1 /* 2 * ARM implementation of KVM hooks 3 * 4 * Copyright Christoffer Dall 2009-2010 5 * 6 * This work is licensed under the terms of the GNU GPL, version 2 or later. 7 * See the COPYING file in the top-level directory. 8 * 9 */ 10 11 #include "qemu/osdep.h" 12 #include <sys/ioctl.h> 13 14 #include <linux/kvm.h> 15 16 #include "qemu/timer.h" 17 #include "qemu/error-report.h" 18 #include "qemu/main-loop.h" 19 #include "qom/object.h" 20 #include "qapi/error.h" 21 #include "sysemu/sysemu.h" 22 #include "sysemu/kvm.h" 23 #include "sysemu/kvm_int.h" 24 #include "kvm_arm.h" 25 #include "cpu.h" 26 #include "trace.h" 27 #include "internals.h" 28 #include "hw/pci/pci.h" 29 #include "exec/memattrs.h" 30 #include "exec/address-spaces.h" 31 #include "hw/boards.h" 32 #include "hw/irq.h" 33 #include "qemu/log.h" 34 35 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 36 KVM_CAP_LAST_INFO 37 }; 38 39 static bool cap_has_mp_state; 40 static bool cap_has_inject_serror_esr; 41 static bool cap_has_inject_ext_dabt; 42 43 static ARMHostCPUFeatures arm_host_cpu_features; 44 45 int kvm_arm_vcpu_init(CPUState *cs) 46 { 47 ARMCPU *cpu = ARM_CPU(cs); 48 struct kvm_vcpu_init init; 49 50 init.target = cpu->kvm_target; 51 memcpy(init.features, cpu->kvm_init_features, sizeof(init.features)); 52 53 return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init); 54 } 55 56 int kvm_arm_vcpu_finalize(CPUState *cs, int feature) 57 { 58 return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_FINALIZE, &feature); 59 } 60 61 void kvm_arm_init_serror_injection(CPUState *cs) 62 { 63 cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state, 64 KVM_CAP_ARM_INJECT_SERROR_ESR); 65 } 66 67 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try, 68 int *fdarray, 69 struct kvm_vcpu_init *init) 70 { 71 int ret = 0, kvmfd = -1, vmfd = -1, cpufd = -1; 72 int max_vm_pa_size; 73 74 kvmfd = qemu_open_old("/dev/kvm", O_RDWR); 75 if (kvmfd < 0) { 76 goto err; 77 } 78 max_vm_pa_size = ioctl(kvmfd, KVM_CHECK_EXTENSION, KVM_CAP_ARM_VM_IPA_SIZE); 79 if (max_vm_pa_size < 0) { 80 max_vm_pa_size = 0; 81 } 82 do { 83 vmfd = ioctl(kvmfd, KVM_CREATE_VM, max_vm_pa_size); 84 } while (vmfd == -1 && errno == EINTR); 85 if (vmfd < 0) { 86 goto err; 87 } 88 cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0); 89 if (cpufd < 0) { 90 goto err; 91 } 92 93 if (!init) { 94 /* Caller doesn't want the VCPU to be initialized, so skip it */ 95 goto finish; 96 } 97 98 if (init->target == -1) { 99 struct kvm_vcpu_init preferred; 100 101 ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, &preferred); 102 if (!ret) { 103 init->target = preferred.target; 104 } 105 } 106 if (ret >= 0) { 107 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init); 108 if (ret < 0) { 109 goto err; 110 } 111 } else if (cpus_to_try) { 112 /* Old kernel which doesn't know about the 113 * PREFERRED_TARGET ioctl: we know it will only support 114 * creating one kind of guest CPU which is its preferred 115 * CPU type. 116 */ 117 struct kvm_vcpu_init try; 118 119 while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) { 120 try.target = *cpus_to_try++; 121 memcpy(try.features, init->features, sizeof(init->features)); 122 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, &try); 123 if (ret >= 0) { 124 break; 125 } 126 } 127 if (ret < 0) { 128 goto err; 129 } 130 init->target = try.target; 131 } else { 132 /* Treat a NULL cpus_to_try argument the same as an empty 133 * list, which means we will fail the call since this must 134 * be an old kernel which doesn't support PREFERRED_TARGET. 135 */ 136 goto err; 137 } 138 139 finish: 140 fdarray[0] = kvmfd; 141 fdarray[1] = vmfd; 142 fdarray[2] = cpufd; 143 144 return true; 145 146 err: 147 if (cpufd >= 0) { 148 close(cpufd); 149 } 150 if (vmfd >= 0) { 151 close(vmfd); 152 } 153 if (kvmfd >= 0) { 154 close(kvmfd); 155 } 156 157 return false; 158 } 159 160 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray) 161 { 162 int i; 163 164 for (i = 2; i >= 0; i--) { 165 close(fdarray[i]); 166 } 167 } 168 169 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu) 170 { 171 CPUARMState *env = &cpu->env; 172 173 if (!arm_host_cpu_features.dtb_compatible) { 174 if (!kvm_enabled() || 175 !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) { 176 /* We can't report this error yet, so flag that we need to 177 * in arm_cpu_realizefn(). 178 */ 179 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE; 180 cpu->host_cpu_probe_failed = true; 181 return; 182 } 183 } 184 185 cpu->kvm_target = arm_host_cpu_features.target; 186 cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible; 187 cpu->isar = arm_host_cpu_features.isar; 188 env->features = arm_host_cpu_features.features; 189 } 190 191 static bool kvm_no_adjvtime_get(Object *obj, Error **errp) 192 { 193 return !ARM_CPU(obj)->kvm_adjvtime; 194 } 195 196 static void kvm_no_adjvtime_set(Object *obj, bool value, Error **errp) 197 { 198 ARM_CPU(obj)->kvm_adjvtime = !value; 199 } 200 201 static bool kvm_steal_time_get(Object *obj, Error **errp) 202 { 203 return ARM_CPU(obj)->kvm_steal_time != ON_OFF_AUTO_OFF; 204 } 205 206 static void kvm_steal_time_set(Object *obj, bool value, Error **errp) 207 { 208 ARM_CPU(obj)->kvm_steal_time = value ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 209 } 210 211 /* KVM VCPU properties should be prefixed with "kvm-". */ 212 void kvm_arm_add_vcpu_properties(Object *obj) 213 { 214 ARMCPU *cpu = ARM_CPU(obj); 215 CPUARMState *env = &cpu->env; 216 217 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 218 cpu->kvm_adjvtime = true; 219 object_property_add_bool(obj, "kvm-no-adjvtime", kvm_no_adjvtime_get, 220 kvm_no_adjvtime_set); 221 object_property_set_description(obj, "kvm-no-adjvtime", 222 "Set on to disable the adjustment of " 223 "the virtual counter. VM stopped time " 224 "will be counted."); 225 } 226 227 cpu->kvm_steal_time = ON_OFF_AUTO_AUTO; 228 object_property_add_bool(obj, "kvm-steal-time", kvm_steal_time_get, 229 kvm_steal_time_set); 230 object_property_set_description(obj, "kvm-steal-time", 231 "Set off to disable KVM steal time."); 232 } 233 234 bool kvm_arm_pmu_supported(void) 235 { 236 return kvm_check_extension(kvm_state, KVM_CAP_ARM_PMU_V3); 237 } 238 239 int kvm_arm_get_max_vm_ipa_size(MachineState *ms, bool *fixed_ipa) 240 { 241 KVMState *s = KVM_STATE(ms->accelerator); 242 int ret; 243 244 ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE); 245 *fixed_ipa = ret <= 0; 246 247 return ret > 0 ? ret : 40; 248 } 249 250 int kvm_arch_init(MachineState *ms, KVMState *s) 251 { 252 int ret = 0; 253 /* For ARM interrupt delivery is always asynchronous, 254 * whether we are using an in-kernel VGIC or not. 255 */ 256 kvm_async_interrupts_allowed = true; 257 258 /* 259 * PSCI wakes up secondary cores, so we always need to 260 * have vCPUs waiting in kernel space 261 */ 262 kvm_halt_in_kernel_allowed = true; 263 264 cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE); 265 266 if (ms->smp.cpus > 256 && 267 !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) { 268 error_report("Using more than 256 vcpus requires a host kernel " 269 "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2"); 270 ret = -EINVAL; 271 } 272 273 if (kvm_check_extension(s, KVM_CAP_ARM_NISV_TO_USER)) { 274 if (kvm_vm_enable_cap(s, KVM_CAP_ARM_NISV_TO_USER, 0)) { 275 error_report("Failed to enable KVM_CAP_ARM_NISV_TO_USER cap"); 276 } else { 277 /* Set status for supporting the external dabt injection */ 278 cap_has_inject_ext_dabt = kvm_check_extension(s, 279 KVM_CAP_ARM_INJECT_EXT_DABT); 280 } 281 } 282 283 kvm_arm_init_debug(s); 284 285 return ret; 286 } 287 288 unsigned long kvm_arch_vcpu_id(CPUState *cpu) 289 { 290 return cpu->cpu_index; 291 } 292 293 /* We track all the KVM devices which need their memory addresses 294 * passing to the kernel in a list of these structures. 295 * When board init is complete we run through the list and 296 * tell the kernel the base addresses of the memory regions. 297 * We use a MemoryListener to track mapping and unmapping of 298 * the regions during board creation, so the board models don't 299 * need to do anything special for the KVM case. 300 * 301 * Sometimes the address must be OR'ed with some other fields 302 * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION). 303 * @kda_addr_ormask aims at storing the value of those fields. 304 */ 305 typedef struct KVMDevice { 306 struct kvm_arm_device_addr kda; 307 struct kvm_device_attr kdattr; 308 uint64_t kda_addr_ormask; 309 MemoryRegion *mr; 310 QSLIST_ENTRY(KVMDevice) entries; 311 int dev_fd; 312 } KVMDevice; 313 314 static QSLIST_HEAD(, KVMDevice) kvm_devices_head; 315 316 static void kvm_arm_devlistener_add(MemoryListener *listener, 317 MemoryRegionSection *section) 318 { 319 KVMDevice *kd; 320 321 QSLIST_FOREACH(kd, &kvm_devices_head, entries) { 322 if (section->mr == kd->mr) { 323 kd->kda.addr = section->offset_within_address_space; 324 } 325 } 326 } 327 328 static void kvm_arm_devlistener_del(MemoryListener *listener, 329 MemoryRegionSection *section) 330 { 331 KVMDevice *kd; 332 333 QSLIST_FOREACH(kd, &kvm_devices_head, entries) { 334 if (section->mr == kd->mr) { 335 kd->kda.addr = -1; 336 } 337 } 338 } 339 340 static MemoryListener devlistener = { 341 .name = "kvm-arm", 342 .region_add = kvm_arm_devlistener_add, 343 .region_del = kvm_arm_devlistener_del, 344 .priority = MEMORY_LISTENER_PRIORITY_MIN, 345 }; 346 347 static void kvm_arm_set_device_addr(KVMDevice *kd) 348 { 349 struct kvm_device_attr *attr = &kd->kdattr; 350 int ret; 351 352 /* If the device control API is available and we have a device fd on the 353 * KVMDevice struct, let's use the newer API 354 */ 355 if (kd->dev_fd >= 0) { 356 uint64_t addr = kd->kda.addr; 357 358 addr |= kd->kda_addr_ormask; 359 attr->addr = (uintptr_t)&addr; 360 ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr); 361 } else { 362 ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda); 363 } 364 365 if (ret < 0) { 366 fprintf(stderr, "Failed to set device address: %s\n", 367 strerror(-ret)); 368 abort(); 369 } 370 } 371 372 static void kvm_arm_machine_init_done(Notifier *notifier, void *data) 373 { 374 KVMDevice *kd, *tkd; 375 376 QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) { 377 if (kd->kda.addr != -1) { 378 kvm_arm_set_device_addr(kd); 379 } 380 memory_region_unref(kd->mr); 381 QSLIST_REMOVE_HEAD(&kvm_devices_head, entries); 382 g_free(kd); 383 } 384 memory_listener_unregister(&devlistener); 385 } 386 387 static Notifier notify = { 388 .notify = kvm_arm_machine_init_done, 389 }; 390 391 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group, 392 uint64_t attr, int dev_fd, uint64_t addr_ormask) 393 { 394 KVMDevice *kd; 395 396 if (!kvm_irqchip_in_kernel()) { 397 return; 398 } 399 400 if (QSLIST_EMPTY(&kvm_devices_head)) { 401 memory_listener_register(&devlistener, &address_space_memory); 402 qemu_add_machine_init_done_notifier(¬ify); 403 } 404 kd = g_new0(KVMDevice, 1); 405 kd->mr = mr; 406 kd->kda.id = devid; 407 kd->kda.addr = -1; 408 kd->kdattr.flags = 0; 409 kd->kdattr.group = group; 410 kd->kdattr.attr = attr; 411 kd->dev_fd = dev_fd; 412 kd->kda_addr_ormask = addr_ormask; 413 QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries); 414 memory_region_ref(kd->mr); 415 } 416 417 static int compare_u64(const void *a, const void *b) 418 { 419 if (*(uint64_t *)a > *(uint64_t *)b) { 420 return 1; 421 } 422 if (*(uint64_t *)a < *(uint64_t *)b) { 423 return -1; 424 } 425 return 0; 426 } 427 428 /* 429 * cpreg_values are sorted in ascending order by KVM register ID 430 * (see kvm_arm_init_cpreg_list). This allows us to cheaply find 431 * the storage for a KVM register by ID with a binary search. 432 */ 433 static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx) 434 { 435 uint64_t *res; 436 437 res = bsearch(®idx, cpu->cpreg_indexes, cpu->cpreg_array_len, 438 sizeof(uint64_t), compare_u64); 439 assert(res); 440 441 return &cpu->cpreg_values[res - cpu->cpreg_indexes]; 442 } 443 444 /* Initialize the ARMCPU cpreg list according to the kernel's 445 * definition of what CPU registers it knows about (and throw away 446 * the previous TCG-created cpreg list). 447 */ 448 int kvm_arm_init_cpreg_list(ARMCPU *cpu) 449 { 450 struct kvm_reg_list rl; 451 struct kvm_reg_list *rlp; 452 int i, ret, arraylen; 453 CPUState *cs = CPU(cpu); 454 455 rl.n = 0; 456 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl); 457 if (ret != -E2BIG) { 458 return ret; 459 } 460 rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t)); 461 rlp->n = rl.n; 462 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp); 463 if (ret) { 464 goto out; 465 } 466 /* Sort the list we get back from the kernel, since cpreg_tuples 467 * must be in strictly ascending order. 468 */ 469 qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64); 470 471 for (i = 0, arraylen = 0; i < rlp->n; i++) { 472 if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) { 473 continue; 474 } 475 switch (rlp->reg[i] & KVM_REG_SIZE_MASK) { 476 case KVM_REG_SIZE_U32: 477 case KVM_REG_SIZE_U64: 478 break; 479 default: 480 fprintf(stderr, "Can't handle size of register in kernel list\n"); 481 ret = -EINVAL; 482 goto out; 483 } 484 485 arraylen++; 486 } 487 488 cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen); 489 cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen); 490 cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes, 491 arraylen); 492 cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values, 493 arraylen); 494 cpu->cpreg_array_len = arraylen; 495 cpu->cpreg_vmstate_array_len = arraylen; 496 497 for (i = 0, arraylen = 0; i < rlp->n; i++) { 498 uint64_t regidx = rlp->reg[i]; 499 if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) { 500 continue; 501 } 502 cpu->cpreg_indexes[arraylen] = regidx; 503 arraylen++; 504 } 505 assert(cpu->cpreg_array_len == arraylen); 506 507 if (!write_kvmstate_to_list(cpu)) { 508 /* Shouldn't happen unless kernel is inconsistent about 509 * what registers exist. 510 */ 511 fprintf(stderr, "Initial read of kernel register state failed\n"); 512 ret = -EINVAL; 513 goto out; 514 } 515 516 out: 517 g_free(rlp); 518 return ret; 519 } 520 521 bool write_kvmstate_to_list(ARMCPU *cpu) 522 { 523 CPUState *cs = CPU(cpu); 524 int i; 525 bool ok = true; 526 527 for (i = 0; i < cpu->cpreg_array_len; i++) { 528 struct kvm_one_reg r; 529 uint64_t regidx = cpu->cpreg_indexes[i]; 530 uint32_t v32; 531 int ret; 532 533 r.id = regidx; 534 535 switch (regidx & KVM_REG_SIZE_MASK) { 536 case KVM_REG_SIZE_U32: 537 r.addr = (uintptr_t)&v32; 538 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); 539 if (!ret) { 540 cpu->cpreg_values[i] = v32; 541 } 542 break; 543 case KVM_REG_SIZE_U64: 544 r.addr = (uintptr_t)(cpu->cpreg_values + i); 545 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); 546 break; 547 default: 548 g_assert_not_reached(); 549 } 550 if (ret) { 551 ok = false; 552 } 553 } 554 return ok; 555 } 556 557 bool write_list_to_kvmstate(ARMCPU *cpu, int level) 558 { 559 CPUState *cs = CPU(cpu); 560 int i; 561 bool ok = true; 562 563 for (i = 0; i < cpu->cpreg_array_len; i++) { 564 struct kvm_one_reg r; 565 uint64_t regidx = cpu->cpreg_indexes[i]; 566 uint32_t v32; 567 int ret; 568 569 if (kvm_arm_cpreg_level(regidx) > level) { 570 continue; 571 } 572 573 r.id = regidx; 574 switch (regidx & KVM_REG_SIZE_MASK) { 575 case KVM_REG_SIZE_U32: 576 v32 = cpu->cpreg_values[i]; 577 r.addr = (uintptr_t)&v32; 578 break; 579 case KVM_REG_SIZE_U64: 580 r.addr = (uintptr_t)(cpu->cpreg_values + i); 581 break; 582 default: 583 g_assert_not_reached(); 584 } 585 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); 586 if (ret) { 587 /* We might fail for "unknown register" and also for 588 * "you tried to set a register which is constant with 589 * a different value from what it actually contains". 590 */ 591 ok = false; 592 } 593 } 594 return ok; 595 } 596 597 void kvm_arm_cpu_pre_save(ARMCPU *cpu) 598 { 599 /* KVM virtual time adjustment */ 600 if (cpu->kvm_vtime_dirty) { 601 *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT) = cpu->kvm_vtime; 602 } 603 } 604 605 void kvm_arm_cpu_post_load(ARMCPU *cpu) 606 { 607 /* KVM virtual time adjustment */ 608 if (cpu->kvm_adjvtime) { 609 cpu->kvm_vtime = *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT); 610 cpu->kvm_vtime_dirty = true; 611 } 612 } 613 614 void kvm_arm_reset_vcpu(ARMCPU *cpu) 615 { 616 int ret; 617 618 /* Re-init VCPU so that all registers are set to 619 * their respective reset values. 620 */ 621 ret = kvm_arm_vcpu_init(CPU(cpu)); 622 if (ret < 0) { 623 fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret)); 624 abort(); 625 } 626 if (!write_kvmstate_to_list(cpu)) { 627 fprintf(stderr, "write_kvmstate_to_list failed\n"); 628 abort(); 629 } 630 /* 631 * Sync the reset values also into the CPUState. This is necessary 632 * because the next thing we do will be a kvm_arch_put_registers() 633 * which will update the list values from the CPUState before copying 634 * the list values back to KVM. It's OK to ignore failure returns here 635 * for the same reason we do so in kvm_arch_get_registers(). 636 */ 637 write_list_to_cpustate(cpu); 638 } 639 640 /* 641 * Update KVM's MP_STATE based on what QEMU thinks it is 642 */ 643 int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu) 644 { 645 if (cap_has_mp_state) { 646 struct kvm_mp_state mp_state = { 647 .mp_state = (cpu->power_state == PSCI_OFF) ? 648 KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE 649 }; 650 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); 651 if (ret) { 652 fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n", 653 __func__, ret, strerror(-ret)); 654 return -1; 655 } 656 } 657 658 return 0; 659 } 660 661 /* 662 * Sync the KVM MP_STATE into QEMU 663 */ 664 int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu) 665 { 666 if (cap_has_mp_state) { 667 struct kvm_mp_state mp_state; 668 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state); 669 if (ret) { 670 fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n", 671 __func__, ret, strerror(-ret)); 672 abort(); 673 } 674 cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ? 675 PSCI_OFF : PSCI_ON; 676 } 677 678 return 0; 679 } 680 681 void kvm_arm_get_virtual_time(CPUState *cs) 682 { 683 ARMCPU *cpu = ARM_CPU(cs); 684 struct kvm_one_reg reg = { 685 .id = KVM_REG_ARM_TIMER_CNT, 686 .addr = (uintptr_t)&cpu->kvm_vtime, 687 }; 688 int ret; 689 690 if (cpu->kvm_vtime_dirty) { 691 return; 692 } 693 694 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 695 if (ret) { 696 error_report("Failed to get KVM_REG_ARM_TIMER_CNT"); 697 abort(); 698 } 699 700 cpu->kvm_vtime_dirty = true; 701 } 702 703 void kvm_arm_put_virtual_time(CPUState *cs) 704 { 705 ARMCPU *cpu = ARM_CPU(cs); 706 struct kvm_one_reg reg = { 707 .id = KVM_REG_ARM_TIMER_CNT, 708 .addr = (uintptr_t)&cpu->kvm_vtime, 709 }; 710 int ret; 711 712 if (!cpu->kvm_vtime_dirty) { 713 return; 714 } 715 716 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 717 if (ret) { 718 error_report("Failed to set KVM_REG_ARM_TIMER_CNT"); 719 abort(); 720 } 721 722 cpu->kvm_vtime_dirty = false; 723 } 724 725 int kvm_put_vcpu_events(ARMCPU *cpu) 726 { 727 CPUARMState *env = &cpu->env; 728 struct kvm_vcpu_events events; 729 int ret; 730 731 if (!kvm_has_vcpu_events()) { 732 return 0; 733 } 734 735 memset(&events, 0, sizeof(events)); 736 events.exception.serror_pending = env->serror.pending; 737 738 /* Inject SError to guest with specified syndrome if host kernel 739 * supports it, otherwise inject SError without syndrome. 740 */ 741 if (cap_has_inject_serror_esr) { 742 events.exception.serror_has_esr = env->serror.has_esr; 743 events.exception.serror_esr = env->serror.esr; 744 } 745 746 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); 747 if (ret) { 748 error_report("failed to put vcpu events"); 749 } 750 751 return ret; 752 } 753 754 int kvm_get_vcpu_events(ARMCPU *cpu) 755 { 756 CPUARMState *env = &cpu->env; 757 struct kvm_vcpu_events events; 758 int ret; 759 760 if (!kvm_has_vcpu_events()) { 761 return 0; 762 } 763 764 memset(&events, 0, sizeof(events)); 765 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); 766 if (ret) { 767 error_report("failed to get vcpu events"); 768 return ret; 769 } 770 771 env->serror.pending = events.exception.serror_pending; 772 env->serror.has_esr = events.exception.serror_has_esr; 773 env->serror.esr = events.exception.serror_esr; 774 775 return 0; 776 } 777 778 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run) 779 { 780 ARMCPU *cpu = ARM_CPU(cs); 781 CPUARMState *env = &cpu->env; 782 783 if (unlikely(env->ext_dabt_raised)) { 784 /* 785 * Verifying that the ext DABT has been properly injected, 786 * otherwise risking indefinitely re-running the faulting instruction 787 * Covering a very narrow case for kernels 5.5..5.5.4 788 * when injected abort was misconfigured to be 789 * an IMPLEMENTATION DEFINED exception (for 32-bit EL1) 790 */ 791 if (!arm_feature(env, ARM_FEATURE_AARCH64) && 792 unlikely(!kvm_arm_verify_ext_dabt_pending(cs))) { 793 794 error_report("Data abort exception with no valid ISS generated by " 795 "guest memory access. KVM unable to emulate faulting " 796 "instruction. Failed to inject an external data abort " 797 "into the guest."); 798 abort(); 799 } 800 /* Clear the status */ 801 env->ext_dabt_raised = 0; 802 } 803 } 804 805 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) 806 { 807 ARMCPU *cpu; 808 uint32_t switched_level; 809 810 if (kvm_irqchip_in_kernel()) { 811 /* 812 * We only need to sync timer states with user-space interrupt 813 * controllers, so return early and save cycles if we don't. 814 */ 815 return MEMTXATTRS_UNSPECIFIED; 816 } 817 818 cpu = ARM_CPU(cs); 819 820 /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */ 821 if (run->s.regs.device_irq_level != cpu->device_irq_level) { 822 switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level; 823 824 qemu_mutex_lock_iothread(); 825 826 if (switched_level & KVM_ARM_DEV_EL1_VTIMER) { 827 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT], 828 !!(run->s.regs.device_irq_level & 829 KVM_ARM_DEV_EL1_VTIMER)); 830 switched_level &= ~KVM_ARM_DEV_EL1_VTIMER; 831 } 832 833 if (switched_level & KVM_ARM_DEV_EL1_PTIMER) { 834 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS], 835 !!(run->s.regs.device_irq_level & 836 KVM_ARM_DEV_EL1_PTIMER)); 837 switched_level &= ~KVM_ARM_DEV_EL1_PTIMER; 838 } 839 840 if (switched_level & KVM_ARM_DEV_PMU) { 841 qemu_set_irq(cpu->pmu_interrupt, 842 !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU)); 843 switched_level &= ~KVM_ARM_DEV_PMU; 844 } 845 846 if (switched_level) { 847 qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n", 848 __func__, switched_level); 849 } 850 851 /* We also mark unknown levels as processed to not waste cycles */ 852 cpu->device_irq_level = run->s.regs.device_irq_level; 853 qemu_mutex_unlock_iothread(); 854 } 855 856 return MEMTXATTRS_UNSPECIFIED; 857 } 858 859 void kvm_arm_vm_state_change(void *opaque, bool running, RunState state) 860 { 861 CPUState *cs = opaque; 862 ARMCPU *cpu = ARM_CPU(cs); 863 864 if (running) { 865 if (cpu->kvm_adjvtime) { 866 kvm_arm_put_virtual_time(cs); 867 } 868 } else { 869 if (cpu->kvm_adjvtime) { 870 kvm_arm_get_virtual_time(cs); 871 } 872 } 873 } 874 875 /** 876 * kvm_arm_handle_dabt_nisv: 877 * @cs: CPUState 878 * @esr_iss: ISS encoding (limited) for the exception from Data Abort 879 * ISV bit set to '0b0' -> no valid instruction syndrome 880 * @fault_ipa: faulting address for the synchronous data abort 881 * 882 * Returns: 0 if the exception has been handled, < 0 otherwise 883 */ 884 static int kvm_arm_handle_dabt_nisv(CPUState *cs, uint64_t esr_iss, 885 uint64_t fault_ipa) 886 { 887 ARMCPU *cpu = ARM_CPU(cs); 888 CPUARMState *env = &cpu->env; 889 /* 890 * Request KVM to inject the external data abort into the guest 891 */ 892 if (cap_has_inject_ext_dabt) { 893 struct kvm_vcpu_events events = { }; 894 /* 895 * The external data abort event will be handled immediately by KVM 896 * using the address fault that triggered the exit on given VCPU. 897 * Requesting injection of the external data abort does not rely 898 * on any other VCPU state. Therefore, in this particular case, the VCPU 899 * synchronization can be exceptionally skipped. 900 */ 901 events.exception.ext_dabt_pending = 1; 902 /* KVM_CAP_ARM_INJECT_EXT_DABT implies KVM_CAP_VCPU_EVENTS */ 903 if (!kvm_vcpu_ioctl(cs, KVM_SET_VCPU_EVENTS, &events)) { 904 env->ext_dabt_raised = 1; 905 return 0; 906 } 907 } else { 908 error_report("Data abort exception triggered by guest memory access " 909 "at physical address: 0x" TARGET_FMT_lx, 910 (target_ulong)fault_ipa); 911 error_printf("KVM unable to emulate faulting instruction.\n"); 912 } 913 return -1; 914 } 915 916 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 917 { 918 int ret = 0; 919 920 switch (run->exit_reason) { 921 case KVM_EXIT_DEBUG: 922 if (kvm_arm_handle_debug(cs, &run->debug.arch)) { 923 ret = EXCP_DEBUG; 924 } /* otherwise return to guest */ 925 break; 926 case KVM_EXIT_ARM_NISV: 927 /* External DABT with no valid iss to decode */ 928 ret = kvm_arm_handle_dabt_nisv(cs, run->arm_nisv.esr_iss, 929 run->arm_nisv.fault_ipa); 930 break; 931 default: 932 qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n", 933 __func__, run->exit_reason); 934 break; 935 } 936 return ret; 937 } 938 939 bool kvm_arch_stop_on_emulation_error(CPUState *cs) 940 { 941 return true; 942 } 943 944 int kvm_arch_process_async_events(CPUState *cs) 945 { 946 return 0; 947 } 948 949 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg) 950 { 951 if (kvm_sw_breakpoints_active(cs)) { 952 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; 953 } 954 if (kvm_arm_hw_debug_active(cs)) { 955 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW; 956 kvm_arm_copy_hw_debug_data(&dbg->arch); 957 } 958 } 959 960 void kvm_arch_init_irq_routing(KVMState *s) 961 { 962 } 963 964 int kvm_arch_irqchip_create(KVMState *s) 965 { 966 if (kvm_kernel_irqchip_split()) { 967 error_report("-machine kernel_irqchip=split is not supported on ARM."); 968 exit(1); 969 } 970 971 /* If we can create the VGIC using the newer device control API, we 972 * let the device do this when it initializes itself, otherwise we 973 * fall back to the old API */ 974 return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL); 975 } 976 977 int kvm_arm_vgic_probe(void) 978 { 979 int val = 0; 980 981 if (kvm_create_device(kvm_state, 982 KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) { 983 val |= KVM_ARM_VGIC_V3; 984 } 985 if (kvm_create_device(kvm_state, 986 KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) { 987 val |= KVM_ARM_VGIC_V2; 988 } 989 return val; 990 } 991 992 int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level) 993 { 994 int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq; 995 int cpu_idx1 = cpu % 256; 996 int cpu_idx2 = cpu / 256; 997 998 kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) | 999 (cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT); 1000 1001 return kvm_set_irq(kvm_state, kvm_irq, !!level); 1002 } 1003 1004 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 1005 uint64_t address, uint32_t data, PCIDevice *dev) 1006 { 1007 AddressSpace *as = pci_device_iommu_address_space(dev); 1008 hwaddr xlat, len, doorbell_gpa; 1009 MemoryRegionSection mrs; 1010 MemoryRegion *mr; 1011 1012 if (as == &address_space_memory) { 1013 return 0; 1014 } 1015 1016 /* MSI doorbell address is translated by an IOMMU */ 1017 1018 RCU_READ_LOCK_GUARD(); 1019 1020 mr = address_space_translate(as, address, &xlat, &len, true, 1021 MEMTXATTRS_UNSPECIFIED); 1022 1023 if (!mr) { 1024 return 1; 1025 } 1026 1027 mrs = memory_region_find(mr, xlat, 1); 1028 1029 if (!mrs.mr) { 1030 return 1; 1031 } 1032 1033 doorbell_gpa = mrs.offset_within_address_space; 1034 memory_region_unref(mrs.mr); 1035 1036 route->u.msi.address_lo = doorbell_gpa; 1037 route->u.msi.address_hi = doorbell_gpa >> 32; 1038 1039 trace_kvm_arm_fixup_msi_route(address, doorbell_gpa); 1040 1041 return 0; 1042 } 1043 1044 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 1045 int vector, PCIDevice *dev) 1046 { 1047 return 0; 1048 } 1049 1050 int kvm_arch_release_virq_post(int virq) 1051 { 1052 return 0; 1053 } 1054 1055 int kvm_arch_msi_data_to_gsi(uint32_t data) 1056 { 1057 return (data - 32) & 0xffff; 1058 } 1059 1060 bool kvm_arch_cpu_check_are_resettable(void) 1061 { 1062 return true; 1063 } 1064 1065 void kvm_arch_accel_class_init(ObjectClass *oc) 1066 { 1067 } 1068