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) { 978 val |= KVM_ARM_VGIC_V3; 979 } 980 if (kvm_create_device(kvm_state, 981 KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) { 982 val |= KVM_ARM_VGIC_V2; 983 } 984 return val; 985 } 986 987 int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level) 988 { 989 int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq; 990 int cpu_idx1 = cpu % 256; 991 int cpu_idx2 = cpu / 256; 992 993 kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) | 994 (cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT); 995 996 return kvm_set_irq(kvm_state, kvm_irq, !!level); 997 } 998 999 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 1000 uint64_t address, uint32_t data, PCIDevice *dev) 1001 { 1002 AddressSpace *as = pci_device_iommu_address_space(dev); 1003 hwaddr xlat, len, doorbell_gpa; 1004 MemoryRegionSection mrs; 1005 MemoryRegion *mr; 1006 1007 if (as == &address_space_memory) { 1008 return 0; 1009 } 1010 1011 /* MSI doorbell address is translated by an IOMMU */ 1012 1013 RCU_READ_LOCK_GUARD(); 1014 1015 mr = address_space_translate(as, address, &xlat, &len, true, 1016 MEMTXATTRS_UNSPECIFIED); 1017 1018 if (!mr) { 1019 return 1; 1020 } 1021 1022 mrs = memory_region_find(mr, xlat, 1); 1023 1024 if (!mrs.mr) { 1025 return 1; 1026 } 1027 1028 doorbell_gpa = mrs.offset_within_address_space; 1029 memory_region_unref(mrs.mr); 1030 1031 route->u.msi.address_lo = doorbell_gpa; 1032 route->u.msi.address_hi = doorbell_gpa >> 32; 1033 1034 trace_kvm_arm_fixup_msi_route(address, doorbell_gpa); 1035 1036 return 0; 1037 } 1038 1039 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 1040 int vector, PCIDevice *dev) 1041 { 1042 return 0; 1043 } 1044 1045 int kvm_arch_release_virq_post(int virq) 1046 { 1047 return 0; 1048 } 1049 1050 int kvm_arch_msi_data_to_gsi(uint32_t data) 1051 { 1052 return (data - 32) & 0xffff; 1053 } 1054 1055 bool kvm_arch_cpu_check_are_resettable(void) 1056 { 1057 return true; 1058 } 1059