1 /* 2 * ARM implementation of KVM hooks 3 * 4 * Copyright Christoffer Dall 2009-2010 5 * 6 * This work is licensed under the terms of the GNU GPL, version 2 or later. 7 * See the COPYING file in the top-level directory. 8 * 9 */ 10 11 #include "qemu/osdep.h" 12 #include <sys/ioctl.h> 13 14 #include <linux/kvm.h> 15 16 #include "qemu-common.h" 17 #include "qemu/timer.h" 18 #include "qemu/error-report.h" 19 #include "sysemu/sysemu.h" 20 #include "sysemu/kvm.h" 21 #include "sysemu/kvm_int.h" 22 #include "kvm_arm.h" 23 #include "cpu.h" 24 #include "trace.h" 25 #include "internals.h" 26 #include "hw/arm/arm.h" 27 #include "hw/pci/pci.h" 28 #include "exec/memattrs.h" 29 #include "exec/address-spaces.h" 30 #include "hw/boards.h" 31 #include "qemu/log.h" 32 33 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 34 KVM_CAP_LAST_INFO 35 }; 36 37 static bool cap_has_mp_state; 38 static bool cap_has_inject_serror_esr; 39 40 static ARMHostCPUFeatures arm_host_cpu_features; 41 42 int kvm_arm_vcpu_init(CPUState *cs) 43 { 44 ARMCPU *cpu = ARM_CPU(cs); 45 struct kvm_vcpu_init init; 46 47 init.target = cpu->kvm_target; 48 memcpy(init.features, cpu->kvm_init_features, sizeof(init.features)); 49 50 return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init); 51 } 52 53 void kvm_arm_init_serror_injection(CPUState *cs) 54 { 55 cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state, 56 KVM_CAP_ARM_INJECT_SERROR_ESR); 57 } 58 59 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try, 60 int *fdarray, 61 struct kvm_vcpu_init *init) 62 { 63 int ret, kvmfd = -1, vmfd = -1, cpufd = -1; 64 65 kvmfd = qemu_open("/dev/kvm", O_RDWR); 66 if (kvmfd < 0) { 67 goto err; 68 } 69 vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0); 70 if (vmfd < 0) { 71 goto err; 72 } 73 cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0); 74 if (cpufd < 0) { 75 goto err; 76 } 77 78 if (!init) { 79 /* Caller doesn't want the VCPU to be initialized, so skip it */ 80 goto finish; 81 } 82 83 ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, init); 84 if (ret >= 0) { 85 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init); 86 if (ret < 0) { 87 goto err; 88 } 89 } else if (cpus_to_try) { 90 /* Old kernel which doesn't know about the 91 * PREFERRED_TARGET ioctl: we know it will only support 92 * creating one kind of guest CPU which is its preferred 93 * CPU type. 94 */ 95 while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) { 96 init->target = *cpus_to_try++; 97 memset(init->features, 0, sizeof(init->features)); 98 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init); 99 if (ret >= 0) { 100 break; 101 } 102 } 103 if (ret < 0) { 104 goto err; 105 } 106 } else { 107 /* Treat a NULL cpus_to_try argument the same as an empty 108 * list, which means we will fail the call since this must 109 * be an old kernel which doesn't support PREFERRED_TARGET. 110 */ 111 goto err; 112 } 113 114 finish: 115 fdarray[0] = kvmfd; 116 fdarray[1] = vmfd; 117 fdarray[2] = cpufd; 118 119 return true; 120 121 err: 122 if (cpufd >= 0) { 123 close(cpufd); 124 } 125 if (vmfd >= 0) { 126 close(vmfd); 127 } 128 if (kvmfd >= 0) { 129 close(kvmfd); 130 } 131 132 return false; 133 } 134 135 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray) 136 { 137 int i; 138 139 for (i = 2; i >= 0; i--) { 140 close(fdarray[i]); 141 } 142 } 143 144 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu) 145 { 146 CPUARMState *env = &cpu->env; 147 148 if (!arm_host_cpu_features.dtb_compatible) { 149 if (!kvm_enabled() || 150 !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) { 151 /* We can't report this error yet, so flag that we need to 152 * in arm_cpu_realizefn(). 153 */ 154 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE; 155 cpu->host_cpu_probe_failed = true; 156 return; 157 } 158 } 159 160 cpu->kvm_target = arm_host_cpu_features.target; 161 cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible; 162 cpu->isar = arm_host_cpu_features.isar; 163 env->features = arm_host_cpu_features.features; 164 } 165 166 int kvm_arm_get_max_vm_ipa_size(MachineState *ms) 167 { 168 KVMState *s = KVM_STATE(ms->accelerator); 169 int ret; 170 171 ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE); 172 return ret > 0 ? ret : 40; 173 } 174 175 int kvm_arch_init(MachineState *ms, KVMState *s) 176 { 177 /* For ARM interrupt delivery is always asynchronous, 178 * whether we are using an in-kernel VGIC or not. 179 */ 180 kvm_async_interrupts_allowed = true; 181 182 /* 183 * PSCI wakes up secondary cores, so we always need to 184 * have vCPUs waiting in kernel space 185 */ 186 kvm_halt_in_kernel_allowed = true; 187 188 cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE); 189 190 return 0; 191 } 192 193 unsigned long kvm_arch_vcpu_id(CPUState *cpu) 194 { 195 return cpu->cpu_index; 196 } 197 198 /* We track all the KVM devices which need their memory addresses 199 * passing to the kernel in a list of these structures. 200 * When board init is complete we run through the list and 201 * tell the kernel the base addresses of the memory regions. 202 * We use a MemoryListener to track mapping and unmapping of 203 * the regions during board creation, so the board models don't 204 * need to do anything special for the KVM case. 205 * 206 * Sometimes the address must be OR'ed with some other fields 207 * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION). 208 * @kda_addr_ormask aims at storing the value of those fields. 209 */ 210 typedef struct KVMDevice { 211 struct kvm_arm_device_addr kda; 212 struct kvm_device_attr kdattr; 213 uint64_t kda_addr_ormask; 214 MemoryRegion *mr; 215 QSLIST_ENTRY(KVMDevice) entries; 216 int dev_fd; 217 } KVMDevice; 218 219 static QSLIST_HEAD(, KVMDevice) kvm_devices_head; 220 221 static void kvm_arm_devlistener_add(MemoryListener *listener, 222 MemoryRegionSection *section) 223 { 224 KVMDevice *kd; 225 226 QSLIST_FOREACH(kd, &kvm_devices_head, entries) { 227 if (section->mr == kd->mr) { 228 kd->kda.addr = section->offset_within_address_space; 229 } 230 } 231 } 232 233 static void kvm_arm_devlistener_del(MemoryListener *listener, 234 MemoryRegionSection *section) 235 { 236 KVMDevice *kd; 237 238 QSLIST_FOREACH(kd, &kvm_devices_head, entries) { 239 if (section->mr == kd->mr) { 240 kd->kda.addr = -1; 241 } 242 } 243 } 244 245 static MemoryListener devlistener = { 246 .region_add = kvm_arm_devlistener_add, 247 .region_del = kvm_arm_devlistener_del, 248 }; 249 250 static void kvm_arm_set_device_addr(KVMDevice *kd) 251 { 252 struct kvm_device_attr *attr = &kd->kdattr; 253 int ret; 254 255 /* If the device control API is available and we have a device fd on the 256 * KVMDevice struct, let's use the newer API 257 */ 258 if (kd->dev_fd >= 0) { 259 uint64_t addr = kd->kda.addr; 260 261 addr |= kd->kda_addr_ormask; 262 attr->addr = (uintptr_t)&addr; 263 ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr); 264 } else { 265 ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda); 266 } 267 268 if (ret < 0) { 269 fprintf(stderr, "Failed to set device address: %s\n", 270 strerror(-ret)); 271 abort(); 272 } 273 } 274 275 static void kvm_arm_machine_init_done(Notifier *notifier, void *data) 276 { 277 KVMDevice *kd, *tkd; 278 279 QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) { 280 if (kd->kda.addr != -1) { 281 kvm_arm_set_device_addr(kd); 282 } 283 memory_region_unref(kd->mr); 284 QSLIST_REMOVE_HEAD(&kvm_devices_head, entries); 285 g_free(kd); 286 } 287 memory_listener_unregister(&devlistener); 288 } 289 290 static Notifier notify = { 291 .notify = kvm_arm_machine_init_done, 292 }; 293 294 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group, 295 uint64_t attr, int dev_fd, uint64_t addr_ormask) 296 { 297 KVMDevice *kd; 298 299 if (!kvm_irqchip_in_kernel()) { 300 return; 301 } 302 303 if (QSLIST_EMPTY(&kvm_devices_head)) { 304 memory_listener_register(&devlistener, &address_space_memory); 305 qemu_add_machine_init_done_notifier(¬ify); 306 } 307 kd = g_new0(KVMDevice, 1); 308 kd->mr = mr; 309 kd->kda.id = devid; 310 kd->kda.addr = -1; 311 kd->kdattr.flags = 0; 312 kd->kdattr.group = group; 313 kd->kdattr.attr = attr; 314 kd->dev_fd = dev_fd; 315 kd->kda_addr_ormask = addr_ormask; 316 QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries); 317 memory_region_ref(kd->mr); 318 } 319 320 static int compare_u64(const void *a, const void *b) 321 { 322 if (*(uint64_t *)a > *(uint64_t *)b) { 323 return 1; 324 } 325 if (*(uint64_t *)a < *(uint64_t *)b) { 326 return -1; 327 } 328 return 0; 329 } 330 331 /* Initialize the ARMCPU cpreg list according to the kernel's 332 * definition of what CPU registers it knows about (and throw away 333 * the previous TCG-created cpreg list). 334 */ 335 int kvm_arm_init_cpreg_list(ARMCPU *cpu) 336 { 337 struct kvm_reg_list rl; 338 struct kvm_reg_list *rlp; 339 int i, ret, arraylen; 340 CPUState *cs = CPU(cpu); 341 342 rl.n = 0; 343 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl); 344 if (ret != -E2BIG) { 345 return ret; 346 } 347 rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t)); 348 rlp->n = rl.n; 349 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp); 350 if (ret) { 351 goto out; 352 } 353 /* Sort the list we get back from the kernel, since cpreg_tuples 354 * must be in strictly ascending order. 355 */ 356 qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64); 357 358 for (i = 0, arraylen = 0; i < rlp->n; i++) { 359 if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) { 360 continue; 361 } 362 switch (rlp->reg[i] & KVM_REG_SIZE_MASK) { 363 case KVM_REG_SIZE_U32: 364 case KVM_REG_SIZE_U64: 365 break; 366 default: 367 fprintf(stderr, "Can't handle size of register in kernel list\n"); 368 ret = -EINVAL; 369 goto out; 370 } 371 372 arraylen++; 373 } 374 375 cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen); 376 cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen); 377 cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes, 378 arraylen); 379 cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values, 380 arraylen); 381 cpu->cpreg_array_len = arraylen; 382 cpu->cpreg_vmstate_array_len = arraylen; 383 384 for (i = 0, arraylen = 0; i < rlp->n; i++) { 385 uint64_t regidx = rlp->reg[i]; 386 if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) { 387 continue; 388 } 389 cpu->cpreg_indexes[arraylen] = regidx; 390 arraylen++; 391 } 392 assert(cpu->cpreg_array_len == arraylen); 393 394 if (!write_kvmstate_to_list(cpu)) { 395 /* Shouldn't happen unless kernel is inconsistent about 396 * what registers exist. 397 */ 398 fprintf(stderr, "Initial read of kernel register state failed\n"); 399 ret = -EINVAL; 400 goto out; 401 } 402 403 out: 404 g_free(rlp); 405 return ret; 406 } 407 408 bool write_kvmstate_to_list(ARMCPU *cpu) 409 { 410 CPUState *cs = CPU(cpu); 411 int i; 412 bool ok = true; 413 414 for (i = 0; i < cpu->cpreg_array_len; i++) { 415 struct kvm_one_reg r; 416 uint64_t regidx = cpu->cpreg_indexes[i]; 417 uint32_t v32; 418 int ret; 419 420 r.id = regidx; 421 422 switch (regidx & KVM_REG_SIZE_MASK) { 423 case KVM_REG_SIZE_U32: 424 r.addr = (uintptr_t)&v32; 425 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); 426 if (!ret) { 427 cpu->cpreg_values[i] = v32; 428 } 429 break; 430 case KVM_REG_SIZE_U64: 431 r.addr = (uintptr_t)(cpu->cpreg_values + i); 432 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); 433 break; 434 default: 435 abort(); 436 } 437 if (ret) { 438 ok = false; 439 } 440 } 441 return ok; 442 } 443 444 bool write_list_to_kvmstate(ARMCPU *cpu, int level) 445 { 446 CPUState *cs = CPU(cpu); 447 int i; 448 bool ok = true; 449 450 for (i = 0; i < cpu->cpreg_array_len; i++) { 451 struct kvm_one_reg r; 452 uint64_t regidx = cpu->cpreg_indexes[i]; 453 uint32_t v32; 454 int ret; 455 456 if (kvm_arm_cpreg_level(regidx) > level) { 457 continue; 458 } 459 460 r.id = regidx; 461 switch (regidx & KVM_REG_SIZE_MASK) { 462 case KVM_REG_SIZE_U32: 463 v32 = cpu->cpreg_values[i]; 464 r.addr = (uintptr_t)&v32; 465 break; 466 case KVM_REG_SIZE_U64: 467 r.addr = (uintptr_t)(cpu->cpreg_values + i); 468 break; 469 default: 470 abort(); 471 } 472 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); 473 if (ret) { 474 /* We might fail for "unknown register" and also for 475 * "you tried to set a register which is constant with 476 * a different value from what it actually contains". 477 */ 478 ok = false; 479 } 480 } 481 return ok; 482 } 483 484 void kvm_arm_reset_vcpu(ARMCPU *cpu) 485 { 486 int ret; 487 488 /* Re-init VCPU so that all registers are set to 489 * their respective reset values. 490 */ 491 ret = kvm_arm_vcpu_init(CPU(cpu)); 492 if (ret < 0) { 493 fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret)); 494 abort(); 495 } 496 if (!write_kvmstate_to_list(cpu)) { 497 fprintf(stderr, "write_kvmstate_to_list failed\n"); 498 abort(); 499 } 500 /* 501 * Sync the reset values also into the CPUState. This is necessary 502 * because the next thing we do will be a kvm_arch_put_registers() 503 * which will update the list values from the CPUState before copying 504 * the list values back to KVM. It's OK to ignore failure returns here 505 * for the same reason we do so in kvm_arch_get_registers(). 506 */ 507 write_list_to_cpustate(cpu); 508 } 509 510 /* 511 * Update KVM's MP_STATE based on what QEMU thinks it is 512 */ 513 int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu) 514 { 515 if (cap_has_mp_state) { 516 struct kvm_mp_state mp_state = { 517 .mp_state = (cpu->power_state == PSCI_OFF) ? 518 KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE 519 }; 520 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); 521 if (ret) { 522 fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n", 523 __func__, ret, strerror(-ret)); 524 return -1; 525 } 526 } 527 528 return 0; 529 } 530 531 /* 532 * Sync the KVM MP_STATE into QEMU 533 */ 534 int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu) 535 { 536 if (cap_has_mp_state) { 537 struct kvm_mp_state mp_state; 538 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state); 539 if (ret) { 540 fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n", 541 __func__, ret, strerror(-ret)); 542 abort(); 543 } 544 cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ? 545 PSCI_OFF : PSCI_ON; 546 } 547 548 return 0; 549 } 550 551 int kvm_put_vcpu_events(ARMCPU *cpu) 552 { 553 CPUARMState *env = &cpu->env; 554 struct kvm_vcpu_events events; 555 int ret; 556 557 if (!kvm_has_vcpu_events()) { 558 return 0; 559 } 560 561 memset(&events, 0, sizeof(events)); 562 events.exception.serror_pending = env->serror.pending; 563 564 /* Inject SError to guest with specified syndrome if host kernel 565 * supports it, otherwise inject SError without syndrome. 566 */ 567 if (cap_has_inject_serror_esr) { 568 events.exception.serror_has_esr = env->serror.has_esr; 569 events.exception.serror_esr = env->serror.esr; 570 } 571 572 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); 573 if (ret) { 574 error_report("failed to put vcpu events"); 575 } 576 577 return ret; 578 } 579 580 int kvm_get_vcpu_events(ARMCPU *cpu) 581 { 582 CPUARMState *env = &cpu->env; 583 struct kvm_vcpu_events events; 584 int ret; 585 586 if (!kvm_has_vcpu_events()) { 587 return 0; 588 } 589 590 memset(&events, 0, sizeof(events)); 591 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); 592 if (ret) { 593 error_report("failed to get vcpu events"); 594 return ret; 595 } 596 597 env->serror.pending = events.exception.serror_pending; 598 env->serror.has_esr = events.exception.serror_has_esr; 599 env->serror.esr = events.exception.serror_esr; 600 601 return 0; 602 } 603 604 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run) 605 { 606 } 607 608 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) 609 { 610 ARMCPU *cpu; 611 uint32_t switched_level; 612 613 if (kvm_irqchip_in_kernel()) { 614 /* 615 * We only need to sync timer states with user-space interrupt 616 * controllers, so return early and save cycles if we don't. 617 */ 618 return MEMTXATTRS_UNSPECIFIED; 619 } 620 621 cpu = ARM_CPU(cs); 622 623 /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */ 624 if (run->s.regs.device_irq_level != cpu->device_irq_level) { 625 switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level; 626 627 qemu_mutex_lock_iothread(); 628 629 if (switched_level & KVM_ARM_DEV_EL1_VTIMER) { 630 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT], 631 !!(run->s.regs.device_irq_level & 632 KVM_ARM_DEV_EL1_VTIMER)); 633 switched_level &= ~KVM_ARM_DEV_EL1_VTIMER; 634 } 635 636 if (switched_level & KVM_ARM_DEV_EL1_PTIMER) { 637 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS], 638 !!(run->s.regs.device_irq_level & 639 KVM_ARM_DEV_EL1_PTIMER)); 640 switched_level &= ~KVM_ARM_DEV_EL1_PTIMER; 641 } 642 643 if (switched_level & KVM_ARM_DEV_PMU) { 644 qemu_set_irq(cpu->pmu_interrupt, 645 !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU)); 646 switched_level &= ~KVM_ARM_DEV_PMU; 647 } 648 649 if (switched_level) { 650 qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n", 651 __func__, switched_level); 652 } 653 654 /* We also mark unknown levels as processed to not waste cycles */ 655 cpu->device_irq_level = run->s.regs.device_irq_level; 656 qemu_mutex_unlock_iothread(); 657 } 658 659 return MEMTXATTRS_UNSPECIFIED; 660 } 661 662 663 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 664 { 665 int ret = 0; 666 667 switch (run->exit_reason) { 668 case KVM_EXIT_DEBUG: 669 if (kvm_arm_handle_debug(cs, &run->debug.arch)) { 670 ret = EXCP_DEBUG; 671 } /* otherwise return to guest */ 672 break; 673 default: 674 qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n", 675 __func__, run->exit_reason); 676 break; 677 } 678 return ret; 679 } 680 681 bool kvm_arch_stop_on_emulation_error(CPUState *cs) 682 { 683 return true; 684 } 685 686 int kvm_arch_process_async_events(CPUState *cs) 687 { 688 return 0; 689 } 690 691 /* The #ifdef protections are until 32bit headers are imported and can 692 * be removed once both 32 and 64 bit reach feature parity. 693 */ 694 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg) 695 { 696 #ifdef KVM_GUESTDBG_USE_SW_BP 697 if (kvm_sw_breakpoints_active(cs)) { 698 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; 699 } 700 #endif 701 #ifdef KVM_GUESTDBG_USE_HW 702 if (kvm_arm_hw_debug_active(cs)) { 703 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW; 704 kvm_arm_copy_hw_debug_data(&dbg->arch); 705 } 706 #endif 707 } 708 709 void kvm_arch_init_irq_routing(KVMState *s) 710 { 711 } 712 713 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s) 714 { 715 if (machine_kernel_irqchip_split(ms)) { 716 perror("-machine kernel_irqchip=split is not supported on ARM."); 717 exit(1); 718 } 719 720 /* If we can create the VGIC using the newer device control API, we 721 * let the device do this when it initializes itself, otherwise we 722 * fall back to the old API */ 723 return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL); 724 } 725 726 int kvm_arm_vgic_probe(void) 727 { 728 if (kvm_create_device(kvm_state, 729 KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) { 730 return 3; 731 } else if (kvm_create_device(kvm_state, 732 KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) { 733 return 2; 734 } else { 735 return 0; 736 } 737 } 738 739 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 740 uint64_t address, uint32_t data, PCIDevice *dev) 741 { 742 AddressSpace *as = pci_device_iommu_address_space(dev); 743 hwaddr xlat, len, doorbell_gpa; 744 MemoryRegionSection mrs; 745 MemoryRegion *mr; 746 int ret = 1; 747 748 if (as == &address_space_memory) { 749 return 0; 750 } 751 752 /* MSI doorbell address is translated by an IOMMU */ 753 754 rcu_read_lock(); 755 mr = address_space_translate(as, address, &xlat, &len, true, 756 MEMTXATTRS_UNSPECIFIED); 757 if (!mr) { 758 goto unlock; 759 } 760 mrs = memory_region_find(mr, xlat, 1); 761 if (!mrs.mr) { 762 goto unlock; 763 } 764 765 doorbell_gpa = mrs.offset_within_address_space; 766 memory_region_unref(mrs.mr); 767 768 route->u.msi.address_lo = doorbell_gpa; 769 route->u.msi.address_hi = doorbell_gpa >> 32; 770 771 trace_kvm_arm_fixup_msi_route(address, doorbell_gpa); 772 773 ret = 0; 774 775 unlock: 776 rcu_read_unlock(); 777 return ret; 778 } 779 780 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 781 int vector, PCIDevice *dev) 782 { 783 return 0; 784 } 785 786 int kvm_arch_release_virq_post(int virq) 787 { 788 return 0; 789 } 790 791 int kvm_arch_msi_data_to_gsi(uint32_t data) 792 { 793 return (data - 32) & 0xffff; 794 } 795