1 /* 2 * ARM implementation of KVM hooks 3 * 4 * Copyright Christoffer Dall 2009-2010 5 * 6 * This work is licensed under the terms of the GNU GPL, version 2 or later. 7 * See the COPYING file in the top-level directory. 8 * 9 */ 10 11 #include "qemu/osdep.h" 12 #include <sys/ioctl.h> 13 14 #include <linux/kvm.h> 15 16 #include "qemu-common.h" 17 #include "qemu/timer.h" 18 #include "qemu/error-report.h" 19 #include "sysemu/sysemu.h" 20 #include "sysemu/kvm.h" 21 #include "kvm_arm.h" 22 #include "cpu.h" 23 #include "internals.h" 24 #include "hw/arm/arm.h" 25 #include "exec/memattrs.h" 26 #include "exec/address-spaces.h" 27 #include "hw/boards.h" 28 #include "qemu/log.h" 29 30 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 31 KVM_CAP_LAST_INFO 32 }; 33 34 static bool cap_has_mp_state; 35 36 static ARMHostCPUFeatures arm_host_cpu_features; 37 38 int kvm_arm_vcpu_init(CPUState *cs) 39 { 40 ARMCPU *cpu = ARM_CPU(cs); 41 struct kvm_vcpu_init init; 42 43 init.target = cpu->kvm_target; 44 memcpy(init.features, cpu->kvm_init_features, sizeof(init.features)); 45 46 return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init); 47 } 48 49 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try, 50 int *fdarray, 51 struct kvm_vcpu_init *init) 52 { 53 int ret, kvmfd = -1, vmfd = -1, cpufd = -1; 54 55 kvmfd = qemu_open("/dev/kvm", O_RDWR); 56 if (kvmfd < 0) { 57 goto err; 58 } 59 vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0); 60 if (vmfd < 0) { 61 goto err; 62 } 63 cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0); 64 if (cpufd < 0) { 65 goto err; 66 } 67 68 if (!init) { 69 /* Caller doesn't want the VCPU to be initialized, so skip it */ 70 goto finish; 71 } 72 73 ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, init); 74 if (ret >= 0) { 75 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init); 76 if (ret < 0) { 77 goto err; 78 } 79 } else if (cpus_to_try) { 80 /* Old kernel which doesn't know about the 81 * PREFERRED_TARGET ioctl: we know it will only support 82 * creating one kind of guest CPU which is its preferred 83 * CPU type. 84 */ 85 while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) { 86 init->target = *cpus_to_try++; 87 memset(init->features, 0, sizeof(init->features)); 88 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init); 89 if (ret >= 0) { 90 break; 91 } 92 } 93 if (ret < 0) { 94 goto err; 95 } 96 } else { 97 /* Treat a NULL cpus_to_try argument the same as an empty 98 * list, which means we will fail the call since this must 99 * be an old kernel which doesn't support PREFERRED_TARGET. 100 */ 101 goto err; 102 } 103 104 finish: 105 fdarray[0] = kvmfd; 106 fdarray[1] = vmfd; 107 fdarray[2] = cpufd; 108 109 return true; 110 111 err: 112 if (cpufd >= 0) { 113 close(cpufd); 114 } 115 if (vmfd >= 0) { 116 close(vmfd); 117 } 118 if (kvmfd >= 0) { 119 close(kvmfd); 120 } 121 122 return false; 123 } 124 125 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray) 126 { 127 int i; 128 129 for (i = 2; i >= 0; i--) { 130 close(fdarray[i]); 131 } 132 } 133 134 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu) 135 { 136 CPUARMState *env = &cpu->env; 137 138 if (!arm_host_cpu_features.dtb_compatible) { 139 if (!kvm_enabled() || 140 !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) { 141 /* We can't report this error yet, so flag that we need to 142 * in arm_cpu_realizefn(). 143 */ 144 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE; 145 cpu->host_cpu_probe_failed = true; 146 return; 147 } 148 } 149 150 cpu->kvm_target = arm_host_cpu_features.target; 151 cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible; 152 env->features = arm_host_cpu_features.features; 153 } 154 155 int kvm_arch_init(MachineState *ms, KVMState *s) 156 { 157 /* For ARM interrupt delivery is always asynchronous, 158 * whether we are using an in-kernel VGIC or not. 159 */ 160 kvm_async_interrupts_allowed = true; 161 162 /* 163 * PSCI wakes up secondary cores, so we always need to 164 * have vCPUs waiting in kernel space 165 */ 166 kvm_halt_in_kernel_allowed = true; 167 168 cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE); 169 170 return 0; 171 } 172 173 unsigned long kvm_arch_vcpu_id(CPUState *cpu) 174 { 175 return cpu->cpu_index; 176 } 177 178 /* We track all the KVM devices which need their memory addresses 179 * passing to the kernel in a list of these structures. 180 * When board init is complete we run through the list and 181 * tell the kernel the base addresses of the memory regions. 182 * We use a MemoryListener to track mapping and unmapping of 183 * the regions during board creation, so the board models don't 184 * need to do anything special for the KVM case. 185 */ 186 typedef struct KVMDevice { 187 struct kvm_arm_device_addr kda; 188 struct kvm_device_attr kdattr; 189 MemoryRegion *mr; 190 QSLIST_ENTRY(KVMDevice) entries; 191 int dev_fd; 192 } KVMDevice; 193 194 static QSLIST_HEAD(kvm_devices_head, KVMDevice) kvm_devices_head; 195 196 static void kvm_arm_devlistener_add(MemoryListener *listener, 197 MemoryRegionSection *section) 198 { 199 KVMDevice *kd; 200 201 QSLIST_FOREACH(kd, &kvm_devices_head, entries) { 202 if (section->mr == kd->mr) { 203 kd->kda.addr = section->offset_within_address_space; 204 } 205 } 206 } 207 208 static void kvm_arm_devlistener_del(MemoryListener *listener, 209 MemoryRegionSection *section) 210 { 211 KVMDevice *kd; 212 213 QSLIST_FOREACH(kd, &kvm_devices_head, entries) { 214 if (section->mr == kd->mr) { 215 kd->kda.addr = -1; 216 } 217 } 218 } 219 220 static MemoryListener devlistener = { 221 .region_add = kvm_arm_devlistener_add, 222 .region_del = kvm_arm_devlistener_del, 223 }; 224 225 static void kvm_arm_set_device_addr(KVMDevice *kd) 226 { 227 struct kvm_device_attr *attr = &kd->kdattr; 228 int ret; 229 230 /* If the device control API is available and we have a device fd on the 231 * KVMDevice struct, let's use the newer API 232 */ 233 if (kd->dev_fd >= 0) { 234 uint64_t addr = kd->kda.addr; 235 attr->addr = (uintptr_t)&addr; 236 ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr); 237 } else { 238 ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda); 239 } 240 241 if (ret < 0) { 242 fprintf(stderr, "Failed to set device address: %s\n", 243 strerror(-ret)); 244 abort(); 245 } 246 } 247 248 static void kvm_arm_machine_init_done(Notifier *notifier, void *data) 249 { 250 KVMDevice *kd, *tkd; 251 252 QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) { 253 if (kd->kda.addr != -1) { 254 kvm_arm_set_device_addr(kd); 255 } 256 memory_region_unref(kd->mr); 257 g_free(kd); 258 } 259 memory_listener_unregister(&devlistener); 260 } 261 262 static Notifier notify = { 263 .notify = kvm_arm_machine_init_done, 264 }; 265 266 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group, 267 uint64_t attr, int dev_fd) 268 { 269 KVMDevice *kd; 270 271 if (!kvm_irqchip_in_kernel()) { 272 return; 273 } 274 275 if (QSLIST_EMPTY(&kvm_devices_head)) { 276 memory_listener_register(&devlistener, &address_space_memory); 277 qemu_add_machine_init_done_notifier(¬ify); 278 } 279 kd = g_new0(KVMDevice, 1); 280 kd->mr = mr; 281 kd->kda.id = devid; 282 kd->kda.addr = -1; 283 kd->kdattr.flags = 0; 284 kd->kdattr.group = group; 285 kd->kdattr.attr = attr; 286 kd->dev_fd = dev_fd; 287 QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries); 288 memory_region_ref(kd->mr); 289 } 290 291 static int compare_u64(const void *a, const void *b) 292 { 293 if (*(uint64_t *)a > *(uint64_t *)b) { 294 return 1; 295 } 296 if (*(uint64_t *)a < *(uint64_t *)b) { 297 return -1; 298 } 299 return 0; 300 } 301 302 /* Initialize the CPUState's cpreg list according to the kernel's 303 * definition of what CPU registers it knows about (and throw away 304 * the previous TCG-created cpreg list). 305 */ 306 int kvm_arm_init_cpreg_list(ARMCPU *cpu) 307 { 308 struct kvm_reg_list rl; 309 struct kvm_reg_list *rlp; 310 int i, ret, arraylen; 311 CPUState *cs = CPU(cpu); 312 313 rl.n = 0; 314 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl); 315 if (ret != -E2BIG) { 316 return ret; 317 } 318 rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t)); 319 rlp->n = rl.n; 320 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp); 321 if (ret) { 322 goto out; 323 } 324 /* Sort the list we get back from the kernel, since cpreg_tuples 325 * must be in strictly ascending order. 326 */ 327 qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64); 328 329 for (i = 0, arraylen = 0; i < rlp->n; i++) { 330 if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) { 331 continue; 332 } 333 switch (rlp->reg[i] & KVM_REG_SIZE_MASK) { 334 case KVM_REG_SIZE_U32: 335 case KVM_REG_SIZE_U64: 336 break; 337 default: 338 fprintf(stderr, "Can't handle size of register in kernel list\n"); 339 ret = -EINVAL; 340 goto out; 341 } 342 343 arraylen++; 344 } 345 346 cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen); 347 cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen); 348 cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes, 349 arraylen); 350 cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values, 351 arraylen); 352 cpu->cpreg_array_len = arraylen; 353 cpu->cpreg_vmstate_array_len = arraylen; 354 355 for (i = 0, arraylen = 0; i < rlp->n; i++) { 356 uint64_t regidx = rlp->reg[i]; 357 if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) { 358 continue; 359 } 360 cpu->cpreg_indexes[arraylen] = regidx; 361 arraylen++; 362 } 363 assert(cpu->cpreg_array_len == arraylen); 364 365 if (!write_kvmstate_to_list(cpu)) { 366 /* Shouldn't happen unless kernel is inconsistent about 367 * what registers exist. 368 */ 369 fprintf(stderr, "Initial read of kernel register state failed\n"); 370 ret = -EINVAL; 371 goto out; 372 } 373 374 out: 375 g_free(rlp); 376 return ret; 377 } 378 379 bool write_kvmstate_to_list(ARMCPU *cpu) 380 { 381 CPUState *cs = CPU(cpu); 382 int i; 383 bool ok = true; 384 385 for (i = 0; i < cpu->cpreg_array_len; i++) { 386 struct kvm_one_reg r; 387 uint64_t regidx = cpu->cpreg_indexes[i]; 388 uint32_t v32; 389 int ret; 390 391 r.id = regidx; 392 393 switch (regidx & KVM_REG_SIZE_MASK) { 394 case KVM_REG_SIZE_U32: 395 r.addr = (uintptr_t)&v32; 396 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); 397 if (!ret) { 398 cpu->cpreg_values[i] = v32; 399 } 400 break; 401 case KVM_REG_SIZE_U64: 402 r.addr = (uintptr_t)(cpu->cpreg_values + i); 403 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); 404 break; 405 default: 406 abort(); 407 } 408 if (ret) { 409 ok = false; 410 } 411 } 412 return ok; 413 } 414 415 bool write_list_to_kvmstate(ARMCPU *cpu, int level) 416 { 417 CPUState *cs = CPU(cpu); 418 int i; 419 bool ok = true; 420 421 for (i = 0; i < cpu->cpreg_array_len; i++) { 422 struct kvm_one_reg r; 423 uint64_t regidx = cpu->cpreg_indexes[i]; 424 uint32_t v32; 425 int ret; 426 427 if (kvm_arm_cpreg_level(regidx) > level) { 428 continue; 429 } 430 431 r.id = regidx; 432 switch (regidx & KVM_REG_SIZE_MASK) { 433 case KVM_REG_SIZE_U32: 434 v32 = cpu->cpreg_values[i]; 435 r.addr = (uintptr_t)&v32; 436 break; 437 case KVM_REG_SIZE_U64: 438 r.addr = (uintptr_t)(cpu->cpreg_values + i); 439 break; 440 default: 441 abort(); 442 } 443 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); 444 if (ret) { 445 /* We might fail for "unknown register" and also for 446 * "you tried to set a register which is constant with 447 * a different value from what it actually contains". 448 */ 449 ok = false; 450 } 451 } 452 return ok; 453 } 454 455 void kvm_arm_reset_vcpu(ARMCPU *cpu) 456 { 457 int ret; 458 459 /* Re-init VCPU so that all registers are set to 460 * their respective reset values. 461 */ 462 ret = kvm_arm_vcpu_init(CPU(cpu)); 463 if (ret < 0) { 464 fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret)); 465 abort(); 466 } 467 if (!write_kvmstate_to_list(cpu)) { 468 fprintf(stderr, "write_kvmstate_to_list failed\n"); 469 abort(); 470 } 471 } 472 473 /* 474 * Update KVM's MP_STATE based on what QEMU thinks it is 475 */ 476 int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu) 477 { 478 if (cap_has_mp_state) { 479 struct kvm_mp_state mp_state = { 480 .mp_state = (cpu->power_state == PSCI_OFF) ? 481 KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE 482 }; 483 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); 484 if (ret) { 485 fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n", 486 __func__, ret, strerror(-ret)); 487 return -1; 488 } 489 } 490 491 return 0; 492 } 493 494 /* 495 * Sync the KVM MP_STATE into QEMU 496 */ 497 int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu) 498 { 499 if (cap_has_mp_state) { 500 struct kvm_mp_state mp_state; 501 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state); 502 if (ret) { 503 fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n", 504 __func__, ret, strerror(-ret)); 505 abort(); 506 } 507 cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ? 508 PSCI_OFF : PSCI_ON; 509 } 510 511 return 0; 512 } 513 514 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run) 515 { 516 } 517 518 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) 519 { 520 ARMCPU *cpu; 521 uint32_t switched_level; 522 523 if (kvm_irqchip_in_kernel()) { 524 /* 525 * We only need to sync timer states with user-space interrupt 526 * controllers, so return early and save cycles if we don't. 527 */ 528 return MEMTXATTRS_UNSPECIFIED; 529 } 530 531 cpu = ARM_CPU(cs); 532 533 /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */ 534 if (run->s.regs.device_irq_level != cpu->device_irq_level) { 535 switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level; 536 537 qemu_mutex_lock_iothread(); 538 539 if (switched_level & KVM_ARM_DEV_EL1_VTIMER) { 540 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT], 541 !!(run->s.regs.device_irq_level & 542 KVM_ARM_DEV_EL1_VTIMER)); 543 switched_level &= ~KVM_ARM_DEV_EL1_VTIMER; 544 } 545 546 if (switched_level & KVM_ARM_DEV_EL1_PTIMER) { 547 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS], 548 !!(run->s.regs.device_irq_level & 549 KVM_ARM_DEV_EL1_PTIMER)); 550 switched_level &= ~KVM_ARM_DEV_EL1_PTIMER; 551 } 552 553 if (switched_level & KVM_ARM_DEV_PMU) { 554 qemu_set_irq(cpu->pmu_interrupt, 555 !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU)); 556 switched_level &= ~KVM_ARM_DEV_PMU; 557 } 558 559 if (switched_level) { 560 qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n", 561 __func__, switched_level); 562 } 563 564 /* We also mark unknown levels as processed to not waste cycles */ 565 cpu->device_irq_level = run->s.regs.device_irq_level; 566 qemu_mutex_unlock_iothread(); 567 } 568 569 return MEMTXATTRS_UNSPECIFIED; 570 } 571 572 573 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 574 { 575 int ret = 0; 576 577 switch (run->exit_reason) { 578 case KVM_EXIT_DEBUG: 579 if (kvm_arm_handle_debug(cs, &run->debug.arch)) { 580 ret = EXCP_DEBUG; 581 } /* otherwise return to guest */ 582 break; 583 default: 584 qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n", 585 __func__, run->exit_reason); 586 break; 587 } 588 return ret; 589 } 590 591 bool kvm_arch_stop_on_emulation_error(CPUState *cs) 592 { 593 return true; 594 } 595 596 int kvm_arch_process_async_events(CPUState *cs) 597 { 598 return 0; 599 } 600 601 /* The #ifdef protections are until 32bit headers are imported and can 602 * be removed once both 32 and 64 bit reach feature parity. 603 */ 604 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg) 605 { 606 #ifdef KVM_GUESTDBG_USE_SW_BP 607 if (kvm_sw_breakpoints_active(cs)) { 608 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; 609 } 610 #endif 611 #ifdef KVM_GUESTDBG_USE_HW 612 if (kvm_arm_hw_debug_active(cs)) { 613 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW; 614 kvm_arm_copy_hw_debug_data(&dbg->arch); 615 } 616 #endif 617 } 618 619 void kvm_arch_init_irq_routing(KVMState *s) 620 { 621 } 622 623 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s) 624 { 625 if (machine_kernel_irqchip_split(ms)) { 626 perror("-machine kernel_irqchip=split is not supported on ARM."); 627 exit(1); 628 } 629 630 /* If we can create the VGIC using the newer device control API, we 631 * let the device do this when it initializes itself, otherwise we 632 * fall back to the old API */ 633 return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL); 634 } 635 636 int kvm_arm_vgic_probe(void) 637 { 638 if (kvm_create_device(kvm_state, 639 KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) { 640 return 3; 641 } else if (kvm_create_device(kvm_state, 642 KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) { 643 return 2; 644 } else { 645 return 0; 646 } 647 } 648 649 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 650 uint64_t address, uint32_t data, PCIDevice *dev) 651 { 652 return 0; 653 } 654 655 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 656 int vector, PCIDevice *dev) 657 { 658 return 0; 659 } 660 661 int kvm_arch_release_virq_post(int virq) 662 { 663 return 0; 664 } 665 666 int kvm_arch_msi_data_to_gsi(uint32_t data) 667 { 668 return (data - 32) & 0xffff; 669 } 670