1 /* 2 * ARM implementation of KVM hooks 3 * 4 * Copyright Christoffer Dall 2009-2010 5 * 6 * This work is licensed under the terms of the GNU GPL, version 2 or later. 7 * See the COPYING file in the top-level directory. 8 * 9 */ 10 11 #include "qemu/osdep.h" 12 #include <sys/ioctl.h> 13 14 #include <linux/kvm.h> 15 16 #include "qemu-common.h" 17 #include "qemu/timer.h" 18 #include "qemu/error-report.h" 19 #include "qemu/main-loop.h" 20 #include "qom/object.h" 21 #include "qapi/error.h" 22 #include "sysemu/sysemu.h" 23 #include "sysemu/kvm.h" 24 #include "sysemu/kvm_int.h" 25 #include "kvm_arm.h" 26 #include "cpu.h" 27 #include "trace.h" 28 #include "internals.h" 29 #include "hw/pci/pci.h" 30 #include "exec/memattrs.h" 31 #include "exec/address-spaces.h" 32 #include "hw/boards.h" 33 #include "hw/irq.h" 34 #include "qemu/log.h" 35 36 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 37 KVM_CAP_LAST_INFO 38 }; 39 40 static bool cap_has_mp_state; 41 static bool cap_has_inject_serror_esr; 42 43 static ARMHostCPUFeatures arm_host_cpu_features; 44 45 int kvm_arm_vcpu_init(CPUState *cs) 46 { 47 ARMCPU *cpu = ARM_CPU(cs); 48 struct kvm_vcpu_init init; 49 50 init.target = cpu->kvm_target; 51 memcpy(init.features, cpu->kvm_init_features, sizeof(init.features)); 52 53 return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init); 54 } 55 56 int kvm_arm_vcpu_finalize(CPUState *cs, int feature) 57 { 58 return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_FINALIZE, &feature); 59 } 60 61 void kvm_arm_init_serror_injection(CPUState *cs) 62 { 63 cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state, 64 KVM_CAP_ARM_INJECT_SERROR_ESR); 65 } 66 67 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try, 68 int *fdarray, 69 struct kvm_vcpu_init *init) 70 { 71 int ret = 0, kvmfd = -1, vmfd = -1, cpufd = -1; 72 73 kvmfd = qemu_open("/dev/kvm", O_RDWR); 74 if (kvmfd < 0) { 75 goto err; 76 } 77 vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0); 78 if (vmfd < 0) { 79 goto err; 80 } 81 cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0); 82 if (cpufd < 0) { 83 goto err; 84 } 85 86 if (!init) { 87 /* Caller doesn't want the VCPU to be initialized, so skip it */ 88 goto finish; 89 } 90 91 if (init->target == -1) { 92 struct kvm_vcpu_init preferred; 93 94 ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, &preferred); 95 if (!ret) { 96 init->target = preferred.target; 97 } 98 } 99 if (ret >= 0) { 100 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init); 101 if (ret < 0) { 102 goto err; 103 } 104 } else if (cpus_to_try) { 105 /* Old kernel which doesn't know about the 106 * PREFERRED_TARGET ioctl: we know it will only support 107 * creating one kind of guest CPU which is its preferred 108 * CPU type. 109 */ 110 struct kvm_vcpu_init try; 111 112 while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) { 113 try.target = *cpus_to_try++; 114 memcpy(try.features, init->features, sizeof(init->features)); 115 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, &try); 116 if (ret >= 0) { 117 break; 118 } 119 } 120 if (ret < 0) { 121 goto err; 122 } 123 init->target = try.target; 124 } else { 125 /* Treat a NULL cpus_to_try argument the same as an empty 126 * list, which means we will fail the call since this must 127 * be an old kernel which doesn't support PREFERRED_TARGET. 128 */ 129 goto err; 130 } 131 132 finish: 133 fdarray[0] = kvmfd; 134 fdarray[1] = vmfd; 135 fdarray[2] = cpufd; 136 137 return true; 138 139 err: 140 if (cpufd >= 0) { 141 close(cpufd); 142 } 143 if (vmfd >= 0) { 144 close(vmfd); 145 } 146 if (kvmfd >= 0) { 147 close(kvmfd); 148 } 149 150 return false; 151 } 152 153 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray) 154 { 155 int i; 156 157 for (i = 2; i >= 0; i--) { 158 close(fdarray[i]); 159 } 160 } 161 162 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu) 163 { 164 CPUARMState *env = &cpu->env; 165 166 if (!arm_host_cpu_features.dtb_compatible) { 167 if (!kvm_enabled() || 168 !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) { 169 /* We can't report this error yet, so flag that we need to 170 * in arm_cpu_realizefn(). 171 */ 172 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE; 173 cpu->host_cpu_probe_failed = true; 174 return; 175 } 176 } 177 178 cpu->kvm_target = arm_host_cpu_features.target; 179 cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible; 180 cpu->isar = arm_host_cpu_features.isar; 181 env->features = arm_host_cpu_features.features; 182 } 183 184 static bool kvm_no_adjvtime_get(Object *obj, Error **errp) 185 { 186 return !ARM_CPU(obj)->kvm_adjvtime; 187 } 188 189 static void kvm_no_adjvtime_set(Object *obj, bool value, Error **errp) 190 { 191 ARM_CPU(obj)->kvm_adjvtime = !value; 192 } 193 194 /* KVM VCPU properties should be prefixed with "kvm-". */ 195 void kvm_arm_add_vcpu_properties(Object *obj) 196 { 197 ARMCPU *cpu = ARM_CPU(obj); 198 CPUARMState *env = &cpu->env; 199 200 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 201 cpu->kvm_adjvtime = true; 202 object_property_add_bool(obj, "kvm-no-adjvtime", kvm_no_adjvtime_get, 203 kvm_no_adjvtime_set); 204 object_property_set_description(obj, "kvm-no-adjvtime", 205 "Set on to disable the adjustment of " 206 "the virtual counter. VM stopped time " 207 "will be counted."); 208 } 209 } 210 211 bool kvm_arm_pmu_supported(void) 212 { 213 return kvm_check_extension(kvm_state, KVM_CAP_ARM_PMU_V3); 214 } 215 216 int kvm_arm_get_max_vm_ipa_size(MachineState *ms) 217 { 218 KVMState *s = KVM_STATE(ms->accelerator); 219 int ret; 220 221 ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE); 222 return ret > 0 ? ret : 40; 223 } 224 225 int kvm_arch_init(MachineState *ms, KVMState *s) 226 { 227 int ret = 0; 228 /* For ARM interrupt delivery is always asynchronous, 229 * whether we are using an in-kernel VGIC or not. 230 */ 231 kvm_async_interrupts_allowed = true; 232 233 /* 234 * PSCI wakes up secondary cores, so we always need to 235 * have vCPUs waiting in kernel space 236 */ 237 kvm_halt_in_kernel_allowed = true; 238 239 cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE); 240 241 if (ms->smp.cpus > 256 && 242 !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) { 243 error_report("Using more than 256 vcpus requires a host kernel " 244 "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2"); 245 ret = -EINVAL; 246 } 247 248 return ret; 249 } 250 251 unsigned long kvm_arch_vcpu_id(CPUState *cpu) 252 { 253 return cpu->cpu_index; 254 } 255 256 /* We track all the KVM devices which need their memory addresses 257 * passing to the kernel in a list of these structures. 258 * When board init is complete we run through the list and 259 * tell the kernel the base addresses of the memory regions. 260 * We use a MemoryListener to track mapping and unmapping of 261 * the regions during board creation, so the board models don't 262 * need to do anything special for the KVM case. 263 * 264 * Sometimes the address must be OR'ed with some other fields 265 * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION). 266 * @kda_addr_ormask aims at storing the value of those fields. 267 */ 268 typedef struct KVMDevice { 269 struct kvm_arm_device_addr kda; 270 struct kvm_device_attr kdattr; 271 uint64_t kda_addr_ormask; 272 MemoryRegion *mr; 273 QSLIST_ENTRY(KVMDevice) entries; 274 int dev_fd; 275 } KVMDevice; 276 277 static QSLIST_HEAD(, KVMDevice) kvm_devices_head; 278 279 static void kvm_arm_devlistener_add(MemoryListener *listener, 280 MemoryRegionSection *section) 281 { 282 KVMDevice *kd; 283 284 QSLIST_FOREACH(kd, &kvm_devices_head, entries) { 285 if (section->mr == kd->mr) { 286 kd->kda.addr = section->offset_within_address_space; 287 } 288 } 289 } 290 291 static void kvm_arm_devlistener_del(MemoryListener *listener, 292 MemoryRegionSection *section) 293 { 294 KVMDevice *kd; 295 296 QSLIST_FOREACH(kd, &kvm_devices_head, entries) { 297 if (section->mr == kd->mr) { 298 kd->kda.addr = -1; 299 } 300 } 301 } 302 303 static MemoryListener devlistener = { 304 .region_add = kvm_arm_devlistener_add, 305 .region_del = kvm_arm_devlistener_del, 306 }; 307 308 static void kvm_arm_set_device_addr(KVMDevice *kd) 309 { 310 struct kvm_device_attr *attr = &kd->kdattr; 311 int ret; 312 313 /* If the device control API is available and we have a device fd on the 314 * KVMDevice struct, let's use the newer API 315 */ 316 if (kd->dev_fd >= 0) { 317 uint64_t addr = kd->kda.addr; 318 319 addr |= kd->kda_addr_ormask; 320 attr->addr = (uintptr_t)&addr; 321 ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr); 322 } else { 323 ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda); 324 } 325 326 if (ret < 0) { 327 fprintf(stderr, "Failed to set device address: %s\n", 328 strerror(-ret)); 329 abort(); 330 } 331 } 332 333 static void kvm_arm_machine_init_done(Notifier *notifier, void *data) 334 { 335 KVMDevice *kd, *tkd; 336 337 QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) { 338 if (kd->kda.addr != -1) { 339 kvm_arm_set_device_addr(kd); 340 } 341 memory_region_unref(kd->mr); 342 QSLIST_REMOVE_HEAD(&kvm_devices_head, entries); 343 g_free(kd); 344 } 345 memory_listener_unregister(&devlistener); 346 } 347 348 static Notifier notify = { 349 .notify = kvm_arm_machine_init_done, 350 }; 351 352 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group, 353 uint64_t attr, int dev_fd, uint64_t addr_ormask) 354 { 355 KVMDevice *kd; 356 357 if (!kvm_irqchip_in_kernel()) { 358 return; 359 } 360 361 if (QSLIST_EMPTY(&kvm_devices_head)) { 362 memory_listener_register(&devlistener, &address_space_memory); 363 qemu_add_machine_init_done_notifier(¬ify); 364 } 365 kd = g_new0(KVMDevice, 1); 366 kd->mr = mr; 367 kd->kda.id = devid; 368 kd->kda.addr = -1; 369 kd->kdattr.flags = 0; 370 kd->kdattr.group = group; 371 kd->kdattr.attr = attr; 372 kd->dev_fd = dev_fd; 373 kd->kda_addr_ormask = addr_ormask; 374 QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries); 375 memory_region_ref(kd->mr); 376 } 377 378 static int compare_u64(const void *a, const void *b) 379 { 380 if (*(uint64_t *)a > *(uint64_t *)b) { 381 return 1; 382 } 383 if (*(uint64_t *)a < *(uint64_t *)b) { 384 return -1; 385 } 386 return 0; 387 } 388 389 /* 390 * cpreg_values are sorted in ascending order by KVM register ID 391 * (see kvm_arm_init_cpreg_list). This allows us to cheaply find 392 * the storage for a KVM register by ID with a binary search. 393 */ 394 static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx) 395 { 396 uint64_t *res; 397 398 res = bsearch(®idx, cpu->cpreg_indexes, cpu->cpreg_array_len, 399 sizeof(uint64_t), compare_u64); 400 assert(res); 401 402 return &cpu->cpreg_values[res - cpu->cpreg_indexes]; 403 } 404 405 /* Initialize the ARMCPU cpreg list according to the kernel's 406 * definition of what CPU registers it knows about (and throw away 407 * the previous TCG-created cpreg list). 408 */ 409 int kvm_arm_init_cpreg_list(ARMCPU *cpu) 410 { 411 struct kvm_reg_list rl; 412 struct kvm_reg_list *rlp; 413 int i, ret, arraylen; 414 CPUState *cs = CPU(cpu); 415 416 rl.n = 0; 417 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl); 418 if (ret != -E2BIG) { 419 return ret; 420 } 421 rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t)); 422 rlp->n = rl.n; 423 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp); 424 if (ret) { 425 goto out; 426 } 427 /* Sort the list we get back from the kernel, since cpreg_tuples 428 * must be in strictly ascending order. 429 */ 430 qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64); 431 432 for (i = 0, arraylen = 0; i < rlp->n; i++) { 433 if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) { 434 continue; 435 } 436 switch (rlp->reg[i] & KVM_REG_SIZE_MASK) { 437 case KVM_REG_SIZE_U32: 438 case KVM_REG_SIZE_U64: 439 break; 440 default: 441 fprintf(stderr, "Can't handle size of register in kernel list\n"); 442 ret = -EINVAL; 443 goto out; 444 } 445 446 arraylen++; 447 } 448 449 cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen); 450 cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen); 451 cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes, 452 arraylen); 453 cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values, 454 arraylen); 455 cpu->cpreg_array_len = arraylen; 456 cpu->cpreg_vmstate_array_len = arraylen; 457 458 for (i = 0, arraylen = 0; i < rlp->n; i++) { 459 uint64_t regidx = rlp->reg[i]; 460 if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) { 461 continue; 462 } 463 cpu->cpreg_indexes[arraylen] = regidx; 464 arraylen++; 465 } 466 assert(cpu->cpreg_array_len == arraylen); 467 468 if (!write_kvmstate_to_list(cpu)) { 469 /* Shouldn't happen unless kernel is inconsistent about 470 * what registers exist. 471 */ 472 fprintf(stderr, "Initial read of kernel register state failed\n"); 473 ret = -EINVAL; 474 goto out; 475 } 476 477 out: 478 g_free(rlp); 479 return ret; 480 } 481 482 bool write_kvmstate_to_list(ARMCPU *cpu) 483 { 484 CPUState *cs = CPU(cpu); 485 int i; 486 bool ok = true; 487 488 for (i = 0; i < cpu->cpreg_array_len; i++) { 489 struct kvm_one_reg r; 490 uint64_t regidx = cpu->cpreg_indexes[i]; 491 uint32_t v32; 492 int ret; 493 494 r.id = regidx; 495 496 switch (regidx & KVM_REG_SIZE_MASK) { 497 case KVM_REG_SIZE_U32: 498 r.addr = (uintptr_t)&v32; 499 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); 500 if (!ret) { 501 cpu->cpreg_values[i] = v32; 502 } 503 break; 504 case KVM_REG_SIZE_U64: 505 r.addr = (uintptr_t)(cpu->cpreg_values + i); 506 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); 507 break; 508 default: 509 abort(); 510 } 511 if (ret) { 512 ok = false; 513 } 514 } 515 return ok; 516 } 517 518 bool write_list_to_kvmstate(ARMCPU *cpu, int level) 519 { 520 CPUState *cs = CPU(cpu); 521 int i; 522 bool ok = true; 523 524 for (i = 0; i < cpu->cpreg_array_len; i++) { 525 struct kvm_one_reg r; 526 uint64_t regidx = cpu->cpreg_indexes[i]; 527 uint32_t v32; 528 int ret; 529 530 if (kvm_arm_cpreg_level(regidx) > level) { 531 continue; 532 } 533 534 r.id = regidx; 535 switch (regidx & KVM_REG_SIZE_MASK) { 536 case KVM_REG_SIZE_U32: 537 v32 = cpu->cpreg_values[i]; 538 r.addr = (uintptr_t)&v32; 539 break; 540 case KVM_REG_SIZE_U64: 541 r.addr = (uintptr_t)(cpu->cpreg_values + i); 542 break; 543 default: 544 abort(); 545 } 546 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); 547 if (ret) { 548 /* We might fail for "unknown register" and also for 549 * "you tried to set a register which is constant with 550 * a different value from what it actually contains". 551 */ 552 ok = false; 553 } 554 } 555 return ok; 556 } 557 558 void kvm_arm_cpu_pre_save(ARMCPU *cpu) 559 { 560 /* KVM virtual time adjustment */ 561 if (cpu->kvm_vtime_dirty) { 562 *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT) = cpu->kvm_vtime; 563 } 564 } 565 566 void kvm_arm_cpu_post_load(ARMCPU *cpu) 567 { 568 /* KVM virtual time adjustment */ 569 if (cpu->kvm_adjvtime) { 570 cpu->kvm_vtime = *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT); 571 cpu->kvm_vtime_dirty = true; 572 } 573 } 574 575 void kvm_arm_reset_vcpu(ARMCPU *cpu) 576 { 577 int ret; 578 579 /* Re-init VCPU so that all registers are set to 580 * their respective reset values. 581 */ 582 ret = kvm_arm_vcpu_init(CPU(cpu)); 583 if (ret < 0) { 584 fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret)); 585 abort(); 586 } 587 if (!write_kvmstate_to_list(cpu)) { 588 fprintf(stderr, "write_kvmstate_to_list failed\n"); 589 abort(); 590 } 591 /* 592 * Sync the reset values also into the CPUState. This is necessary 593 * because the next thing we do will be a kvm_arch_put_registers() 594 * which will update the list values from the CPUState before copying 595 * the list values back to KVM. It's OK to ignore failure returns here 596 * for the same reason we do so in kvm_arch_get_registers(). 597 */ 598 write_list_to_cpustate(cpu); 599 } 600 601 /* 602 * Update KVM's MP_STATE based on what QEMU thinks it is 603 */ 604 int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu) 605 { 606 if (cap_has_mp_state) { 607 struct kvm_mp_state mp_state = { 608 .mp_state = (cpu->power_state == PSCI_OFF) ? 609 KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE 610 }; 611 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); 612 if (ret) { 613 fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n", 614 __func__, ret, strerror(-ret)); 615 return -1; 616 } 617 } 618 619 return 0; 620 } 621 622 /* 623 * Sync the KVM MP_STATE into QEMU 624 */ 625 int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu) 626 { 627 if (cap_has_mp_state) { 628 struct kvm_mp_state mp_state; 629 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state); 630 if (ret) { 631 fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n", 632 __func__, ret, strerror(-ret)); 633 abort(); 634 } 635 cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ? 636 PSCI_OFF : PSCI_ON; 637 } 638 639 return 0; 640 } 641 642 void kvm_arm_get_virtual_time(CPUState *cs) 643 { 644 ARMCPU *cpu = ARM_CPU(cs); 645 struct kvm_one_reg reg = { 646 .id = KVM_REG_ARM_TIMER_CNT, 647 .addr = (uintptr_t)&cpu->kvm_vtime, 648 }; 649 int ret; 650 651 if (cpu->kvm_vtime_dirty) { 652 return; 653 } 654 655 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 656 if (ret) { 657 error_report("Failed to get KVM_REG_ARM_TIMER_CNT"); 658 abort(); 659 } 660 661 cpu->kvm_vtime_dirty = true; 662 } 663 664 void kvm_arm_put_virtual_time(CPUState *cs) 665 { 666 ARMCPU *cpu = ARM_CPU(cs); 667 struct kvm_one_reg reg = { 668 .id = KVM_REG_ARM_TIMER_CNT, 669 .addr = (uintptr_t)&cpu->kvm_vtime, 670 }; 671 int ret; 672 673 if (!cpu->kvm_vtime_dirty) { 674 return; 675 } 676 677 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 678 if (ret) { 679 error_report("Failed to set KVM_REG_ARM_TIMER_CNT"); 680 abort(); 681 } 682 683 cpu->kvm_vtime_dirty = false; 684 } 685 686 int kvm_put_vcpu_events(ARMCPU *cpu) 687 { 688 CPUARMState *env = &cpu->env; 689 struct kvm_vcpu_events events; 690 int ret; 691 692 if (!kvm_has_vcpu_events()) { 693 return 0; 694 } 695 696 memset(&events, 0, sizeof(events)); 697 events.exception.serror_pending = env->serror.pending; 698 699 /* Inject SError to guest with specified syndrome if host kernel 700 * supports it, otherwise inject SError without syndrome. 701 */ 702 if (cap_has_inject_serror_esr) { 703 events.exception.serror_has_esr = env->serror.has_esr; 704 events.exception.serror_esr = env->serror.esr; 705 } 706 707 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); 708 if (ret) { 709 error_report("failed to put vcpu events"); 710 } 711 712 return ret; 713 } 714 715 int kvm_get_vcpu_events(ARMCPU *cpu) 716 { 717 CPUARMState *env = &cpu->env; 718 struct kvm_vcpu_events events; 719 int ret; 720 721 if (!kvm_has_vcpu_events()) { 722 return 0; 723 } 724 725 memset(&events, 0, sizeof(events)); 726 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); 727 if (ret) { 728 error_report("failed to get vcpu events"); 729 return ret; 730 } 731 732 env->serror.pending = events.exception.serror_pending; 733 env->serror.has_esr = events.exception.serror_has_esr; 734 env->serror.esr = events.exception.serror_esr; 735 736 return 0; 737 } 738 739 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run) 740 { 741 } 742 743 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) 744 { 745 ARMCPU *cpu; 746 uint32_t switched_level; 747 748 if (kvm_irqchip_in_kernel()) { 749 /* 750 * We only need to sync timer states with user-space interrupt 751 * controllers, so return early and save cycles if we don't. 752 */ 753 return MEMTXATTRS_UNSPECIFIED; 754 } 755 756 cpu = ARM_CPU(cs); 757 758 /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */ 759 if (run->s.regs.device_irq_level != cpu->device_irq_level) { 760 switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level; 761 762 qemu_mutex_lock_iothread(); 763 764 if (switched_level & KVM_ARM_DEV_EL1_VTIMER) { 765 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT], 766 !!(run->s.regs.device_irq_level & 767 KVM_ARM_DEV_EL1_VTIMER)); 768 switched_level &= ~KVM_ARM_DEV_EL1_VTIMER; 769 } 770 771 if (switched_level & KVM_ARM_DEV_EL1_PTIMER) { 772 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS], 773 !!(run->s.regs.device_irq_level & 774 KVM_ARM_DEV_EL1_PTIMER)); 775 switched_level &= ~KVM_ARM_DEV_EL1_PTIMER; 776 } 777 778 if (switched_level & KVM_ARM_DEV_PMU) { 779 qemu_set_irq(cpu->pmu_interrupt, 780 !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU)); 781 switched_level &= ~KVM_ARM_DEV_PMU; 782 } 783 784 if (switched_level) { 785 qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n", 786 __func__, switched_level); 787 } 788 789 /* We also mark unknown levels as processed to not waste cycles */ 790 cpu->device_irq_level = run->s.regs.device_irq_level; 791 qemu_mutex_unlock_iothread(); 792 } 793 794 return MEMTXATTRS_UNSPECIFIED; 795 } 796 797 void kvm_arm_vm_state_change(void *opaque, int running, RunState state) 798 { 799 CPUState *cs = opaque; 800 ARMCPU *cpu = ARM_CPU(cs); 801 802 if (running) { 803 if (cpu->kvm_adjvtime) { 804 kvm_arm_put_virtual_time(cs); 805 } 806 } else { 807 if (cpu->kvm_adjvtime) { 808 kvm_arm_get_virtual_time(cs); 809 } 810 } 811 } 812 813 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 814 { 815 int ret = 0; 816 817 switch (run->exit_reason) { 818 case KVM_EXIT_DEBUG: 819 if (kvm_arm_handle_debug(cs, &run->debug.arch)) { 820 ret = EXCP_DEBUG; 821 } /* otherwise return to guest */ 822 break; 823 default: 824 qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n", 825 __func__, run->exit_reason); 826 break; 827 } 828 return ret; 829 } 830 831 bool kvm_arch_stop_on_emulation_error(CPUState *cs) 832 { 833 return true; 834 } 835 836 int kvm_arch_process_async_events(CPUState *cs) 837 { 838 return 0; 839 } 840 841 /* The #ifdef protections are until 32bit headers are imported and can 842 * be removed once both 32 and 64 bit reach feature parity. 843 */ 844 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg) 845 { 846 #ifdef KVM_GUESTDBG_USE_SW_BP 847 if (kvm_sw_breakpoints_active(cs)) { 848 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; 849 } 850 #endif 851 #ifdef KVM_GUESTDBG_USE_HW 852 if (kvm_arm_hw_debug_active(cs)) { 853 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW; 854 kvm_arm_copy_hw_debug_data(&dbg->arch); 855 } 856 #endif 857 } 858 859 void kvm_arch_init_irq_routing(KVMState *s) 860 { 861 } 862 863 int kvm_arch_irqchip_create(KVMState *s) 864 { 865 if (kvm_kernel_irqchip_split()) { 866 perror("-machine kernel_irqchip=split is not supported on ARM."); 867 exit(1); 868 } 869 870 /* If we can create the VGIC using the newer device control API, we 871 * let the device do this when it initializes itself, otherwise we 872 * fall back to the old API */ 873 return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL); 874 } 875 876 int kvm_arm_vgic_probe(void) 877 { 878 int val = 0; 879 880 if (kvm_create_device(kvm_state, 881 KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) { 882 val |= KVM_ARM_VGIC_V3; 883 } 884 if (kvm_create_device(kvm_state, 885 KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) { 886 val |= KVM_ARM_VGIC_V2; 887 } 888 return val; 889 } 890 891 int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level) 892 { 893 int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq; 894 int cpu_idx1 = cpu % 256; 895 int cpu_idx2 = cpu / 256; 896 897 kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) | 898 (cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT); 899 900 return kvm_set_irq(kvm_state, kvm_irq, !!level); 901 } 902 903 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 904 uint64_t address, uint32_t data, PCIDevice *dev) 905 { 906 AddressSpace *as = pci_device_iommu_address_space(dev); 907 hwaddr xlat, len, doorbell_gpa; 908 MemoryRegionSection mrs; 909 MemoryRegion *mr; 910 int ret = 1; 911 912 if (as == &address_space_memory) { 913 return 0; 914 } 915 916 /* MSI doorbell address is translated by an IOMMU */ 917 918 rcu_read_lock(); 919 mr = address_space_translate(as, address, &xlat, &len, true, 920 MEMTXATTRS_UNSPECIFIED); 921 if (!mr) { 922 goto unlock; 923 } 924 mrs = memory_region_find(mr, xlat, 1); 925 if (!mrs.mr) { 926 goto unlock; 927 } 928 929 doorbell_gpa = mrs.offset_within_address_space; 930 memory_region_unref(mrs.mr); 931 932 route->u.msi.address_lo = doorbell_gpa; 933 route->u.msi.address_hi = doorbell_gpa >> 32; 934 935 trace_kvm_arm_fixup_msi_route(address, doorbell_gpa); 936 937 ret = 0; 938 939 unlock: 940 rcu_read_unlock(); 941 return ret; 942 } 943 944 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 945 int vector, PCIDevice *dev) 946 { 947 return 0; 948 } 949 950 int kvm_arch_release_virq_post(int virq) 951 { 952 return 0; 953 } 954 955 int kvm_arch_msi_data_to_gsi(uint32_t data) 956 { 957 return (data - 32) & 0xffff; 958 } 959