xref: /openbmc/qemu/target/arm/kvm.c (revision ab1b2ba9)
1 /*
2  * ARM implementation of KVM hooks
3  *
4  * Copyright Christoffer Dall 2009-2010
5  *
6  * This work is licensed under the terms of the GNU GPL, version 2 or later.
7  * See the COPYING file in the top-level directory.
8  *
9  */
10 
11 #include "qemu/osdep.h"
12 #include <sys/ioctl.h>
13 
14 #include <linux/kvm.h>
15 
16 #include "qemu/timer.h"
17 #include "qemu/error-report.h"
18 #include "qemu/main-loop.h"
19 #include "qom/object.h"
20 #include "qapi/error.h"
21 #include "sysemu/sysemu.h"
22 #include "sysemu/kvm.h"
23 #include "sysemu/kvm_int.h"
24 #include "kvm_arm.h"
25 #include "cpu.h"
26 #include "trace.h"
27 #include "internals.h"
28 #include "hw/pci/pci.h"
29 #include "exec/memattrs.h"
30 #include "exec/address-spaces.h"
31 #include "hw/boards.h"
32 #include "hw/irq.h"
33 #include "qemu/log.h"
34 
35 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
36     KVM_CAP_LAST_INFO
37 };
38 
39 static bool cap_has_mp_state;
40 static bool cap_has_inject_serror_esr;
41 static bool cap_has_inject_ext_dabt;
42 
43 static ARMHostCPUFeatures arm_host_cpu_features;
44 
45 int kvm_arm_vcpu_init(CPUState *cs)
46 {
47     ARMCPU *cpu = ARM_CPU(cs);
48     struct kvm_vcpu_init init;
49 
50     init.target = cpu->kvm_target;
51     memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
52 
53     return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
54 }
55 
56 int kvm_arm_vcpu_finalize(CPUState *cs, int feature)
57 {
58     return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_FINALIZE, &feature);
59 }
60 
61 void kvm_arm_init_serror_injection(CPUState *cs)
62 {
63     cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state,
64                                     KVM_CAP_ARM_INJECT_SERROR_ESR);
65 }
66 
67 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
68                                       int *fdarray,
69                                       struct kvm_vcpu_init *init)
70 {
71     int ret = 0, kvmfd = -1, vmfd = -1, cpufd = -1;
72     int max_vm_pa_size;
73 
74     kvmfd = qemu_open_old("/dev/kvm", O_RDWR);
75     if (kvmfd < 0) {
76         goto err;
77     }
78     max_vm_pa_size = ioctl(kvmfd, KVM_CHECK_EXTENSION, KVM_CAP_ARM_VM_IPA_SIZE);
79     if (max_vm_pa_size < 0) {
80         max_vm_pa_size = 0;
81     }
82     do {
83         vmfd = ioctl(kvmfd, KVM_CREATE_VM, max_vm_pa_size);
84     } while (vmfd == -1 && errno == EINTR);
85     if (vmfd < 0) {
86         goto err;
87     }
88     cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
89     if (cpufd < 0) {
90         goto err;
91     }
92 
93     if (!init) {
94         /* Caller doesn't want the VCPU to be initialized, so skip it */
95         goto finish;
96     }
97 
98     if (init->target == -1) {
99         struct kvm_vcpu_init preferred;
100 
101         ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, &preferred);
102         if (!ret) {
103             init->target = preferred.target;
104         }
105     }
106     if (ret >= 0) {
107         ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
108         if (ret < 0) {
109             goto err;
110         }
111     } else if (cpus_to_try) {
112         /* Old kernel which doesn't know about the
113          * PREFERRED_TARGET ioctl: we know it will only support
114          * creating one kind of guest CPU which is its preferred
115          * CPU type.
116          */
117         struct kvm_vcpu_init try;
118 
119         while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
120             try.target = *cpus_to_try++;
121             memcpy(try.features, init->features, sizeof(init->features));
122             ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, &try);
123             if (ret >= 0) {
124                 break;
125             }
126         }
127         if (ret < 0) {
128             goto err;
129         }
130         init->target = try.target;
131     } else {
132         /* Treat a NULL cpus_to_try argument the same as an empty
133          * list, which means we will fail the call since this must
134          * be an old kernel which doesn't support PREFERRED_TARGET.
135          */
136         goto err;
137     }
138 
139 finish:
140     fdarray[0] = kvmfd;
141     fdarray[1] = vmfd;
142     fdarray[2] = cpufd;
143 
144     return true;
145 
146 err:
147     if (cpufd >= 0) {
148         close(cpufd);
149     }
150     if (vmfd >= 0) {
151         close(vmfd);
152     }
153     if (kvmfd >= 0) {
154         close(kvmfd);
155     }
156 
157     return false;
158 }
159 
160 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
161 {
162     int i;
163 
164     for (i = 2; i >= 0; i--) {
165         close(fdarray[i]);
166     }
167 }
168 
169 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
170 {
171     CPUARMState *env = &cpu->env;
172 
173     if (!arm_host_cpu_features.dtb_compatible) {
174         if (!kvm_enabled() ||
175             !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) {
176             /* We can't report this error yet, so flag that we need to
177              * in arm_cpu_realizefn().
178              */
179             cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
180             cpu->host_cpu_probe_failed = true;
181             return;
182         }
183     }
184 
185     cpu->kvm_target = arm_host_cpu_features.target;
186     cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
187     cpu->isar = arm_host_cpu_features.isar;
188     env->features = arm_host_cpu_features.features;
189 }
190 
191 static bool kvm_no_adjvtime_get(Object *obj, Error **errp)
192 {
193     return !ARM_CPU(obj)->kvm_adjvtime;
194 }
195 
196 static void kvm_no_adjvtime_set(Object *obj, bool value, Error **errp)
197 {
198     ARM_CPU(obj)->kvm_adjvtime = !value;
199 }
200 
201 static bool kvm_steal_time_get(Object *obj, Error **errp)
202 {
203     return ARM_CPU(obj)->kvm_steal_time != ON_OFF_AUTO_OFF;
204 }
205 
206 static void kvm_steal_time_set(Object *obj, bool value, Error **errp)
207 {
208     ARM_CPU(obj)->kvm_steal_time = value ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
209 }
210 
211 /* KVM VCPU properties should be prefixed with "kvm-". */
212 void kvm_arm_add_vcpu_properties(Object *obj)
213 {
214     ARMCPU *cpu = ARM_CPU(obj);
215     CPUARMState *env = &cpu->env;
216 
217     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
218         cpu->kvm_adjvtime = true;
219         object_property_add_bool(obj, "kvm-no-adjvtime", kvm_no_adjvtime_get,
220                                  kvm_no_adjvtime_set);
221         object_property_set_description(obj, "kvm-no-adjvtime",
222                                         "Set on to disable the adjustment of "
223                                         "the virtual counter. VM stopped time "
224                                         "will be counted.");
225     }
226 
227     cpu->kvm_steal_time = ON_OFF_AUTO_AUTO;
228     object_property_add_bool(obj, "kvm-steal-time", kvm_steal_time_get,
229                              kvm_steal_time_set);
230     object_property_set_description(obj, "kvm-steal-time",
231                                     "Set off to disable KVM steal time.");
232 }
233 
234 bool kvm_arm_pmu_supported(void)
235 {
236     return kvm_check_extension(kvm_state, KVM_CAP_ARM_PMU_V3);
237 }
238 
239 int kvm_arm_get_max_vm_ipa_size(MachineState *ms, bool *fixed_ipa)
240 {
241     KVMState *s = KVM_STATE(ms->accelerator);
242     int ret;
243 
244     ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE);
245     *fixed_ipa = ret <= 0;
246 
247     return ret > 0 ? ret : 40;
248 }
249 
250 int kvm_arch_init(MachineState *ms, KVMState *s)
251 {
252     int ret = 0;
253     /* For ARM interrupt delivery is always asynchronous,
254      * whether we are using an in-kernel VGIC or not.
255      */
256     kvm_async_interrupts_allowed = true;
257 
258     /*
259      * PSCI wakes up secondary cores, so we always need to
260      * have vCPUs waiting in kernel space
261      */
262     kvm_halt_in_kernel_allowed = true;
263 
264     cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
265 
266     if (ms->smp.cpus > 256 &&
267         !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) {
268         error_report("Using more than 256 vcpus requires a host kernel "
269                      "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2");
270         ret = -EINVAL;
271     }
272 
273     if (kvm_check_extension(s, KVM_CAP_ARM_NISV_TO_USER)) {
274         if (kvm_vm_enable_cap(s, KVM_CAP_ARM_NISV_TO_USER, 0)) {
275             error_report("Failed to enable KVM_CAP_ARM_NISV_TO_USER cap");
276         } else {
277             /* Set status for supporting the external dabt injection */
278             cap_has_inject_ext_dabt = kvm_check_extension(s,
279                                     KVM_CAP_ARM_INJECT_EXT_DABT);
280         }
281     }
282 
283     return ret;
284 }
285 
286 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
287 {
288     return cpu->cpu_index;
289 }
290 
291 /* We track all the KVM devices which need their memory addresses
292  * passing to the kernel in a list of these structures.
293  * When board init is complete we run through the list and
294  * tell the kernel the base addresses of the memory regions.
295  * We use a MemoryListener to track mapping and unmapping of
296  * the regions during board creation, so the board models don't
297  * need to do anything special for the KVM case.
298  *
299  * Sometimes the address must be OR'ed with some other fields
300  * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
301  * @kda_addr_ormask aims at storing the value of those fields.
302  */
303 typedef struct KVMDevice {
304     struct kvm_arm_device_addr kda;
305     struct kvm_device_attr kdattr;
306     uint64_t kda_addr_ormask;
307     MemoryRegion *mr;
308     QSLIST_ENTRY(KVMDevice) entries;
309     int dev_fd;
310 } KVMDevice;
311 
312 static QSLIST_HEAD(, KVMDevice) kvm_devices_head;
313 
314 static void kvm_arm_devlistener_add(MemoryListener *listener,
315                                     MemoryRegionSection *section)
316 {
317     KVMDevice *kd;
318 
319     QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
320         if (section->mr == kd->mr) {
321             kd->kda.addr = section->offset_within_address_space;
322         }
323     }
324 }
325 
326 static void kvm_arm_devlistener_del(MemoryListener *listener,
327                                     MemoryRegionSection *section)
328 {
329     KVMDevice *kd;
330 
331     QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
332         if (section->mr == kd->mr) {
333             kd->kda.addr = -1;
334         }
335     }
336 }
337 
338 static MemoryListener devlistener = {
339     .name = "kvm-arm",
340     .region_add = kvm_arm_devlistener_add,
341     .region_del = kvm_arm_devlistener_del,
342 };
343 
344 static void kvm_arm_set_device_addr(KVMDevice *kd)
345 {
346     struct kvm_device_attr *attr = &kd->kdattr;
347     int ret;
348 
349     /* If the device control API is available and we have a device fd on the
350      * KVMDevice struct, let's use the newer API
351      */
352     if (kd->dev_fd >= 0) {
353         uint64_t addr = kd->kda.addr;
354 
355         addr |= kd->kda_addr_ormask;
356         attr->addr = (uintptr_t)&addr;
357         ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
358     } else {
359         ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
360     }
361 
362     if (ret < 0) {
363         fprintf(stderr, "Failed to set device address: %s\n",
364                 strerror(-ret));
365         abort();
366     }
367 }
368 
369 static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
370 {
371     KVMDevice *kd, *tkd;
372 
373     QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
374         if (kd->kda.addr != -1) {
375             kvm_arm_set_device_addr(kd);
376         }
377         memory_region_unref(kd->mr);
378         QSLIST_REMOVE_HEAD(&kvm_devices_head, entries);
379         g_free(kd);
380     }
381     memory_listener_unregister(&devlistener);
382 }
383 
384 static Notifier notify = {
385     .notify = kvm_arm_machine_init_done,
386 };
387 
388 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
389                              uint64_t attr, int dev_fd, uint64_t addr_ormask)
390 {
391     KVMDevice *kd;
392 
393     if (!kvm_irqchip_in_kernel()) {
394         return;
395     }
396 
397     if (QSLIST_EMPTY(&kvm_devices_head)) {
398         memory_listener_register(&devlistener, &address_space_memory);
399         qemu_add_machine_init_done_notifier(&notify);
400     }
401     kd = g_new0(KVMDevice, 1);
402     kd->mr = mr;
403     kd->kda.id = devid;
404     kd->kda.addr = -1;
405     kd->kdattr.flags = 0;
406     kd->kdattr.group = group;
407     kd->kdattr.attr = attr;
408     kd->dev_fd = dev_fd;
409     kd->kda_addr_ormask = addr_ormask;
410     QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
411     memory_region_ref(kd->mr);
412 }
413 
414 static int compare_u64(const void *a, const void *b)
415 {
416     if (*(uint64_t *)a > *(uint64_t *)b) {
417         return 1;
418     }
419     if (*(uint64_t *)a < *(uint64_t *)b) {
420         return -1;
421     }
422     return 0;
423 }
424 
425 /*
426  * cpreg_values are sorted in ascending order by KVM register ID
427  * (see kvm_arm_init_cpreg_list). This allows us to cheaply find
428  * the storage for a KVM register by ID with a binary search.
429  */
430 static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx)
431 {
432     uint64_t *res;
433 
434     res = bsearch(&regidx, cpu->cpreg_indexes, cpu->cpreg_array_len,
435                   sizeof(uint64_t), compare_u64);
436     assert(res);
437 
438     return &cpu->cpreg_values[res - cpu->cpreg_indexes];
439 }
440 
441 /* Initialize the ARMCPU cpreg list according to the kernel's
442  * definition of what CPU registers it knows about (and throw away
443  * the previous TCG-created cpreg list).
444  */
445 int kvm_arm_init_cpreg_list(ARMCPU *cpu)
446 {
447     struct kvm_reg_list rl;
448     struct kvm_reg_list *rlp;
449     int i, ret, arraylen;
450     CPUState *cs = CPU(cpu);
451 
452     rl.n = 0;
453     ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
454     if (ret != -E2BIG) {
455         return ret;
456     }
457     rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
458     rlp->n = rl.n;
459     ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
460     if (ret) {
461         goto out;
462     }
463     /* Sort the list we get back from the kernel, since cpreg_tuples
464      * must be in strictly ascending order.
465      */
466     qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
467 
468     for (i = 0, arraylen = 0; i < rlp->n; i++) {
469         if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
470             continue;
471         }
472         switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
473         case KVM_REG_SIZE_U32:
474         case KVM_REG_SIZE_U64:
475             break;
476         default:
477             fprintf(stderr, "Can't handle size of register in kernel list\n");
478             ret = -EINVAL;
479             goto out;
480         }
481 
482         arraylen++;
483     }
484 
485     cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
486     cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
487     cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
488                                          arraylen);
489     cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
490                                         arraylen);
491     cpu->cpreg_array_len = arraylen;
492     cpu->cpreg_vmstate_array_len = arraylen;
493 
494     for (i = 0, arraylen = 0; i < rlp->n; i++) {
495         uint64_t regidx = rlp->reg[i];
496         if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
497             continue;
498         }
499         cpu->cpreg_indexes[arraylen] = regidx;
500         arraylen++;
501     }
502     assert(cpu->cpreg_array_len == arraylen);
503 
504     if (!write_kvmstate_to_list(cpu)) {
505         /* Shouldn't happen unless kernel is inconsistent about
506          * what registers exist.
507          */
508         fprintf(stderr, "Initial read of kernel register state failed\n");
509         ret = -EINVAL;
510         goto out;
511     }
512 
513 out:
514     g_free(rlp);
515     return ret;
516 }
517 
518 bool write_kvmstate_to_list(ARMCPU *cpu)
519 {
520     CPUState *cs = CPU(cpu);
521     int i;
522     bool ok = true;
523 
524     for (i = 0; i < cpu->cpreg_array_len; i++) {
525         struct kvm_one_reg r;
526         uint64_t regidx = cpu->cpreg_indexes[i];
527         uint32_t v32;
528         int ret;
529 
530         r.id = regidx;
531 
532         switch (regidx & KVM_REG_SIZE_MASK) {
533         case KVM_REG_SIZE_U32:
534             r.addr = (uintptr_t)&v32;
535             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
536             if (!ret) {
537                 cpu->cpreg_values[i] = v32;
538             }
539             break;
540         case KVM_REG_SIZE_U64:
541             r.addr = (uintptr_t)(cpu->cpreg_values + i);
542             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
543             break;
544         default:
545             g_assert_not_reached();
546         }
547         if (ret) {
548             ok = false;
549         }
550     }
551     return ok;
552 }
553 
554 bool write_list_to_kvmstate(ARMCPU *cpu, int level)
555 {
556     CPUState *cs = CPU(cpu);
557     int i;
558     bool ok = true;
559 
560     for (i = 0; i < cpu->cpreg_array_len; i++) {
561         struct kvm_one_reg r;
562         uint64_t regidx = cpu->cpreg_indexes[i];
563         uint32_t v32;
564         int ret;
565 
566         if (kvm_arm_cpreg_level(regidx) > level) {
567             continue;
568         }
569 
570         r.id = regidx;
571         switch (regidx & KVM_REG_SIZE_MASK) {
572         case KVM_REG_SIZE_U32:
573             v32 = cpu->cpreg_values[i];
574             r.addr = (uintptr_t)&v32;
575             break;
576         case KVM_REG_SIZE_U64:
577             r.addr = (uintptr_t)(cpu->cpreg_values + i);
578             break;
579         default:
580             g_assert_not_reached();
581         }
582         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
583         if (ret) {
584             /* We might fail for "unknown register" and also for
585              * "you tried to set a register which is constant with
586              * a different value from what it actually contains".
587              */
588             ok = false;
589         }
590     }
591     return ok;
592 }
593 
594 void kvm_arm_cpu_pre_save(ARMCPU *cpu)
595 {
596     /* KVM virtual time adjustment */
597     if (cpu->kvm_vtime_dirty) {
598         *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT) = cpu->kvm_vtime;
599     }
600 }
601 
602 void kvm_arm_cpu_post_load(ARMCPU *cpu)
603 {
604     /* KVM virtual time adjustment */
605     if (cpu->kvm_adjvtime) {
606         cpu->kvm_vtime = *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT);
607         cpu->kvm_vtime_dirty = true;
608     }
609 }
610 
611 void kvm_arm_reset_vcpu(ARMCPU *cpu)
612 {
613     int ret;
614 
615     /* Re-init VCPU so that all registers are set to
616      * their respective reset values.
617      */
618     ret = kvm_arm_vcpu_init(CPU(cpu));
619     if (ret < 0) {
620         fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
621         abort();
622     }
623     if (!write_kvmstate_to_list(cpu)) {
624         fprintf(stderr, "write_kvmstate_to_list failed\n");
625         abort();
626     }
627     /*
628      * Sync the reset values also into the CPUState. This is necessary
629      * because the next thing we do will be a kvm_arch_put_registers()
630      * which will update the list values from the CPUState before copying
631      * the list values back to KVM. It's OK to ignore failure returns here
632      * for the same reason we do so in kvm_arch_get_registers().
633      */
634     write_list_to_cpustate(cpu);
635 }
636 
637 /*
638  * Update KVM's MP_STATE based on what QEMU thinks it is
639  */
640 int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
641 {
642     if (cap_has_mp_state) {
643         struct kvm_mp_state mp_state = {
644             .mp_state = (cpu->power_state == PSCI_OFF) ?
645             KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
646         };
647         int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
648         if (ret) {
649             fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n",
650                     __func__, ret, strerror(-ret));
651             return -1;
652         }
653     }
654 
655     return 0;
656 }
657 
658 /*
659  * Sync the KVM MP_STATE into QEMU
660  */
661 int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
662 {
663     if (cap_has_mp_state) {
664         struct kvm_mp_state mp_state;
665         int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
666         if (ret) {
667             fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n",
668                     __func__, ret, strerror(-ret));
669             abort();
670         }
671         cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
672             PSCI_OFF : PSCI_ON;
673     }
674 
675     return 0;
676 }
677 
678 void kvm_arm_get_virtual_time(CPUState *cs)
679 {
680     ARMCPU *cpu = ARM_CPU(cs);
681     struct kvm_one_reg reg = {
682         .id = KVM_REG_ARM_TIMER_CNT,
683         .addr = (uintptr_t)&cpu->kvm_vtime,
684     };
685     int ret;
686 
687     if (cpu->kvm_vtime_dirty) {
688         return;
689     }
690 
691     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
692     if (ret) {
693         error_report("Failed to get KVM_REG_ARM_TIMER_CNT");
694         abort();
695     }
696 
697     cpu->kvm_vtime_dirty = true;
698 }
699 
700 void kvm_arm_put_virtual_time(CPUState *cs)
701 {
702     ARMCPU *cpu = ARM_CPU(cs);
703     struct kvm_one_reg reg = {
704         .id = KVM_REG_ARM_TIMER_CNT,
705         .addr = (uintptr_t)&cpu->kvm_vtime,
706     };
707     int ret;
708 
709     if (!cpu->kvm_vtime_dirty) {
710         return;
711     }
712 
713     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
714     if (ret) {
715         error_report("Failed to set KVM_REG_ARM_TIMER_CNT");
716         abort();
717     }
718 
719     cpu->kvm_vtime_dirty = false;
720 }
721 
722 int kvm_put_vcpu_events(ARMCPU *cpu)
723 {
724     CPUARMState *env = &cpu->env;
725     struct kvm_vcpu_events events;
726     int ret;
727 
728     if (!kvm_has_vcpu_events()) {
729         return 0;
730     }
731 
732     memset(&events, 0, sizeof(events));
733     events.exception.serror_pending = env->serror.pending;
734 
735     /* Inject SError to guest with specified syndrome if host kernel
736      * supports it, otherwise inject SError without syndrome.
737      */
738     if (cap_has_inject_serror_esr) {
739         events.exception.serror_has_esr = env->serror.has_esr;
740         events.exception.serror_esr = env->serror.esr;
741     }
742 
743     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
744     if (ret) {
745         error_report("failed to put vcpu events");
746     }
747 
748     return ret;
749 }
750 
751 int kvm_get_vcpu_events(ARMCPU *cpu)
752 {
753     CPUARMState *env = &cpu->env;
754     struct kvm_vcpu_events events;
755     int ret;
756 
757     if (!kvm_has_vcpu_events()) {
758         return 0;
759     }
760 
761     memset(&events, 0, sizeof(events));
762     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
763     if (ret) {
764         error_report("failed to get vcpu events");
765         return ret;
766     }
767 
768     env->serror.pending = events.exception.serror_pending;
769     env->serror.has_esr = events.exception.serror_has_esr;
770     env->serror.esr = events.exception.serror_esr;
771 
772     return 0;
773 }
774 
775 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
776 {
777     ARMCPU *cpu = ARM_CPU(cs);
778     CPUARMState *env = &cpu->env;
779 
780     if (unlikely(env->ext_dabt_raised)) {
781         /*
782          * Verifying that the ext DABT has been properly injected,
783          * otherwise risking indefinitely re-running the faulting instruction
784          * Covering a very narrow case for kernels 5.5..5.5.4
785          * when injected abort was misconfigured to be
786          * an IMPLEMENTATION DEFINED exception (for 32-bit EL1)
787          */
788         if (!arm_feature(env, ARM_FEATURE_AARCH64) &&
789             unlikely(!kvm_arm_verify_ext_dabt_pending(cs))) {
790 
791             error_report("Data abort exception with no valid ISS generated by "
792                    "guest memory access. KVM unable to emulate faulting "
793                    "instruction. Failed to inject an external data abort "
794                    "into the guest.");
795             abort();
796        }
797        /* Clear the status */
798        env->ext_dabt_raised = 0;
799     }
800 }
801 
802 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
803 {
804     ARMCPU *cpu;
805     uint32_t switched_level;
806 
807     if (kvm_irqchip_in_kernel()) {
808         /*
809          * We only need to sync timer states with user-space interrupt
810          * controllers, so return early and save cycles if we don't.
811          */
812         return MEMTXATTRS_UNSPECIFIED;
813     }
814 
815     cpu = ARM_CPU(cs);
816 
817     /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
818     if (run->s.regs.device_irq_level != cpu->device_irq_level) {
819         switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
820 
821         qemu_mutex_lock_iothread();
822 
823         if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
824             qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
825                          !!(run->s.regs.device_irq_level &
826                             KVM_ARM_DEV_EL1_VTIMER));
827             switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
828         }
829 
830         if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
831             qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
832                          !!(run->s.regs.device_irq_level &
833                             KVM_ARM_DEV_EL1_PTIMER));
834             switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
835         }
836 
837         if (switched_level & KVM_ARM_DEV_PMU) {
838             qemu_set_irq(cpu->pmu_interrupt,
839                          !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
840             switched_level &= ~KVM_ARM_DEV_PMU;
841         }
842 
843         if (switched_level) {
844             qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
845                           __func__, switched_level);
846         }
847 
848         /* We also mark unknown levels as processed to not waste cycles */
849         cpu->device_irq_level = run->s.regs.device_irq_level;
850         qemu_mutex_unlock_iothread();
851     }
852 
853     return MEMTXATTRS_UNSPECIFIED;
854 }
855 
856 void kvm_arm_vm_state_change(void *opaque, bool running, RunState state)
857 {
858     CPUState *cs = opaque;
859     ARMCPU *cpu = ARM_CPU(cs);
860 
861     if (running) {
862         if (cpu->kvm_adjvtime) {
863             kvm_arm_put_virtual_time(cs);
864         }
865     } else {
866         if (cpu->kvm_adjvtime) {
867             kvm_arm_get_virtual_time(cs);
868         }
869     }
870 }
871 
872 /**
873  * kvm_arm_handle_dabt_nisv:
874  * @cs: CPUState
875  * @esr_iss: ISS encoding (limited) for the exception from Data Abort
876  *           ISV bit set to '0b0' -> no valid instruction syndrome
877  * @fault_ipa: faulting address for the synchronous data abort
878  *
879  * Returns: 0 if the exception has been handled, < 0 otherwise
880  */
881 static int kvm_arm_handle_dabt_nisv(CPUState *cs, uint64_t esr_iss,
882                                     uint64_t fault_ipa)
883 {
884     ARMCPU *cpu = ARM_CPU(cs);
885     CPUARMState *env = &cpu->env;
886     /*
887      * Request KVM to inject the external data abort into the guest
888      */
889     if (cap_has_inject_ext_dabt) {
890         struct kvm_vcpu_events events = { };
891         /*
892          * The external data abort event will be handled immediately by KVM
893          * using the address fault that triggered the exit on given VCPU.
894          * Requesting injection of the external data abort does not rely
895          * on any other VCPU state. Therefore, in this particular case, the VCPU
896          * synchronization can be exceptionally skipped.
897          */
898         events.exception.ext_dabt_pending = 1;
899         /* KVM_CAP_ARM_INJECT_EXT_DABT implies KVM_CAP_VCPU_EVENTS */
900         if (!kvm_vcpu_ioctl(cs, KVM_SET_VCPU_EVENTS, &events)) {
901             env->ext_dabt_raised = 1;
902             return 0;
903         }
904     } else {
905         error_report("Data abort exception triggered by guest memory access "
906                      "at physical address: 0x"  TARGET_FMT_lx,
907                      (target_ulong)fault_ipa);
908         error_printf("KVM unable to emulate faulting instruction.\n");
909     }
910     return -1;
911 }
912 
913 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
914 {
915     int ret = 0;
916 
917     switch (run->exit_reason) {
918     case KVM_EXIT_DEBUG:
919         if (kvm_arm_handle_debug(cs, &run->debug.arch)) {
920             ret = EXCP_DEBUG;
921         } /* otherwise return to guest */
922         break;
923     case KVM_EXIT_ARM_NISV:
924         /* External DABT with no valid iss to decode */
925         ret = kvm_arm_handle_dabt_nisv(cs, run->arm_nisv.esr_iss,
926                                        run->arm_nisv.fault_ipa);
927         break;
928     default:
929         qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
930                       __func__, run->exit_reason);
931         break;
932     }
933     return ret;
934 }
935 
936 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
937 {
938     return true;
939 }
940 
941 int kvm_arch_process_async_events(CPUState *cs)
942 {
943     return 0;
944 }
945 
946 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
947 {
948     if (kvm_sw_breakpoints_active(cs)) {
949         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
950     }
951     if (kvm_arm_hw_debug_active(cs)) {
952         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
953         kvm_arm_copy_hw_debug_data(&dbg->arch);
954     }
955 }
956 
957 void kvm_arch_init_irq_routing(KVMState *s)
958 {
959 }
960 
961 int kvm_arch_irqchip_create(KVMState *s)
962 {
963     if (kvm_kernel_irqchip_split()) {
964         error_report("-machine kernel_irqchip=split is not supported on ARM.");
965         exit(1);
966     }
967 
968     /* If we can create the VGIC using the newer device control API, we
969      * let the device do this when it initializes itself, otherwise we
970      * fall back to the old API */
971     return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
972 }
973 
974 int kvm_arm_vgic_probe(void)
975 {
976     int val = 0;
977 
978     if (kvm_create_device(kvm_state,
979                           KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
980         val |= KVM_ARM_VGIC_V3;
981     }
982     if (kvm_create_device(kvm_state,
983                           KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
984         val |= KVM_ARM_VGIC_V2;
985     }
986     return val;
987 }
988 
989 int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level)
990 {
991     int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq;
992     int cpu_idx1 = cpu % 256;
993     int cpu_idx2 = cpu / 256;
994 
995     kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) |
996                (cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT);
997 
998     return kvm_set_irq(kvm_state, kvm_irq, !!level);
999 }
1000 
1001 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
1002                              uint64_t address, uint32_t data, PCIDevice *dev)
1003 {
1004     AddressSpace *as = pci_device_iommu_address_space(dev);
1005     hwaddr xlat, len, doorbell_gpa;
1006     MemoryRegionSection mrs;
1007     MemoryRegion *mr;
1008 
1009     if (as == &address_space_memory) {
1010         return 0;
1011     }
1012 
1013     /* MSI doorbell address is translated by an IOMMU */
1014 
1015     RCU_READ_LOCK_GUARD();
1016 
1017     mr = address_space_translate(as, address, &xlat, &len, true,
1018                                  MEMTXATTRS_UNSPECIFIED);
1019 
1020     if (!mr) {
1021         return 1;
1022     }
1023 
1024     mrs = memory_region_find(mr, xlat, 1);
1025 
1026     if (!mrs.mr) {
1027         return 1;
1028     }
1029 
1030     doorbell_gpa = mrs.offset_within_address_space;
1031     memory_region_unref(mrs.mr);
1032 
1033     route->u.msi.address_lo = doorbell_gpa;
1034     route->u.msi.address_hi = doorbell_gpa >> 32;
1035 
1036     trace_kvm_arm_fixup_msi_route(address, doorbell_gpa);
1037 
1038     return 0;
1039 }
1040 
1041 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
1042                                 int vector, PCIDevice *dev)
1043 {
1044     return 0;
1045 }
1046 
1047 int kvm_arch_release_virq_post(int virq)
1048 {
1049     return 0;
1050 }
1051 
1052 int kvm_arch_msi_data_to_gsi(uint32_t data)
1053 {
1054     return (data - 32) & 0xffff;
1055 }
1056 
1057 bool kvm_arch_cpu_check_are_resettable(void)
1058 {
1059     return true;
1060 }
1061 
1062 void kvm_arch_accel_class_init(ObjectClass *oc)
1063 {
1064 }
1065