1 /* 2 * ARM implementation of KVM hooks 3 * 4 * Copyright Christoffer Dall 2009-2010 5 * 6 * This work is licensed under the terms of the GNU GPL, version 2 or later. 7 * See the COPYING file in the top-level directory. 8 * 9 */ 10 11 #include "qemu/osdep.h" 12 #include <sys/ioctl.h> 13 14 #include <linux/kvm.h> 15 16 #include "qemu-common.h" 17 #include "qemu/timer.h" 18 #include "qemu/error-report.h" 19 #include "qemu/main-loop.h" 20 #include "sysemu/sysemu.h" 21 #include "sysemu/kvm.h" 22 #include "sysemu/kvm_int.h" 23 #include "kvm_arm.h" 24 #include "cpu.h" 25 #include "trace.h" 26 #include "internals.h" 27 #include "hw/pci/pci.h" 28 #include "exec/memattrs.h" 29 #include "exec/address-spaces.h" 30 #include "hw/boards.h" 31 #include "hw/irq.h" 32 #include "qemu/log.h" 33 34 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 35 KVM_CAP_LAST_INFO 36 }; 37 38 static bool cap_has_mp_state; 39 static bool cap_has_inject_serror_esr; 40 41 static ARMHostCPUFeatures arm_host_cpu_features; 42 43 int kvm_arm_vcpu_init(CPUState *cs) 44 { 45 ARMCPU *cpu = ARM_CPU(cs); 46 struct kvm_vcpu_init init; 47 48 init.target = cpu->kvm_target; 49 memcpy(init.features, cpu->kvm_init_features, sizeof(init.features)); 50 51 return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init); 52 } 53 54 void kvm_arm_init_serror_injection(CPUState *cs) 55 { 56 cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state, 57 KVM_CAP_ARM_INJECT_SERROR_ESR); 58 } 59 60 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try, 61 int *fdarray, 62 struct kvm_vcpu_init *init) 63 { 64 int ret, kvmfd = -1, vmfd = -1, cpufd = -1; 65 66 kvmfd = qemu_open("/dev/kvm", O_RDWR); 67 if (kvmfd < 0) { 68 goto err; 69 } 70 vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0); 71 if (vmfd < 0) { 72 goto err; 73 } 74 cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0); 75 if (cpufd < 0) { 76 goto err; 77 } 78 79 if (!init) { 80 /* Caller doesn't want the VCPU to be initialized, so skip it */ 81 goto finish; 82 } 83 84 ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, init); 85 if (ret >= 0) { 86 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init); 87 if (ret < 0) { 88 goto err; 89 } 90 } else if (cpus_to_try) { 91 /* Old kernel which doesn't know about the 92 * PREFERRED_TARGET ioctl: we know it will only support 93 * creating one kind of guest CPU which is its preferred 94 * CPU type. 95 */ 96 while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) { 97 init->target = *cpus_to_try++; 98 memset(init->features, 0, sizeof(init->features)); 99 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init); 100 if (ret >= 0) { 101 break; 102 } 103 } 104 if (ret < 0) { 105 goto err; 106 } 107 } else { 108 /* Treat a NULL cpus_to_try argument the same as an empty 109 * list, which means we will fail the call since this must 110 * be an old kernel which doesn't support PREFERRED_TARGET. 111 */ 112 goto err; 113 } 114 115 finish: 116 fdarray[0] = kvmfd; 117 fdarray[1] = vmfd; 118 fdarray[2] = cpufd; 119 120 return true; 121 122 err: 123 if (cpufd >= 0) { 124 close(cpufd); 125 } 126 if (vmfd >= 0) { 127 close(vmfd); 128 } 129 if (kvmfd >= 0) { 130 close(kvmfd); 131 } 132 133 return false; 134 } 135 136 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray) 137 { 138 int i; 139 140 for (i = 2; i >= 0; i--) { 141 close(fdarray[i]); 142 } 143 } 144 145 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu) 146 { 147 CPUARMState *env = &cpu->env; 148 149 if (!arm_host_cpu_features.dtb_compatible) { 150 if (!kvm_enabled() || 151 !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) { 152 /* We can't report this error yet, so flag that we need to 153 * in arm_cpu_realizefn(). 154 */ 155 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE; 156 cpu->host_cpu_probe_failed = true; 157 return; 158 } 159 } 160 161 cpu->kvm_target = arm_host_cpu_features.target; 162 cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible; 163 cpu->isar = arm_host_cpu_features.isar; 164 env->features = arm_host_cpu_features.features; 165 } 166 167 int kvm_arm_get_max_vm_ipa_size(MachineState *ms) 168 { 169 KVMState *s = KVM_STATE(ms->accelerator); 170 int ret; 171 172 ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE); 173 return ret > 0 ? ret : 40; 174 } 175 176 int kvm_arch_init(MachineState *ms, KVMState *s) 177 { 178 /* For ARM interrupt delivery is always asynchronous, 179 * whether we are using an in-kernel VGIC or not. 180 */ 181 kvm_async_interrupts_allowed = true; 182 183 /* 184 * PSCI wakes up secondary cores, so we always need to 185 * have vCPUs waiting in kernel space 186 */ 187 kvm_halt_in_kernel_allowed = true; 188 189 cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE); 190 191 return 0; 192 } 193 194 unsigned long kvm_arch_vcpu_id(CPUState *cpu) 195 { 196 return cpu->cpu_index; 197 } 198 199 /* We track all the KVM devices which need their memory addresses 200 * passing to the kernel in a list of these structures. 201 * When board init is complete we run through the list and 202 * tell the kernel the base addresses of the memory regions. 203 * We use a MemoryListener to track mapping and unmapping of 204 * the regions during board creation, so the board models don't 205 * need to do anything special for the KVM case. 206 * 207 * Sometimes the address must be OR'ed with some other fields 208 * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION). 209 * @kda_addr_ormask aims at storing the value of those fields. 210 */ 211 typedef struct KVMDevice { 212 struct kvm_arm_device_addr kda; 213 struct kvm_device_attr kdattr; 214 uint64_t kda_addr_ormask; 215 MemoryRegion *mr; 216 QSLIST_ENTRY(KVMDevice) entries; 217 int dev_fd; 218 } KVMDevice; 219 220 static QSLIST_HEAD(, KVMDevice) kvm_devices_head; 221 222 static void kvm_arm_devlistener_add(MemoryListener *listener, 223 MemoryRegionSection *section) 224 { 225 KVMDevice *kd; 226 227 QSLIST_FOREACH(kd, &kvm_devices_head, entries) { 228 if (section->mr == kd->mr) { 229 kd->kda.addr = section->offset_within_address_space; 230 } 231 } 232 } 233 234 static void kvm_arm_devlistener_del(MemoryListener *listener, 235 MemoryRegionSection *section) 236 { 237 KVMDevice *kd; 238 239 QSLIST_FOREACH(kd, &kvm_devices_head, entries) { 240 if (section->mr == kd->mr) { 241 kd->kda.addr = -1; 242 } 243 } 244 } 245 246 static MemoryListener devlistener = { 247 .region_add = kvm_arm_devlistener_add, 248 .region_del = kvm_arm_devlistener_del, 249 }; 250 251 static void kvm_arm_set_device_addr(KVMDevice *kd) 252 { 253 struct kvm_device_attr *attr = &kd->kdattr; 254 int ret; 255 256 /* If the device control API is available and we have a device fd on the 257 * KVMDevice struct, let's use the newer API 258 */ 259 if (kd->dev_fd >= 0) { 260 uint64_t addr = kd->kda.addr; 261 262 addr |= kd->kda_addr_ormask; 263 attr->addr = (uintptr_t)&addr; 264 ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr); 265 } else { 266 ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda); 267 } 268 269 if (ret < 0) { 270 fprintf(stderr, "Failed to set device address: %s\n", 271 strerror(-ret)); 272 abort(); 273 } 274 } 275 276 static void kvm_arm_machine_init_done(Notifier *notifier, void *data) 277 { 278 KVMDevice *kd, *tkd; 279 280 QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) { 281 if (kd->kda.addr != -1) { 282 kvm_arm_set_device_addr(kd); 283 } 284 memory_region_unref(kd->mr); 285 QSLIST_REMOVE_HEAD(&kvm_devices_head, entries); 286 g_free(kd); 287 } 288 memory_listener_unregister(&devlistener); 289 } 290 291 static Notifier notify = { 292 .notify = kvm_arm_machine_init_done, 293 }; 294 295 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group, 296 uint64_t attr, int dev_fd, uint64_t addr_ormask) 297 { 298 KVMDevice *kd; 299 300 if (!kvm_irqchip_in_kernel()) { 301 return; 302 } 303 304 if (QSLIST_EMPTY(&kvm_devices_head)) { 305 memory_listener_register(&devlistener, &address_space_memory); 306 qemu_add_machine_init_done_notifier(¬ify); 307 } 308 kd = g_new0(KVMDevice, 1); 309 kd->mr = mr; 310 kd->kda.id = devid; 311 kd->kda.addr = -1; 312 kd->kdattr.flags = 0; 313 kd->kdattr.group = group; 314 kd->kdattr.attr = attr; 315 kd->dev_fd = dev_fd; 316 kd->kda_addr_ormask = addr_ormask; 317 QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries); 318 memory_region_ref(kd->mr); 319 } 320 321 static int compare_u64(const void *a, const void *b) 322 { 323 if (*(uint64_t *)a > *(uint64_t *)b) { 324 return 1; 325 } 326 if (*(uint64_t *)a < *(uint64_t *)b) { 327 return -1; 328 } 329 return 0; 330 } 331 332 /* Initialize the ARMCPU cpreg list according to the kernel's 333 * definition of what CPU registers it knows about (and throw away 334 * the previous TCG-created cpreg list). 335 */ 336 int kvm_arm_init_cpreg_list(ARMCPU *cpu) 337 { 338 struct kvm_reg_list rl; 339 struct kvm_reg_list *rlp; 340 int i, ret, arraylen; 341 CPUState *cs = CPU(cpu); 342 343 rl.n = 0; 344 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl); 345 if (ret != -E2BIG) { 346 return ret; 347 } 348 rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t)); 349 rlp->n = rl.n; 350 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp); 351 if (ret) { 352 goto out; 353 } 354 /* Sort the list we get back from the kernel, since cpreg_tuples 355 * must be in strictly ascending order. 356 */ 357 qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64); 358 359 for (i = 0, arraylen = 0; i < rlp->n; i++) { 360 if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) { 361 continue; 362 } 363 switch (rlp->reg[i] & KVM_REG_SIZE_MASK) { 364 case KVM_REG_SIZE_U32: 365 case KVM_REG_SIZE_U64: 366 break; 367 default: 368 fprintf(stderr, "Can't handle size of register in kernel list\n"); 369 ret = -EINVAL; 370 goto out; 371 } 372 373 arraylen++; 374 } 375 376 cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen); 377 cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen); 378 cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes, 379 arraylen); 380 cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values, 381 arraylen); 382 cpu->cpreg_array_len = arraylen; 383 cpu->cpreg_vmstate_array_len = arraylen; 384 385 for (i = 0, arraylen = 0; i < rlp->n; i++) { 386 uint64_t regidx = rlp->reg[i]; 387 if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) { 388 continue; 389 } 390 cpu->cpreg_indexes[arraylen] = regidx; 391 arraylen++; 392 } 393 assert(cpu->cpreg_array_len == arraylen); 394 395 if (!write_kvmstate_to_list(cpu)) { 396 /* Shouldn't happen unless kernel is inconsistent about 397 * what registers exist. 398 */ 399 fprintf(stderr, "Initial read of kernel register state failed\n"); 400 ret = -EINVAL; 401 goto out; 402 } 403 404 out: 405 g_free(rlp); 406 return ret; 407 } 408 409 bool write_kvmstate_to_list(ARMCPU *cpu) 410 { 411 CPUState *cs = CPU(cpu); 412 int i; 413 bool ok = true; 414 415 for (i = 0; i < cpu->cpreg_array_len; i++) { 416 struct kvm_one_reg r; 417 uint64_t regidx = cpu->cpreg_indexes[i]; 418 uint32_t v32; 419 int ret; 420 421 r.id = regidx; 422 423 switch (regidx & KVM_REG_SIZE_MASK) { 424 case KVM_REG_SIZE_U32: 425 r.addr = (uintptr_t)&v32; 426 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); 427 if (!ret) { 428 cpu->cpreg_values[i] = v32; 429 } 430 break; 431 case KVM_REG_SIZE_U64: 432 r.addr = (uintptr_t)(cpu->cpreg_values + i); 433 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); 434 break; 435 default: 436 abort(); 437 } 438 if (ret) { 439 ok = false; 440 } 441 } 442 return ok; 443 } 444 445 bool write_list_to_kvmstate(ARMCPU *cpu, int level) 446 { 447 CPUState *cs = CPU(cpu); 448 int i; 449 bool ok = true; 450 451 for (i = 0; i < cpu->cpreg_array_len; i++) { 452 struct kvm_one_reg r; 453 uint64_t regidx = cpu->cpreg_indexes[i]; 454 uint32_t v32; 455 int ret; 456 457 if (kvm_arm_cpreg_level(regidx) > level) { 458 continue; 459 } 460 461 r.id = regidx; 462 switch (regidx & KVM_REG_SIZE_MASK) { 463 case KVM_REG_SIZE_U32: 464 v32 = cpu->cpreg_values[i]; 465 r.addr = (uintptr_t)&v32; 466 break; 467 case KVM_REG_SIZE_U64: 468 r.addr = (uintptr_t)(cpu->cpreg_values + i); 469 break; 470 default: 471 abort(); 472 } 473 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); 474 if (ret) { 475 /* We might fail for "unknown register" and also for 476 * "you tried to set a register which is constant with 477 * a different value from what it actually contains". 478 */ 479 ok = false; 480 } 481 } 482 return ok; 483 } 484 485 void kvm_arm_reset_vcpu(ARMCPU *cpu) 486 { 487 int ret; 488 489 /* Re-init VCPU so that all registers are set to 490 * their respective reset values. 491 */ 492 ret = kvm_arm_vcpu_init(CPU(cpu)); 493 if (ret < 0) { 494 fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret)); 495 abort(); 496 } 497 if (!write_kvmstate_to_list(cpu)) { 498 fprintf(stderr, "write_kvmstate_to_list failed\n"); 499 abort(); 500 } 501 /* 502 * Sync the reset values also into the CPUState. This is necessary 503 * because the next thing we do will be a kvm_arch_put_registers() 504 * which will update the list values from the CPUState before copying 505 * the list values back to KVM. It's OK to ignore failure returns here 506 * for the same reason we do so in kvm_arch_get_registers(). 507 */ 508 write_list_to_cpustate(cpu); 509 } 510 511 /* 512 * Update KVM's MP_STATE based on what QEMU thinks it is 513 */ 514 int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu) 515 { 516 if (cap_has_mp_state) { 517 struct kvm_mp_state mp_state = { 518 .mp_state = (cpu->power_state == PSCI_OFF) ? 519 KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE 520 }; 521 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); 522 if (ret) { 523 fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n", 524 __func__, ret, strerror(-ret)); 525 return -1; 526 } 527 } 528 529 return 0; 530 } 531 532 /* 533 * Sync the KVM MP_STATE into QEMU 534 */ 535 int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu) 536 { 537 if (cap_has_mp_state) { 538 struct kvm_mp_state mp_state; 539 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state); 540 if (ret) { 541 fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n", 542 __func__, ret, strerror(-ret)); 543 abort(); 544 } 545 cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ? 546 PSCI_OFF : PSCI_ON; 547 } 548 549 return 0; 550 } 551 552 int kvm_put_vcpu_events(ARMCPU *cpu) 553 { 554 CPUARMState *env = &cpu->env; 555 struct kvm_vcpu_events events; 556 int ret; 557 558 if (!kvm_has_vcpu_events()) { 559 return 0; 560 } 561 562 memset(&events, 0, sizeof(events)); 563 events.exception.serror_pending = env->serror.pending; 564 565 /* Inject SError to guest with specified syndrome if host kernel 566 * supports it, otherwise inject SError without syndrome. 567 */ 568 if (cap_has_inject_serror_esr) { 569 events.exception.serror_has_esr = env->serror.has_esr; 570 events.exception.serror_esr = env->serror.esr; 571 } 572 573 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); 574 if (ret) { 575 error_report("failed to put vcpu events"); 576 } 577 578 return ret; 579 } 580 581 int kvm_get_vcpu_events(ARMCPU *cpu) 582 { 583 CPUARMState *env = &cpu->env; 584 struct kvm_vcpu_events events; 585 int ret; 586 587 if (!kvm_has_vcpu_events()) { 588 return 0; 589 } 590 591 memset(&events, 0, sizeof(events)); 592 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); 593 if (ret) { 594 error_report("failed to get vcpu events"); 595 return ret; 596 } 597 598 env->serror.pending = events.exception.serror_pending; 599 env->serror.has_esr = events.exception.serror_has_esr; 600 env->serror.esr = events.exception.serror_esr; 601 602 return 0; 603 } 604 605 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run) 606 { 607 } 608 609 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) 610 { 611 ARMCPU *cpu; 612 uint32_t switched_level; 613 614 if (kvm_irqchip_in_kernel()) { 615 /* 616 * We only need to sync timer states with user-space interrupt 617 * controllers, so return early and save cycles if we don't. 618 */ 619 return MEMTXATTRS_UNSPECIFIED; 620 } 621 622 cpu = ARM_CPU(cs); 623 624 /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */ 625 if (run->s.regs.device_irq_level != cpu->device_irq_level) { 626 switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level; 627 628 qemu_mutex_lock_iothread(); 629 630 if (switched_level & KVM_ARM_DEV_EL1_VTIMER) { 631 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT], 632 !!(run->s.regs.device_irq_level & 633 KVM_ARM_DEV_EL1_VTIMER)); 634 switched_level &= ~KVM_ARM_DEV_EL1_VTIMER; 635 } 636 637 if (switched_level & KVM_ARM_DEV_EL1_PTIMER) { 638 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS], 639 !!(run->s.regs.device_irq_level & 640 KVM_ARM_DEV_EL1_PTIMER)); 641 switched_level &= ~KVM_ARM_DEV_EL1_PTIMER; 642 } 643 644 if (switched_level & KVM_ARM_DEV_PMU) { 645 qemu_set_irq(cpu->pmu_interrupt, 646 !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU)); 647 switched_level &= ~KVM_ARM_DEV_PMU; 648 } 649 650 if (switched_level) { 651 qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n", 652 __func__, switched_level); 653 } 654 655 /* We also mark unknown levels as processed to not waste cycles */ 656 cpu->device_irq_level = run->s.regs.device_irq_level; 657 qemu_mutex_unlock_iothread(); 658 } 659 660 return MEMTXATTRS_UNSPECIFIED; 661 } 662 663 664 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 665 { 666 int ret = 0; 667 668 switch (run->exit_reason) { 669 case KVM_EXIT_DEBUG: 670 if (kvm_arm_handle_debug(cs, &run->debug.arch)) { 671 ret = EXCP_DEBUG; 672 } /* otherwise return to guest */ 673 break; 674 default: 675 qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n", 676 __func__, run->exit_reason); 677 break; 678 } 679 return ret; 680 } 681 682 bool kvm_arch_stop_on_emulation_error(CPUState *cs) 683 { 684 return true; 685 } 686 687 int kvm_arch_process_async_events(CPUState *cs) 688 { 689 return 0; 690 } 691 692 /* The #ifdef protections are until 32bit headers are imported and can 693 * be removed once both 32 and 64 bit reach feature parity. 694 */ 695 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg) 696 { 697 #ifdef KVM_GUESTDBG_USE_SW_BP 698 if (kvm_sw_breakpoints_active(cs)) { 699 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; 700 } 701 #endif 702 #ifdef KVM_GUESTDBG_USE_HW 703 if (kvm_arm_hw_debug_active(cs)) { 704 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW; 705 kvm_arm_copy_hw_debug_data(&dbg->arch); 706 } 707 #endif 708 } 709 710 void kvm_arch_init_irq_routing(KVMState *s) 711 { 712 } 713 714 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s) 715 { 716 if (machine_kernel_irqchip_split(ms)) { 717 perror("-machine kernel_irqchip=split is not supported on ARM."); 718 exit(1); 719 } 720 721 /* If we can create the VGIC using the newer device control API, we 722 * let the device do this when it initializes itself, otherwise we 723 * fall back to the old API */ 724 return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL); 725 } 726 727 int kvm_arm_vgic_probe(void) 728 { 729 if (kvm_create_device(kvm_state, 730 KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) { 731 return 3; 732 } else if (kvm_create_device(kvm_state, 733 KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) { 734 return 2; 735 } else { 736 return 0; 737 } 738 } 739 740 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 741 uint64_t address, uint32_t data, PCIDevice *dev) 742 { 743 AddressSpace *as = pci_device_iommu_address_space(dev); 744 hwaddr xlat, len, doorbell_gpa; 745 MemoryRegionSection mrs; 746 MemoryRegion *mr; 747 int ret = 1; 748 749 if (as == &address_space_memory) { 750 return 0; 751 } 752 753 /* MSI doorbell address is translated by an IOMMU */ 754 755 rcu_read_lock(); 756 mr = address_space_translate(as, address, &xlat, &len, true, 757 MEMTXATTRS_UNSPECIFIED); 758 if (!mr) { 759 goto unlock; 760 } 761 mrs = memory_region_find(mr, xlat, 1); 762 if (!mrs.mr) { 763 goto unlock; 764 } 765 766 doorbell_gpa = mrs.offset_within_address_space; 767 memory_region_unref(mrs.mr); 768 769 route->u.msi.address_lo = doorbell_gpa; 770 route->u.msi.address_hi = doorbell_gpa >> 32; 771 772 trace_kvm_arm_fixup_msi_route(address, doorbell_gpa); 773 774 ret = 0; 775 776 unlock: 777 rcu_read_unlock(); 778 return ret; 779 } 780 781 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 782 int vector, PCIDevice *dev) 783 { 784 return 0; 785 } 786 787 int kvm_arch_release_virq_post(int virq) 788 { 789 return 0; 790 } 791 792 int kvm_arch_msi_data_to_gsi(uint32_t data) 793 { 794 return (data - 32) & 0xffff; 795 } 796