xref: /openbmc/qemu/target/arm/kvm.c (revision d2dfe0b5)
1 /*
2  * ARM implementation of KVM hooks
3  *
4  * Copyright Christoffer Dall 2009-2010
5  *
6  * This work is licensed under the terms of the GNU GPL, version 2 or later.
7  * See the COPYING file in the top-level directory.
8  *
9  */
10 
11 #include "qemu/osdep.h"
12 #include <sys/ioctl.h>
13 
14 #include <linux/kvm.h>
15 
16 #include "qemu/timer.h"
17 #include "qemu/error-report.h"
18 #include "qemu/main-loop.h"
19 #include "qom/object.h"
20 #include "qapi/error.h"
21 #include "sysemu/sysemu.h"
22 #include "sysemu/kvm.h"
23 #include "sysemu/kvm_int.h"
24 #include "kvm_arm.h"
25 #include "cpu.h"
26 #include "trace.h"
27 #include "internals.h"
28 #include "hw/pci/pci.h"
29 #include "exec/memattrs.h"
30 #include "exec/address-spaces.h"
31 #include "hw/boards.h"
32 #include "hw/irq.h"
33 #include "qemu/log.h"
34 
35 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
36     KVM_CAP_LAST_INFO
37 };
38 
39 static bool cap_has_mp_state;
40 static bool cap_has_inject_serror_esr;
41 static bool cap_has_inject_ext_dabt;
42 
43 static ARMHostCPUFeatures arm_host_cpu_features;
44 
45 int kvm_arm_vcpu_init(CPUState *cs)
46 {
47     ARMCPU *cpu = ARM_CPU(cs);
48     struct kvm_vcpu_init init;
49 
50     init.target = cpu->kvm_target;
51     memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
52 
53     return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
54 }
55 
56 int kvm_arm_vcpu_finalize(CPUState *cs, int feature)
57 {
58     return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_FINALIZE, &feature);
59 }
60 
61 void kvm_arm_init_serror_injection(CPUState *cs)
62 {
63     cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state,
64                                     KVM_CAP_ARM_INJECT_SERROR_ESR);
65 }
66 
67 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
68                                       int *fdarray,
69                                       struct kvm_vcpu_init *init)
70 {
71     int ret = 0, kvmfd = -1, vmfd = -1, cpufd = -1;
72     int max_vm_pa_size;
73 
74     kvmfd = qemu_open_old("/dev/kvm", O_RDWR);
75     if (kvmfd < 0) {
76         goto err;
77     }
78     max_vm_pa_size = ioctl(kvmfd, KVM_CHECK_EXTENSION, KVM_CAP_ARM_VM_IPA_SIZE);
79     if (max_vm_pa_size < 0) {
80         max_vm_pa_size = 0;
81     }
82     do {
83         vmfd = ioctl(kvmfd, KVM_CREATE_VM, max_vm_pa_size);
84     } while (vmfd == -1 && errno == EINTR);
85     if (vmfd < 0) {
86         goto err;
87     }
88     cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
89     if (cpufd < 0) {
90         goto err;
91     }
92 
93     if (!init) {
94         /* Caller doesn't want the VCPU to be initialized, so skip it */
95         goto finish;
96     }
97 
98     if (init->target == -1) {
99         struct kvm_vcpu_init preferred;
100 
101         ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, &preferred);
102         if (!ret) {
103             init->target = preferred.target;
104         }
105     }
106     if (ret >= 0) {
107         ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
108         if (ret < 0) {
109             goto err;
110         }
111     } else if (cpus_to_try) {
112         /* Old kernel which doesn't know about the
113          * PREFERRED_TARGET ioctl: we know it will only support
114          * creating one kind of guest CPU which is its preferred
115          * CPU type.
116          */
117         struct kvm_vcpu_init try;
118 
119         while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
120             try.target = *cpus_to_try++;
121             memcpy(try.features, init->features, sizeof(init->features));
122             ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, &try);
123             if (ret >= 0) {
124                 break;
125             }
126         }
127         if (ret < 0) {
128             goto err;
129         }
130         init->target = try.target;
131     } else {
132         /* Treat a NULL cpus_to_try argument the same as an empty
133          * list, which means we will fail the call since this must
134          * be an old kernel which doesn't support PREFERRED_TARGET.
135          */
136         goto err;
137     }
138 
139 finish:
140     fdarray[0] = kvmfd;
141     fdarray[1] = vmfd;
142     fdarray[2] = cpufd;
143 
144     return true;
145 
146 err:
147     if (cpufd >= 0) {
148         close(cpufd);
149     }
150     if (vmfd >= 0) {
151         close(vmfd);
152     }
153     if (kvmfd >= 0) {
154         close(kvmfd);
155     }
156 
157     return false;
158 }
159 
160 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
161 {
162     int i;
163 
164     for (i = 2; i >= 0; i--) {
165         close(fdarray[i]);
166     }
167 }
168 
169 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
170 {
171     CPUARMState *env = &cpu->env;
172 
173     if (!arm_host_cpu_features.dtb_compatible) {
174         if (!kvm_enabled() ||
175             !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) {
176             /* We can't report this error yet, so flag that we need to
177              * in arm_cpu_realizefn().
178              */
179             cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
180             cpu->host_cpu_probe_failed = true;
181             return;
182         }
183     }
184 
185     cpu->kvm_target = arm_host_cpu_features.target;
186     cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
187     cpu->isar = arm_host_cpu_features.isar;
188     env->features = arm_host_cpu_features.features;
189 }
190 
191 static bool kvm_no_adjvtime_get(Object *obj, Error **errp)
192 {
193     return !ARM_CPU(obj)->kvm_adjvtime;
194 }
195 
196 static void kvm_no_adjvtime_set(Object *obj, bool value, Error **errp)
197 {
198     ARM_CPU(obj)->kvm_adjvtime = !value;
199 }
200 
201 static bool kvm_steal_time_get(Object *obj, Error **errp)
202 {
203     return ARM_CPU(obj)->kvm_steal_time != ON_OFF_AUTO_OFF;
204 }
205 
206 static void kvm_steal_time_set(Object *obj, bool value, Error **errp)
207 {
208     ARM_CPU(obj)->kvm_steal_time = value ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
209 }
210 
211 /* KVM VCPU properties should be prefixed with "kvm-". */
212 void kvm_arm_add_vcpu_properties(Object *obj)
213 {
214     ARMCPU *cpu = ARM_CPU(obj);
215     CPUARMState *env = &cpu->env;
216 
217     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
218         cpu->kvm_adjvtime = true;
219         object_property_add_bool(obj, "kvm-no-adjvtime", kvm_no_adjvtime_get,
220                                  kvm_no_adjvtime_set);
221         object_property_set_description(obj, "kvm-no-adjvtime",
222                                         "Set on to disable the adjustment of "
223                                         "the virtual counter. VM stopped time "
224                                         "will be counted.");
225     }
226 
227     cpu->kvm_steal_time = ON_OFF_AUTO_AUTO;
228     object_property_add_bool(obj, "kvm-steal-time", kvm_steal_time_get,
229                              kvm_steal_time_set);
230     object_property_set_description(obj, "kvm-steal-time",
231                                     "Set off to disable KVM steal time.");
232 }
233 
234 bool kvm_arm_pmu_supported(void)
235 {
236     return kvm_check_extension(kvm_state, KVM_CAP_ARM_PMU_V3);
237 }
238 
239 int kvm_arm_get_max_vm_ipa_size(MachineState *ms, bool *fixed_ipa)
240 {
241     KVMState *s = KVM_STATE(ms->accelerator);
242     int ret;
243 
244     ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE);
245     *fixed_ipa = ret <= 0;
246 
247     return ret > 0 ? ret : 40;
248 }
249 
250 int kvm_arch_init(MachineState *ms, KVMState *s)
251 {
252     int ret = 0;
253     /* For ARM interrupt delivery is always asynchronous,
254      * whether we are using an in-kernel VGIC or not.
255      */
256     kvm_async_interrupts_allowed = true;
257 
258     /*
259      * PSCI wakes up secondary cores, so we always need to
260      * have vCPUs waiting in kernel space
261      */
262     kvm_halt_in_kernel_allowed = true;
263 
264     cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
265 
266     if (ms->smp.cpus > 256 &&
267         !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) {
268         error_report("Using more than 256 vcpus requires a host kernel "
269                      "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2");
270         ret = -EINVAL;
271     }
272 
273     if (kvm_check_extension(s, KVM_CAP_ARM_NISV_TO_USER)) {
274         if (kvm_vm_enable_cap(s, KVM_CAP_ARM_NISV_TO_USER, 0)) {
275             error_report("Failed to enable KVM_CAP_ARM_NISV_TO_USER cap");
276         } else {
277             /* Set status for supporting the external dabt injection */
278             cap_has_inject_ext_dabt = kvm_check_extension(s,
279                                     KVM_CAP_ARM_INJECT_EXT_DABT);
280         }
281     }
282 
283     kvm_arm_init_debug(s);
284 
285     return ret;
286 }
287 
288 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
289 {
290     return cpu->cpu_index;
291 }
292 
293 /* We track all the KVM devices which need their memory addresses
294  * passing to the kernel in a list of these structures.
295  * When board init is complete we run through the list and
296  * tell the kernel the base addresses of the memory regions.
297  * We use a MemoryListener to track mapping and unmapping of
298  * the regions during board creation, so the board models don't
299  * need to do anything special for the KVM case.
300  *
301  * Sometimes the address must be OR'ed with some other fields
302  * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
303  * @kda_addr_ormask aims at storing the value of those fields.
304  */
305 typedef struct KVMDevice {
306     struct kvm_arm_device_addr kda;
307     struct kvm_device_attr kdattr;
308     uint64_t kda_addr_ormask;
309     MemoryRegion *mr;
310     QSLIST_ENTRY(KVMDevice) entries;
311     int dev_fd;
312 } KVMDevice;
313 
314 static QSLIST_HEAD(, KVMDevice) kvm_devices_head;
315 
316 static void kvm_arm_devlistener_add(MemoryListener *listener,
317                                     MemoryRegionSection *section)
318 {
319     KVMDevice *kd;
320 
321     QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
322         if (section->mr == kd->mr) {
323             kd->kda.addr = section->offset_within_address_space;
324         }
325     }
326 }
327 
328 static void kvm_arm_devlistener_del(MemoryListener *listener,
329                                     MemoryRegionSection *section)
330 {
331     KVMDevice *kd;
332 
333     QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
334         if (section->mr == kd->mr) {
335             kd->kda.addr = -1;
336         }
337     }
338 }
339 
340 static MemoryListener devlistener = {
341     .name = "kvm-arm",
342     .region_add = kvm_arm_devlistener_add,
343     .region_del = kvm_arm_devlistener_del,
344 };
345 
346 static void kvm_arm_set_device_addr(KVMDevice *kd)
347 {
348     struct kvm_device_attr *attr = &kd->kdattr;
349     int ret;
350 
351     /* If the device control API is available and we have a device fd on the
352      * KVMDevice struct, let's use the newer API
353      */
354     if (kd->dev_fd >= 0) {
355         uint64_t addr = kd->kda.addr;
356 
357         addr |= kd->kda_addr_ormask;
358         attr->addr = (uintptr_t)&addr;
359         ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
360     } else {
361         ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
362     }
363 
364     if (ret < 0) {
365         fprintf(stderr, "Failed to set device address: %s\n",
366                 strerror(-ret));
367         abort();
368     }
369 }
370 
371 static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
372 {
373     KVMDevice *kd, *tkd;
374 
375     QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
376         if (kd->kda.addr != -1) {
377             kvm_arm_set_device_addr(kd);
378         }
379         memory_region_unref(kd->mr);
380         QSLIST_REMOVE_HEAD(&kvm_devices_head, entries);
381         g_free(kd);
382     }
383     memory_listener_unregister(&devlistener);
384 }
385 
386 static Notifier notify = {
387     .notify = kvm_arm_machine_init_done,
388 };
389 
390 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
391                              uint64_t attr, int dev_fd, uint64_t addr_ormask)
392 {
393     KVMDevice *kd;
394 
395     if (!kvm_irqchip_in_kernel()) {
396         return;
397     }
398 
399     if (QSLIST_EMPTY(&kvm_devices_head)) {
400         memory_listener_register(&devlistener, &address_space_memory);
401         qemu_add_machine_init_done_notifier(&notify);
402     }
403     kd = g_new0(KVMDevice, 1);
404     kd->mr = mr;
405     kd->kda.id = devid;
406     kd->kda.addr = -1;
407     kd->kdattr.flags = 0;
408     kd->kdattr.group = group;
409     kd->kdattr.attr = attr;
410     kd->dev_fd = dev_fd;
411     kd->kda_addr_ormask = addr_ormask;
412     QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
413     memory_region_ref(kd->mr);
414 }
415 
416 static int compare_u64(const void *a, const void *b)
417 {
418     if (*(uint64_t *)a > *(uint64_t *)b) {
419         return 1;
420     }
421     if (*(uint64_t *)a < *(uint64_t *)b) {
422         return -1;
423     }
424     return 0;
425 }
426 
427 /*
428  * cpreg_values are sorted in ascending order by KVM register ID
429  * (see kvm_arm_init_cpreg_list). This allows us to cheaply find
430  * the storage for a KVM register by ID with a binary search.
431  */
432 static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx)
433 {
434     uint64_t *res;
435 
436     res = bsearch(&regidx, cpu->cpreg_indexes, cpu->cpreg_array_len,
437                   sizeof(uint64_t), compare_u64);
438     assert(res);
439 
440     return &cpu->cpreg_values[res - cpu->cpreg_indexes];
441 }
442 
443 /* Initialize the ARMCPU cpreg list according to the kernel's
444  * definition of what CPU registers it knows about (and throw away
445  * the previous TCG-created cpreg list).
446  */
447 int kvm_arm_init_cpreg_list(ARMCPU *cpu)
448 {
449     struct kvm_reg_list rl;
450     struct kvm_reg_list *rlp;
451     int i, ret, arraylen;
452     CPUState *cs = CPU(cpu);
453 
454     rl.n = 0;
455     ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
456     if (ret != -E2BIG) {
457         return ret;
458     }
459     rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
460     rlp->n = rl.n;
461     ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
462     if (ret) {
463         goto out;
464     }
465     /* Sort the list we get back from the kernel, since cpreg_tuples
466      * must be in strictly ascending order.
467      */
468     qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
469 
470     for (i = 0, arraylen = 0; i < rlp->n; i++) {
471         if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
472             continue;
473         }
474         switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
475         case KVM_REG_SIZE_U32:
476         case KVM_REG_SIZE_U64:
477             break;
478         default:
479             fprintf(stderr, "Can't handle size of register in kernel list\n");
480             ret = -EINVAL;
481             goto out;
482         }
483 
484         arraylen++;
485     }
486 
487     cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
488     cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
489     cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
490                                          arraylen);
491     cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
492                                         arraylen);
493     cpu->cpreg_array_len = arraylen;
494     cpu->cpreg_vmstate_array_len = arraylen;
495 
496     for (i = 0, arraylen = 0; i < rlp->n; i++) {
497         uint64_t regidx = rlp->reg[i];
498         if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
499             continue;
500         }
501         cpu->cpreg_indexes[arraylen] = regidx;
502         arraylen++;
503     }
504     assert(cpu->cpreg_array_len == arraylen);
505 
506     if (!write_kvmstate_to_list(cpu)) {
507         /* Shouldn't happen unless kernel is inconsistent about
508          * what registers exist.
509          */
510         fprintf(stderr, "Initial read of kernel register state failed\n");
511         ret = -EINVAL;
512         goto out;
513     }
514 
515 out:
516     g_free(rlp);
517     return ret;
518 }
519 
520 bool write_kvmstate_to_list(ARMCPU *cpu)
521 {
522     CPUState *cs = CPU(cpu);
523     int i;
524     bool ok = true;
525 
526     for (i = 0; i < cpu->cpreg_array_len; i++) {
527         struct kvm_one_reg r;
528         uint64_t regidx = cpu->cpreg_indexes[i];
529         uint32_t v32;
530         int ret;
531 
532         r.id = regidx;
533 
534         switch (regidx & KVM_REG_SIZE_MASK) {
535         case KVM_REG_SIZE_U32:
536             r.addr = (uintptr_t)&v32;
537             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
538             if (!ret) {
539                 cpu->cpreg_values[i] = v32;
540             }
541             break;
542         case KVM_REG_SIZE_U64:
543             r.addr = (uintptr_t)(cpu->cpreg_values + i);
544             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
545             break;
546         default:
547             g_assert_not_reached();
548         }
549         if (ret) {
550             ok = false;
551         }
552     }
553     return ok;
554 }
555 
556 bool write_list_to_kvmstate(ARMCPU *cpu, int level)
557 {
558     CPUState *cs = CPU(cpu);
559     int i;
560     bool ok = true;
561 
562     for (i = 0; i < cpu->cpreg_array_len; i++) {
563         struct kvm_one_reg r;
564         uint64_t regidx = cpu->cpreg_indexes[i];
565         uint32_t v32;
566         int ret;
567 
568         if (kvm_arm_cpreg_level(regidx) > level) {
569             continue;
570         }
571 
572         r.id = regidx;
573         switch (regidx & KVM_REG_SIZE_MASK) {
574         case KVM_REG_SIZE_U32:
575             v32 = cpu->cpreg_values[i];
576             r.addr = (uintptr_t)&v32;
577             break;
578         case KVM_REG_SIZE_U64:
579             r.addr = (uintptr_t)(cpu->cpreg_values + i);
580             break;
581         default:
582             g_assert_not_reached();
583         }
584         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
585         if (ret) {
586             /* We might fail for "unknown register" and also for
587              * "you tried to set a register which is constant with
588              * a different value from what it actually contains".
589              */
590             ok = false;
591         }
592     }
593     return ok;
594 }
595 
596 void kvm_arm_cpu_pre_save(ARMCPU *cpu)
597 {
598     /* KVM virtual time adjustment */
599     if (cpu->kvm_vtime_dirty) {
600         *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT) = cpu->kvm_vtime;
601     }
602 }
603 
604 void kvm_arm_cpu_post_load(ARMCPU *cpu)
605 {
606     /* KVM virtual time adjustment */
607     if (cpu->kvm_adjvtime) {
608         cpu->kvm_vtime = *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT);
609         cpu->kvm_vtime_dirty = true;
610     }
611 }
612 
613 void kvm_arm_reset_vcpu(ARMCPU *cpu)
614 {
615     int ret;
616 
617     /* Re-init VCPU so that all registers are set to
618      * their respective reset values.
619      */
620     ret = kvm_arm_vcpu_init(CPU(cpu));
621     if (ret < 0) {
622         fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
623         abort();
624     }
625     if (!write_kvmstate_to_list(cpu)) {
626         fprintf(stderr, "write_kvmstate_to_list failed\n");
627         abort();
628     }
629     /*
630      * Sync the reset values also into the CPUState. This is necessary
631      * because the next thing we do will be a kvm_arch_put_registers()
632      * which will update the list values from the CPUState before copying
633      * the list values back to KVM. It's OK to ignore failure returns here
634      * for the same reason we do so in kvm_arch_get_registers().
635      */
636     write_list_to_cpustate(cpu);
637 }
638 
639 /*
640  * Update KVM's MP_STATE based on what QEMU thinks it is
641  */
642 int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
643 {
644     if (cap_has_mp_state) {
645         struct kvm_mp_state mp_state = {
646             .mp_state = (cpu->power_state == PSCI_OFF) ?
647             KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
648         };
649         int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
650         if (ret) {
651             fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n",
652                     __func__, ret, strerror(-ret));
653             return -1;
654         }
655     }
656 
657     return 0;
658 }
659 
660 /*
661  * Sync the KVM MP_STATE into QEMU
662  */
663 int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
664 {
665     if (cap_has_mp_state) {
666         struct kvm_mp_state mp_state;
667         int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
668         if (ret) {
669             fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n",
670                     __func__, ret, strerror(-ret));
671             abort();
672         }
673         cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
674             PSCI_OFF : PSCI_ON;
675     }
676 
677     return 0;
678 }
679 
680 void kvm_arm_get_virtual_time(CPUState *cs)
681 {
682     ARMCPU *cpu = ARM_CPU(cs);
683     struct kvm_one_reg reg = {
684         .id = KVM_REG_ARM_TIMER_CNT,
685         .addr = (uintptr_t)&cpu->kvm_vtime,
686     };
687     int ret;
688 
689     if (cpu->kvm_vtime_dirty) {
690         return;
691     }
692 
693     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
694     if (ret) {
695         error_report("Failed to get KVM_REG_ARM_TIMER_CNT");
696         abort();
697     }
698 
699     cpu->kvm_vtime_dirty = true;
700 }
701 
702 void kvm_arm_put_virtual_time(CPUState *cs)
703 {
704     ARMCPU *cpu = ARM_CPU(cs);
705     struct kvm_one_reg reg = {
706         .id = KVM_REG_ARM_TIMER_CNT,
707         .addr = (uintptr_t)&cpu->kvm_vtime,
708     };
709     int ret;
710 
711     if (!cpu->kvm_vtime_dirty) {
712         return;
713     }
714 
715     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
716     if (ret) {
717         error_report("Failed to set KVM_REG_ARM_TIMER_CNT");
718         abort();
719     }
720 
721     cpu->kvm_vtime_dirty = false;
722 }
723 
724 int kvm_put_vcpu_events(ARMCPU *cpu)
725 {
726     CPUARMState *env = &cpu->env;
727     struct kvm_vcpu_events events;
728     int ret;
729 
730     if (!kvm_has_vcpu_events()) {
731         return 0;
732     }
733 
734     memset(&events, 0, sizeof(events));
735     events.exception.serror_pending = env->serror.pending;
736 
737     /* Inject SError to guest with specified syndrome if host kernel
738      * supports it, otherwise inject SError without syndrome.
739      */
740     if (cap_has_inject_serror_esr) {
741         events.exception.serror_has_esr = env->serror.has_esr;
742         events.exception.serror_esr = env->serror.esr;
743     }
744 
745     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
746     if (ret) {
747         error_report("failed to put vcpu events");
748     }
749 
750     return ret;
751 }
752 
753 int kvm_get_vcpu_events(ARMCPU *cpu)
754 {
755     CPUARMState *env = &cpu->env;
756     struct kvm_vcpu_events events;
757     int ret;
758 
759     if (!kvm_has_vcpu_events()) {
760         return 0;
761     }
762 
763     memset(&events, 0, sizeof(events));
764     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
765     if (ret) {
766         error_report("failed to get vcpu events");
767         return ret;
768     }
769 
770     env->serror.pending = events.exception.serror_pending;
771     env->serror.has_esr = events.exception.serror_has_esr;
772     env->serror.esr = events.exception.serror_esr;
773 
774     return 0;
775 }
776 
777 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
778 {
779     ARMCPU *cpu = ARM_CPU(cs);
780     CPUARMState *env = &cpu->env;
781 
782     if (unlikely(env->ext_dabt_raised)) {
783         /*
784          * Verifying that the ext DABT has been properly injected,
785          * otherwise risking indefinitely re-running the faulting instruction
786          * Covering a very narrow case for kernels 5.5..5.5.4
787          * when injected abort was misconfigured to be
788          * an IMPLEMENTATION DEFINED exception (for 32-bit EL1)
789          */
790         if (!arm_feature(env, ARM_FEATURE_AARCH64) &&
791             unlikely(!kvm_arm_verify_ext_dabt_pending(cs))) {
792 
793             error_report("Data abort exception with no valid ISS generated by "
794                    "guest memory access. KVM unable to emulate faulting "
795                    "instruction. Failed to inject an external data abort "
796                    "into the guest.");
797             abort();
798        }
799        /* Clear the status */
800        env->ext_dabt_raised = 0;
801     }
802 }
803 
804 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
805 {
806     ARMCPU *cpu;
807     uint32_t switched_level;
808 
809     if (kvm_irqchip_in_kernel()) {
810         /*
811          * We only need to sync timer states with user-space interrupt
812          * controllers, so return early and save cycles if we don't.
813          */
814         return MEMTXATTRS_UNSPECIFIED;
815     }
816 
817     cpu = ARM_CPU(cs);
818 
819     /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
820     if (run->s.regs.device_irq_level != cpu->device_irq_level) {
821         switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
822 
823         qemu_mutex_lock_iothread();
824 
825         if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
826             qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
827                          !!(run->s.regs.device_irq_level &
828                             KVM_ARM_DEV_EL1_VTIMER));
829             switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
830         }
831 
832         if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
833             qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
834                          !!(run->s.regs.device_irq_level &
835                             KVM_ARM_DEV_EL1_PTIMER));
836             switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
837         }
838 
839         if (switched_level & KVM_ARM_DEV_PMU) {
840             qemu_set_irq(cpu->pmu_interrupt,
841                          !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
842             switched_level &= ~KVM_ARM_DEV_PMU;
843         }
844 
845         if (switched_level) {
846             qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
847                           __func__, switched_level);
848         }
849 
850         /* We also mark unknown levels as processed to not waste cycles */
851         cpu->device_irq_level = run->s.regs.device_irq_level;
852         qemu_mutex_unlock_iothread();
853     }
854 
855     return MEMTXATTRS_UNSPECIFIED;
856 }
857 
858 void kvm_arm_vm_state_change(void *opaque, bool running, RunState state)
859 {
860     CPUState *cs = opaque;
861     ARMCPU *cpu = ARM_CPU(cs);
862 
863     if (running) {
864         if (cpu->kvm_adjvtime) {
865             kvm_arm_put_virtual_time(cs);
866         }
867     } else {
868         if (cpu->kvm_adjvtime) {
869             kvm_arm_get_virtual_time(cs);
870         }
871     }
872 }
873 
874 /**
875  * kvm_arm_handle_dabt_nisv:
876  * @cs: CPUState
877  * @esr_iss: ISS encoding (limited) for the exception from Data Abort
878  *           ISV bit set to '0b0' -> no valid instruction syndrome
879  * @fault_ipa: faulting address for the synchronous data abort
880  *
881  * Returns: 0 if the exception has been handled, < 0 otherwise
882  */
883 static int kvm_arm_handle_dabt_nisv(CPUState *cs, uint64_t esr_iss,
884                                     uint64_t fault_ipa)
885 {
886     ARMCPU *cpu = ARM_CPU(cs);
887     CPUARMState *env = &cpu->env;
888     /*
889      * Request KVM to inject the external data abort into the guest
890      */
891     if (cap_has_inject_ext_dabt) {
892         struct kvm_vcpu_events events = { };
893         /*
894          * The external data abort event will be handled immediately by KVM
895          * using the address fault that triggered the exit on given VCPU.
896          * Requesting injection of the external data abort does not rely
897          * on any other VCPU state. Therefore, in this particular case, the VCPU
898          * synchronization can be exceptionally skipped.
899          */
900         events.exception.ext_dabt_pending = 1;
901         /* KVM_CAP_ARM_INJECT_EXT_DABT implies KVM_CAP_VCPU_EVENTS */
902         if (!kvm_vcpu_ioctl(cs, KVM_SET_VCPU_EVENTS, &events)) {
903             env->ext_dabt_raised = 1;
904             return 0;
905         }
906     } else {
907         error_report("Data abort exception triggered by guest memory access "
908                      "at physical address: 0x"  TARGET_FMT_lx,
909                      (target_ulong)fault_ipa);
910         error_printf("KVM unable to emulate faulting instruction.\n");
911     }
912     return -1;
913 }
914 
915 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
916 {
917     int ret = 0;
918 
919     switch (run->exit_reason) {
920     case KVM_EXIT_DEBUG:
921         if (kvm_arm_handle_debug(cs, &run->debug.arch)) {
922             ret = EXCP_DEBUG;
923         } /* otherwise return to guest */
924         break;
925     case KVM_EXIT_ARM_NISV:
926         /* External DABT with no valid iss to decode */
927         ret = kvm_arm_handle_dabt_nisv(cs, run->arm_nisv.esr_iss,
928                                        run->arm_nisv.fault_ipa);
929         break;
930     default:
931         qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
932                       __func__, run->exit_reason);
933         break;
934     }
935     return ret;
936 }
937 
938 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
939 {
940     return true;
941 }
942 
943 int kvm_arch_process_async_events(CPUState *cs)
944 {
945     return 0;
946 }
947 
948 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
949 {
950     if (kvm_sw_breakpoints_active(cs)) {
951         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
952     }
953     if (kvm_arm_hw_debug_active(cs)) {
954         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
955         kvm_arm_copy_hw_debug_data(&dbg->arch);
956     }
957 }
958 
959 void kvm_arch_init_irq_routing(KVMState *s)
960 {
961 }
962 
963 int kvm_arch_irqchip_create(KVMState *s)
964 {
965     if (kvm_kernel_irqchip_split()) {
966         error_report("-machine kernel_irqchip=split is not supported on ARM.");
967         exit(1);
968     }
969 
970     /* If we can create the VGIC using the newer device control API, we
971      * let the device do this when it initializes itself, otherwise we
972      * fall back to the old API */
973     return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
974 }
975 
976 int kvm_arm_vgic_probe(void)
977 {
978     int val = 0;
979 
980     if (kvm_create_device(kvm_state,
981                           KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
982         val |= KVM_ARM_VGIC_V3;
983     }
984     if (kvm_create_device(kvm_state,
985                           KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
986         val |= KVM_ARM_VGIC_V2;
987     }
988     return val;
989 }
990 
991 int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level)
992 {
993     int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq;
994     int cpu_idx1 = cpu % 256;
995     int cpu_idx2 = cpu / 256;
996 
997     kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) |
998                (cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT);
999 
1000     return kvm_set_irq(kvm_state, kvm_irq, !!level);
1001 }
1002 
1003 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
1004                              uint64_t address, uint32_t data, PCIDevice *dev)
1005 {
1006     AddressSpace *as = pci_device_iommu_address_space(dev);
1007     hwaddr xlat, len, doorbell_gpa;
1008     MemoryRegionSection mrs;
1009     MemoryRegion *mr;
1010 
1011     if (as == &address_space_memory) {
1012         return 0;
1013     }
1014 
1015     /* MSI doorbell address is translated by an IOMMU */
1016 
1017     RCU_READ_LOCK_GUARD();
1018 
1019     mr = address_space_translate(as, address, &xlat, &len, true,
1020                                  MEMTXATTRS_UNSPECIFIED);
1021 
1022     if (!mr) {
1023         return 1;
1024     }
1025 
1026     mrs = memory_region_find(mr, xlat, 1);
1027 
1028     if (!mrs.mr) {
1029         return 1;
1030     }
1031 
1032     doorbell_gpa = mrs.offset_within_address_space;
1033     memory_region_unref(mrs.mr);
1034 
1035     route->u.msi.address_lo = doorbell_gpa;
1036     route->u.msi.address_hi = doorbell_gpa >> 32;
1037 
1038     trace_kvm_arm_fixup_msi_route(address, doorbell_gpa);
1039 
1040     return 0;
1041 }
1042 
1043 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
1044                                 int vector, PCIDevice *dev)
1045 {
1046     return 0;
1047 }
1048 
1049 int kvm_arch_release_virq_post(int virq)
1050 {
1051     return 0;
1052 }
1053 
1054 int kvm_arch_msi_data_to_gsi(uint32_t data)
1055 {
1056     return (data - 32) & 0xffff;
1057 }
1058 
1059 bool kvm_arch_cpu_check_are_resettable(void)
1060 {
1061     return true;
1062 }
1063 
1064 void kvm_arch_accel_class_init(ObjectClass *oc)
1065 {
1066 }
1067