xref: /openbmc/qemu/target/arm/kvm.c (revision d5938f29)
1 /*
2  * ARM implementation of KVM hooks
3  *
4  * Copyright Christoffer Dall 2009-2010
5  *
6  * This work is licensed under the terms of the GNU GPL, version 2 or later.
7  * See the COPYING file in the top-level directory.
8  *
9  */
10 
11 #include "qemu/osdep.h"
12 #include <sys/ioctl.h>
13 
14 #include <linux/kvm.h>
15 
16 #include "qemu-common.h"
17 #include "qemu/timer.h"
18 #include "qemu/error-report.h"
19 #include "qemu/main-loop.h"
20 #include "sysemu/sysemu.h"
21 #include "sysemu/kvm.h"
22 #include "sysemu/kvm_int.h"
23 #include "kvm_arm.h"
24 #include "cpu.h"
25 #include "trace.h"
26 #include "internals.h"
27 #include "hw/pci/pci.h"
28 #include "exec/memattrs.h"
29 #include "exec/address-spaces.h"
30 #include "hw/boards.h"
31 #include "hw/irq.h"
32 #include "qemu/log.h"
33 
34 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
35     KVM_CAP_LAST_INFO
36 };
37 
38 static bool cap_has_mp_state;
39 static bool cap_has_inject_serror_esr;
40 
41 static ARMHostCPUFeatures arm_host_cpu_features;
42 
43 int kvm_arm_vcpu_init(CPUState *cs)
44 {
45     ARMCPU *cpu = ARM_CPU(cs);
46     struct kvm_vcpu_init init;
47 
48     init.target = cpu->kvm_target;
49     memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
50 
51     return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
52 }
53 
54 void kvm_arm_init_serror_injection(CPUState *cs)
55 {
56     cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state,
57                                     KVM_CAP_ARM_INJECT_SERROR_ESR);
58 }
59 
60 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
61                                       int *fdarray,
62                                       struct kvm_vcpu_init *init)
63 {
64     int ret, kvmfd = -1, vmfd = -1, cpufd = -1;
65 
66     kvmfd = qemu_open("/dev/kvm", O_RDWR);
67     if (kvmfd < 0) {
68         goto err;
69     }
70     vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0);
71     if (vmfd < 0) {
72         goto err;
73     }
74     cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
75     if (cpufd < 0) {
76         goto err;
77     }
78 
79     if (!init) {
80         /* Caller doesn't want the VCPU to be initialized, so skip it */
81         goto finish;
82     }
83 
84     ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, init);
85     if (ret >= 0) {
86         ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
87         if (ret < 0) {
88             goto err;
89         }
90     } else if (cpus_to_try) {
91         /* Old kernel which doesn't know about the
92          * PREFERRED_TARGET ioctl: we know it will only support
93          * creating one kind of guest CPU which is its preferred
94          * CPU type.
95          */
96         while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
97             init->target = *cpus_to_try++;
98             memset(init->features, 0, sizeof(init->features));
99             ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
100             if (ret >= 0) {
101                 break;
102             }
103         }
104         if (ret < 0) {
105             goto err;
106         }
107     } else {
108         /* Treat a NULL cpus_to_try argument the same as an empty
109          * list, which means we will fail the call since this must
110          * be an old kernel which doesn't support PREFERRED_TARGET.
111          */
112         goto err;
113     }
114 
115 finish:
116     fdarray[0] = kvmfd;
117     fdarray[1] = vmfd;
118     fdarray[2] = cpufd;
119 
120     return true;
121 
122 err:
123     if (cpufd >= 0) {
124         close(cpufd);
125     }
126     if (vmfd >= 0) {
127         close(vmfd);
128     }
129     if (kvmfd >= 0) {
130         close(kvmfd);
131     }
132 
133     return false;
134 }
135 
136 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
137 {
138     int i;
139 
140     for (i = 2; i >= 0; i--) {
141         close(fdarray[i]);
142     }
143 }
144 
145 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
146 {
147     CPUARMState *env = &cpu->env;
148 
149     if (!arm_host_cpu_features.dtb_compatible) {
150         if (!kvm_enabled() ||
151             !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) {
152             /* We can't report this error yet, so flag that we need to
153              * in arm_cpu_realizefn().
154              */
155             cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
156             cpu->host_cpu_probe_failed = true;
157             return;
158         }
159     }
160 
161     cpu->kvm_target = arm_host_cpu_features.target;
162     cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
163     cpu->isar = arm_host_cpu_features.isar;
164     env->features = arm_host_cpu_features.features;
165 }
166 
167 int kvm_arm_get_max_vm_ipa_size(MachineState *ms)
168 {
169     KVMState *s = KVM_STATE(ms->accelerator);
170     int ret;
171 
172     ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE);
173     return ret > 0 ? ret : 40;
174 }
175 
176 int kvm_arch_init(MachineState *ms, KVMState *s)
177 {
178     /* For ARM interrupt delivery is always asynchronous,
179      * whether we are using an in-kernel VGIC or not.
180      */
181     kvm_async_interrupts_allowed = true;
182 
183     /*
184      * PSCI wakes up secondary cores, so we always need to
185      * have vCPUs waiting in kernel space
186      */
187     kvm_halt_in_kernel_allowed = true;
188 
189     cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
190 
191     return 0;
192 }
193 
194 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
195 {
196     return cpu->cpu_index;
197 }
198 
199 /* We track all the KVM devices which need their memory addresses
200  * passing to the kernel in a list of these structures.
201  * When board init is complete we run through the list and
202  * tell the kernel the base addresses of the memory regions.
203  * We use a MemoryListener to track mapping and unmapping of
204  * the regions during board creation, so the board models don't
205  * need to do anything special for the KVM case.
206  *
207  * Sometimes the address must be OR'ed with some other fields
208  * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
209  * @kda_addr_ormask aims at storing the value of those fields.
210  */
211 typedef struct KVMDevice {
212     struct kvm_arm_device_addr kda;
213     struct kvm_device_attr kdattr;
214     uint64_t kda_addr_ormask;
215     MemoryRegion *mr;
216     QSLIST_ENTRY(KVMDevice) entries;
217     int dev_fd;
218 } KVMDevice;
219 
220 static QSLIST_HEAD(, KVMDevice) kvm_devices_head;
221 
222 static void kvm_arm_devlistener_add(MemoryListener *listener,
223                                     MemoryRegionSection *section)
224 {
225     KVMDevice *kd;
226 
227     QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
228         if (section->mr == kd->mr) {
229             kd->kda.addr = section->offset_within_address_space;
230         }
231     }
232 }
233 
234 static void kvm_arm_devlistener_del(MemoryListener *listener,
235                                     MemoryRegionSection *section)
236 {
237     KVMDevice *kd;
238 
239     QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
240         if (section->mr == kd->mr) {
241             kd->kda.addr = -1;
242         }
243     }
244 }
245 
246 static MemoryListener devlistener = {
247     .region_add = kvm_arm_devlistener_add,
248     .region_del = kvm_arm_devlistener_del,
249 };
250 
251 static void kvm_arm_set_device_addr(KVMDevice *kd)
252 {
253     struct kvm_device_attr *attr = &kd->kdattr;
254     int ret;
255 
256     /* If the device control API is available and we have a device fd on the
257      * KVMDevice struct, let's use the newer API
258      */
259     if (kd->dev_fd >= 0) {
260         uint64_t addr = kd->kda.addr;
261 
262         addr |= kd->kda_addr_ormask;
263         attr->addr = (uintptr_t)&addr;
264         ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
265     } else {
266         ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
267     }
268 
269     if (ret < 0) {
270         fprintf(stderr, "Failed to set device address: %s\n",
271                 strerror(-ret));
272         abort();
273     }
274 }
275 
276 static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
277 {
278     KVMDevice *kd, *tkd;
279 
280     QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
281         if (kd->kda.addr != -1) {
282             kvm_arm_set_device_addr(kd);
283         }
284         memory_region_unref(kd->mr);
285         QSLIST_REMOVE_HEAD(&kvm_devices_head, entries);
286         g_free(kd);
287     }
288     memory_listener_unregister(&devlistener);
289 }
290 
291 static Notifier notify = {
292     .notify = kvm_arm_machine_init_done,
293 };
294 
295 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
296                              uint64_t attr, int dev_fd, uint64_t addr_ormask)
297 {
298     KVMDevice *kd;
299 
300     if (!kvm_irqchip_in_kernel()) {
301         return;
302     }
303 
304     if (QSLIST_EMPTY(&kvm_devices_head)) {
305         memory_listener_register(&devlistener, &address_space_memory);
306         qemu_add_machine_init_done_notifier(&notify);
307     }
308     kd = g_new0(KVMDevice, 1);
309     kd->mr = mr;
310     kd->kda.id = devid;
311     kd->kda.addr = -1;
312     kd->kdattr.flags = 0;
313     kd->kdattr.group = group;
314     kd->kdattr.attr = attr;
315     kd->dev_fd = dev_fd;
316     kd->kda_addr_ormask = addr_ormask;
317     QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
318     memory_region_ref(kd->mr);
319 }
320 
321 static int compare_u64(const void *a, const void *b)
322 {
323     if (*(uint64_t *)a > *(uint64_t *)b) {
324         return 1;
325     }
326     if (*(uint64_t *)a < *(uint64_t *)b) {
327         return -1;
328     }
329     return 0;
330 }
331 
332 /* Initialize the ARMCPU cpreg list according to the kernel's
333  * definition of what CPU registers it knows about (and throw away
334  * the previous TCG-created cpreg list).
335  */
336 int kvm_arm_init_cpreg_list(ARMCPU *cpu)
337 {
338     struct kvm_reg_list rl;
339     struct kvm_reg_list *rlp;
340     int i, ret, arraylen;
341     CPUState *cs = CPU(cpu);
342 
343     rl.n = 0;
344     ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
345     if (ret != -E2BIG) {
346         return ret;
347     }
348     rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
349     rlp->n = rl.n;
350     ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
351     if (ret) {
352         goto out;
353     }
354     /* Sort the list we get back from the kernel, since cpreg_tuples
355      * must be in strictly ascending order.
356      */
357     qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
358 
359     for (i = 0, arraylen = 0; i < rlp->n; i++) {
360         if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
361             continue;
362         }
363         switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
364         case KVM_REG_SIZE_U32:
365         case KVM_REG_SIZE_U64:
366             break;
367         default:
368             fprintf(stderr, "Can't handle size of register in kernel list\n");
369             ret = -EINVAL;
370             goto out;
371         }
372 
373         arraylen++;
374     }
375 
376     cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
377     cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
378     cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
379                                          arraylen);
380     cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
381                                         arraylen);
382     cpu->cpreg_array_len = arraylen;
383     cpu->cpreg_vmstate_array_len = arraylen;
384 
385     for (i = 0, arraylen = 0; i < rlp->n; i++) {
386         uint64_t regidx = rlp->reg[i];
387         if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
388             continue;
389         }
390         cpu->cpreg_indexes[arraylen] = regidx;
391         arraylen++;
392     }
393     assert(cpu->cpreg_array_len == arraylen);
394 
395     if (!write_kvmstate_to_list(cpu)) {
396         /* Shouldn't happen unless kernel is inconsistent about
397          * what registers exist.
398          */
399         fprintf(stderr, "Initial read of kernel register state failed\n");
400         ret = -EINVAL;
401         goto out;
402     }
403 
404 out:
405     g_free(rlp);
406     return ret;
407 }
408 
409 bool write_kvmstate_to_list(ARMCPU *cpu)
410 {
411     CPUState *cs = CPU(cpu);
412     int i;
413     bool ok = true;
414 
415     for (i = 0; i < cpu->cpreg_array_len; i++) {
416         struct kvm_one_reg r;
417         uint64_t regidx = cpu->cpreg_indexes[i];
418         uint32_t v32;
419         int ret;
420 
421         r.id = regidx;
422 
423         switch (regidx & KVM_REG_SIZE_MASK) {
424         case KVM_REG_SIZE_U32:
425             r.addr = (uintptr_t)&v32;
426             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
427             if (!ret) {
428                 cpu->cpreg_values[i] = v32;
429             }
430             break;
431         case KVM_REG_SIZE_U64:
432             r.addr = (uintptr_t)(cpu->cpreg_values + i);
433             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
434             break;
435         default:
436             abort();
437         }
438         if (ret) {
439             ok = false;
440         }
441     }
442     return ok;
443 }
444 
445 bool write_list_to_kvmstate(ARMCPU *cpu, int level)
446 {
447     CPUState *cs = CPU(cpu);
448     int i;
449     bool ok = true;
450 
451     for (i = 0; i < cpu->cpreg_array_len; i++) {
452         struct kvm_one_reg r;
453         uint64_t regidx = cpu->cpreg_indexes[i];
454         uint32_t v32;
455         int ret;
456 
457         if (kvm_arm_cpreg_level(regidx) > level) {
458             continue;
459         }
460 
461         r.id = regidx;
462         switch (regidx & KVM_REG_SIZE_MASK) {
463         case KVM_REG_SIZE_U32:
464             v32 = cpu->cpreg_values[i];
465             r.addr = (uintptr_t)&v32;
466             break;
467         case KVM_REG_SIZE_U64:
468             r.addr = (uintptr_t)(cpu->cpreg_values + i);
469             break;
470         default:
471             abort();
472         }
473         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
474         if (ret) {
475             /* We might fail for "unknown register" and also for
476              * "you tried to set a register which is constant with
477              * a different value from what it actually contains".
478              */
479             ok = false;
480         }
481     }
482     return ok;
483 }
484 
485 void kvm_arm_reset_vcpu(ARMCPU *cpu)
486 {
487     int ret;
488 
489     /* Re-init VCPU so that all registers are set to
490      * their respective reset values.
491      */
492     ret = kvm_arm_vcpu_init(CPU(cpu));
493     if (ret < 0) {
494         fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
495         abort();
496     }
497     if (!write_kvmstate_to_list(cpu)) {
498         fprintf(stderr, "write_kvmstate_to_list failed\n");
499         abort();
500     }
501     /*
502      * Sync the reset values also into the CPUState. This is necessary
503      * because the next thing we do will be a kvm_arch_put_registers()
504      * which will update the list values from the CPUState before copying
505      * the list values back to KVM. It's OK to ignore failure returns here
506      * for the same reason we do so in kvm_arch_get_registers().
507      */
508     write_list_to_cpustate(cpu);
509 }
510 
511 /*
512  * Update KVM's MP_STATE based on what QEMU thinks it is
513  */
514 int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
515 {
516     if (cap_has_mp_state) {
517         struct kvm_mp_state mp_state = {
518             .mp_state = (cpu->power_state == PSCI_OFF) ?
519             KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
520         };
521         int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
522         if (ret) {
523             fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n",
524                     __func__, ret, strerror(-ret));
525             return -1;
526         }
527     }
528 
529     return 0;
530 }
531 
532 /*
533  * Sync the KVM MP_STATE into QEMU
534  */
535 int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
536 {
537     if (cap_has_mp_state) {
538         struct kvm_mp_state mp_state;
539         int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
540         if (ret) {
541             fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n",
542                     __func__, ret, strerror(-ret));
543             abort();
544         }
545         cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
546             PSCI_OFF : PSCI_ON;
547     }
548 
549     return 0;
550 }
551 
552 int kvm_put_vcpu_events(ARMCPU *cpu)
553 {
554     CPUARMState *env = &cpu->env;
555     struct kvm_vcpu_events events;
556     int ret;
557 
558     if (!kvm_has_vcpu_events()) {
559         return 0;
560     }
561 
562     memset(&events, 0, sizeof(events));
563     events.exception.serror_pending = env->serror.pending;
564 
565     /* Inject SError to guest with specified syndrome if host kernel
566      * supports it, otherwise inject SError without syndrome.
567      */
568     if (cap_has_inject_serror_esr) {
569         events.exception.serror_has_esr = env->serror.has_esr;
570         events.exception.serror_esr = env->serror.esr;
571     }
572 
573     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
574     if (ret) {
575         error_report("failed to put vcpu events");
576     }
577 
578     return ret;
579 }
580 
581 int kvm_get_vcpu_events(ARMCPU *cpu)
582 {
583     CPUARMState *env = &cpu->env;
584     struct kvm_vcpu_events events;
585     int ret;
586 
587     if (!kvm_has_vcpu_events()) {
588         return 0;
589     }
590 
591     memset(&events, 0, sizeof(events));
592     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
593     if (ret) {
594         error_report("failed to get vcpu events");
595         return ret;
596     }
597 
598     env->serror.pending = events.exception.serror_pending;
599     env->serror.has_esr = events.exception.serror_has_esr;
600     env->serror.esr = events.exception.serror_esr;
601 
602     return 0;
603 }
604 
605 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
606 {
607 }
608 
609 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
610 {
611     ARMCPU *cpu;
612     uint32_t switched_level;
613 
614     if (kvm_irqchip_in_kernel()) {
615         /*
616          * We only need to sync timer states with user-space interrupt
617          * controllers, so return early and save cycles if we don't.
618          */
619         return MEMTXATTRS_UNSPECIFIED;
620     }
621 
622     cpu = ARM_CPU(cs);
623 
624     /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
625     if (run->s.regs.device_irq_level != cpu->device_irq_level) {
626         switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
627 
628         qemu_mutex_lock_iothread();
629 
630         if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
631             qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
632                          !!(run->s.regs.device_irq_level &
633                             KVM_ARM_DEV_EL1_VTIMER));
634             switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
635         }
636 
637         if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
638             qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
639                          !!(run->s.regs.device_irq_level &
640                             KVM_ARM_DEV_EL1_PTIMER));
641             switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
642         }
643 
644         if (switched_level & KVM_ARM_DEV_PMU) {
645             qemu_set_irq(cpu->pmu_interrupt,
646                          !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
647             switched_level &= ~KVM_ARM_DEV_PMU;
648         }
649 
650         if (switched_level) {
651             qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
652                           __func__, switched_level);
653         }
654 
655         /* We also mark unknown levels as processed to not waste cycles */
656         cpu->device_irq_level = run->s.regs.device_irq_level;
657         qemu_mutex_unlock_iothread();
658     }
659 
660     return MEMTXATTRS_UNSPECIFIED;
661 }
662 
663 
664 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
665 {
666     int ret = 0;
667 
668     switch (run->exit_reason) {
669     case KVM_EXIT_DEBUG:
670         if (kvm_arm_handle_debug(cs, &run->debug.arch)) {
671             ret = EXCP_DEBUG;
672         } /* otherwise return to guest */
673         break;
674     default:
675         qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
676                       __func__, run->exit_reason);
677         break;
678     }
679     return ret;
680 }
681 
682 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
683 {
684     return true;
685 }
686 
687 int kvm_arch_process_async_events(CPUState *cs)
688 {
689     return 0;
690 }
691 
692 /* The #ifdef protections are until 32bit headers are imported and can
693  * be removed once both 32 and 64 bit reach feature parity.
694  */
695 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
696 {
697 #ifdef KVM_GUESTDBG_USE_SW_BP
698     if (kvm_sw_breakpoints_active(cs)) {
699         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
700     }
701 #endif
702 #ifdef KVM_GUESTDBG_USE_HW
703     if (kvm_arm_hw_debug_active(cs)) {
704         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
705         kvm_arm_copy_hw_debug_data(&dbg->arch);
706     }
707 #endif
708 }
709 
710 void kvm_arch_init_irq_routing(KVMState *s)
711 {
712 }
713 
714 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
715 {
716      if (machine_kernel_irqchip_split(ms)) {
717          perror("-machine kernel_irqchip=split is not supported on ARM.");
718          exit(1);
719     }
720 
721     /* If we can create the VGIC using the newer device control API, we
722      * let the device do this when it initializes itself, otherwise we
723      * fall back to the old API */
724     return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
725 }
726 
727 int kvm_arm_vgic_probe(void)
728 {
729     if (kvm_create_device(kvm_state,
730                           KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
731         return 3;
732     } else if (kvm_create_device(kvm_state,
733                                  KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
734         return 2;
735     } else {
736         return 0;
737     }
738 }
739 
740 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
741                              uint64_t address, uint32_t data, PCIDevice *dev)
742 {
743     AddressSpace *as = pci_device_iommu_address_space(dev);
744     hwaddr xlat, len, doorbell_gpa;
745     MemoryRegionSection mrs;
746     MemoryRegion *mr;
747     int ret = 1;
748 
749     if (as == &address_space_memory) {
750         return 0;
751     }
752 
753     /* MSI doorbell address is translated by an IOMMU */
754 
755     rcu_read_lock();
756     mr = address_space_translate(as, address, &xlat, &len, true,
757                                  MEMTXATTRS_UNSPECIFIED);
758     if (!mr) {
759         goto unlock;
760     }
761     mrs = memory_region_find(mr, xlat, 1);
762     if (!mrs.mr) {
763         goto unlock;
764     }
765 
766     doorbell_gpa = mrs.offset_within_address_space;
767     memory_region_unref(mrs.mr);
768 
769     route->u.msi.address_lo = doorbell_gpa;
770     route->u.msi.address_hi = doorbell_gpa >> 32;
771 
772     trace_kvm_arm_fixup_msi_route(address, doorbell_gpa);
773 
774     ret = 0;
775 
776 unlock:
777     rcu_read_unlock();
778     return ret;
779 }
780 
781 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
782                                 int vector, PCIDevice *dev)
783 {
784     return 0;
785 }
786 
787 int kvm_arch_release_virq_post(int virq)
788 {
789     return 0;
790 }
791 
792 int kvm_arch_msi_data_to_gsi(uint32_t data)
793 {
794     return (data - 32) & 0xffff;
795 }
796