xref: /openbmc/qemu/target/arm/kvm.c (revision 9ea2e69f)
1 /*
2  * ARM implementation of KVM hooks
3  *
4  * Copyright Christoffer Dall 2009-2010
5  *
6  * This work is licensed under the terms of the GNU GPL, version 2 or later.
7  * See the COPYING file in the top-level directory.
8  *
9  */
10 
11 #include "qemu/osdep.h"
12 #include <sys/ioctl.h>
13 
14 #include <linux/kvm.h>
15 
16 #include "qemu/timer.h"
17 #include "qemu/error-report.h"
18 #include "qemu/main-loop.h"
19 #include "qom/object.h"
20 #include "qapi/error.h"
21 #include "sysemu/sysemu.h"
22 #include "sysemu/kvm.h"
23 #include "sysemu/kvm_int.h"
24 #include "kvm_arm.h"
25 #include "cpu.h"
26 #include "trace.h"
27 #include "internals.h"
28 #include "hw/pci/pci.h"
29 #include "exec/memattrs.h"
30 #include "exec/address-spaces.h"
31 #include "hw/boards.h"
32 #include "hw/irq.h"
33 #include "qemu/log.h"
34 
35 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
36     KVM_CAP_LAST_INFO
37 };
38 
39 static bool cap_has_mp_state;
40 static bool cap_has_inject_serror_esr;
41 static bool cap_has_inject_ext_dabt;
42 
43 static ARMHostCPUFeatures arm_host_cpu_features;
44 
45 int kvm_arm_vcpu_init(CPUState *cs)
46 {
47     ARMCPU *cpu = ARM_CPU(cs);
48     struct kvm_vcpu_init init;
49 
50     init.target = cpu->kvm_target;
51     memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
52 
53     return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
54 }
55 
56 int kvm_arm_vcpu_finalize(CPUState *cs, int feature)
57 {
58     return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_FINALIZE, &feature);
59 }
60 
61 void kvm_arm_init_serror_injection(CPUState *cs)
62 {
63     cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state,
64                                     KVM_CAP_ARM_INJECT_SERROR_ESR);
65 }
66 
67 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
68                                       int *fdarray,
69                                       struct kvm_vcpu_init *init)
70 {
71     int ret = 0, kvmfd = -1, vmfd = -1, cpufd = -1;
72     int max_vm_pa_size;
73 
74     kvmfd = qemu_open_old("/dev/kvm", O_RDWR);
75     if (kvmfd < 0) {
76         goto err;
77     }
78     max_vm_pa_size = ioctl(kvmfd, KVM_CHECK_EXTENSION, KVM_CAP_ARM_VM_IPA_SIZE);
79     if (max_vm_pa_size < 0) {
80         max_vm_pa_size = 0;
81     }
82     do {
83         vmfd = ioctl(kvmfd, KVM_CREATE_VM, max_vm_pa_size);
84     } while (vmfd == -1 && errno == EINTR);
85     if (vmfd < 0) {
86         goto err;
87     }
88     cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
89     if (cpufd < 0) {
90         goto err;
91     }
92 
93     if (!init) {
94         /* Caller doesn't want the VCPU to be initialized, so skip it */
95         goto finish;
96     }
97 
98     if (init->target == -1) {
99         struct kvm_vcpu_init preferred;
100 
101         ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, &preferred);
102         if (!ret) {
103             init->target = preferred.target;
104         }
105     }
106     if (ret >= 0) {
107         ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
108         if (ret < 0) {
109             goto err;
110         }
111     } else if (cpus_to_try) {
112         /* Old kernel which doesn't know about the
113          * PREFERRED_TARGET ioctl: we know it will only support
114          * creating one kind of guest CPU which is its preferred
115          * CPU type.
116          */
117         struct kvm_vcpu_init try;
118 
119         while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
120             try.target = *cpus_to_try++;
121             memcpy(try.features, init->features, sizeof(init->features));
122             ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, &try);
123             if (ret >= 0) {
124                 break;
125             }
126         }
127         if (ret < 0) {
128             goto err;
129         }
130         init->target = try.target;
131     } else {
132         /* Treat a NULL cpus_to_try argument the same as an empty
133          * list, which means we will fail the call since this must
134          * be an old kernel which doesn't support PREFERRED_TARGET.
135          */
136         goto err;
137     }
138 
139 finish:
140     fdarray[0] = kvmfd;
141     fdarray[1] = vmfd;
142     fdarray[2] = cpufd;
143 
144     return true;
145 
146 err:
147     if (cpufd >= 0) {
148         close(cpufd);
149     }
150     if (vmfd >= 0) {
151         close(vmfd);
152     }
153     if (kvmfd >= 0) {
154         close(kvmfd);
155     }
156 
157     return false;
158 }
159 
160 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
161 {
162     int i;
163 
164     for (i = 2; i >= 0; i--) {
165         close(fdarray[i]);
166     }
167 }
168 
169 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
170 {
171     CPUARMState *env = &cpu->env;
172 
173     if (!arm_host_cpu_features.dtb_compatible) {
174         if (!kvm_enabled() ||
175             !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) {
176             /* We can't report this error yet, so flag that we need to
177              * in arm_cpu_realizefn().
178              */
179             cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
180             cpu->host_cpu_probe_failed = true;
181             return;
182         }
183     }
184 
185     cpu->kvm_target = arm_host_cpu_features.target;
186     cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
187     cpu->isar = arm_host_cpu_features.isar;
188     env->features = arm_host_cpu_features.features;
189 }
190 
191 static bool kvm_no_adjvtime_get(Object *obj, Error **errp)
192 {
193     return !ARM_CPU(obj)->kvm_adjvtime;
194 }
195 
196 static void kvm_no_adjvtime_set(Object *obj, bool value, Error **errp)
197 {
198     ARM_CPU(obj)->kvm_adjvtime = !value;
199 }
200 
201 static bool kvm_steal_time_get(Object *obj, Error **errp)
202 {
203     return ARM_CPU(obj)->kvm_steal_time != ON_OFF_AUTO_OFF;
204 }
205 
206 static void kvm_steal_time_set(Object *obj, bool value, Error **errp)
207 {
208     ARM_CPU(obj)->kvm_steal_time = value ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
209 }
210 
211 /* KVM VCPU properties should be prefixed with "kvm-". */
212 void kvm_arm_add_vcpu_properties(Object *obj)
213 {
214     ARMCPU *cpu = ARM_CPU(obj);
215     CPUARMState *env = &cpu->env;
216 
217     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
218         cpu->kvm_adjvtime = true;
219         object_property_add_bool(obj, "kvm-no-adjvtime", kvm_no_adjvtime_get,
220                                  kvm_no_adjvtime_set);
221         object_property_set_description(obj, "kvm-no-adjvtime",
222                                         "Set on to disable the adjustment of "
223                                         "the virtual counter. VM stopped time "
224                                         "will be counted.");
225     }
226 
227     cpu->kvm_steal_time = ON_OFF_AUTO_AUTO;
228     object_property_add_bool(obj, "kvm-steal-time", kvm_steal_time_get,
229                              kvm_steal_time_set);
230     object_property_set_description(obj, "kvm-steal-time",
231                                     "Set off to disable KVM steal time.");
232 }
233 
234 bool kvm_arm_pmu_supported(void)
235 {
236     return kvm_check_extension(kvm_state, KVM_CAP_ARM_PMU_V3);
237 }
238 
239 int kvm_arm_get_max_vm_ipa_size(MachineState *ms, bool *fixed_ipa)
240 {
241     KVMState *s = KVM_STATE(ms->accelerator);
242     int ret;
243 
244     ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE);
245     *fixed_ipa = ret <= 0;
246 
247     return ret > 0 ? ret : 40;
248 }
249 
250 int kvm_arch_init(MachineState *ms, KVMState *s)
251 {
252     int ret = 0;
253     /* For ARM interrupt delivery is always asynchronous,
254      * whether we are using an in-kernel VGIC or not.
255      */
256     kvm_async_interrupts_allowed = true;
257 
258     /*
259      * PSCI wakes up secondary cores, so we always need to
260      * have vCPUs waiting in kernel space
261      */
262     kvm_halt_in_kernel_allowed = true;
263 
264     cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
265 
266     if (ms->smp.cpus > 256 &&
267         !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) {
268         error_report("Using more than 256 vcpus requires a host kernel "
269                      "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2");
270         ret = -EINVAL;
271     }
272 
273     if (kvm_check_extension(s, KVM_CAP_ARM_NISV_TO_USER)) {
274         if (kvm_vm_enable_cap(s, KVM_CAP_ARM_NISV_TO_USER, 0)) {
275             error_report("Failed to enable KVM_CAP_ARM_NISV_TO_USER cap");
276         } else {
277             /* Set status for supporting the external dabt injection */
278             cap_has_inject_ext_dabt = kvm_check_extension(s,
279                                     KVM_CAP_ARM_INJECT_EXT_DABT);
280         }
281     }
282 
283     kvm_arm_init_debug(s);
284 
285     return ret;
286 }
287 
288 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
289 {
290     return cpu->cpu_index;
291 }
292 
293 /* We track all the KVM devices which need their memory addresses
294  * passing to the kernel in a list of these structures.
295  * When board init is complete we run through the list and
296  * tell the kernel the base addresses of the memory regions.
297  * We use a MemoryListener to track mapping and unmapping of
298  * the regions during board creation, so the board models don't
299  * need to do anything special for the KVM case.
300  *
301  * Sometimes the address must be OR'ed with some other fields
302  * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
303  * @kda_addr_ormask aims at storing the value of those fields.
304  */
305 typedef struct KVMDevice {
306     struct kvm_arm_device_addr kda;
307     struct kvm_device_attr kdattr;
308     uint64_t kda_addr_ormask;
309     MemoryRegion *mr;
310     QSLIST_ENTRY(KVMDevice) entries;
311     int dev_fd;
312 } KVMDevice;
313 
314 static QSLIST_HEAD(, KVMDevice) kvm_devices_head;
315 
316 static void kvm_arm_devlistener_add(MemoryListener *listener,
317                                     MemoryRegionSection *section)
318 {
319     KVMDevice *kd;
320 
321     QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
322         if (section->mr == kd->mr) {
323             kd->kda.addr = section->offset_within_address_space;
324         }
325     }
326 }
327 
328 static void kvm_arm_devlistener_del(MemoryListener *listener,
329                                     MemoryRegionSection *section)
330 {
331     KVMDevice *kd;
332 
333     QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
334         if (section->mr == kd->mr) {
335             kd->kda.addr = -1;
336         }
337     }
338 }
339 
340 static MemoryListener devlistener = {
341     .name = "kvm-arm",
342     .region_add = kvm_arm_devlistener_add,
343     .region_del = kvm_arm_devlistener_del,
344     .priority = MEMORY_LISTENER_PRIORITY_MIN,
345 };
346 
347 static void kvm_arm_set_device_addr(KVMDevice *kd)
348 {
349     struct kvm_device_attr *attr = &kd->kdattr;
350     int ret;
351 
352     /* If the device control API is available and we have a device fd on the
353      * KVMDevice struct, let's use the newer API
354      */
355     if (kd->dev_fd >= 0) {
356         uint64_t addr = kd->kda.addr;
357 
358         addr |= kd->kda_addr_ormask;
359         attr->addr = (uintptr_t)&addr;
360         ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
361     } else {
362         ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
363     }
364 
365     if (ret < 0) {
366         fprintf(stderr, "Failed to set device address: %s\n",
367                 strerror(-ret));
368         abort();
369     }
370 }
371 
372 static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
373 {
374     KVMDevice *kd, *tkd;
375 
376     QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
377         if (kd->kda.addr != -1) {
378             kvm_arm_set_device_addr(kd);
379         }
380         memory_region_unref(kd->mr);
381         QSLIST_REMOVE_HEAD(&kvm_devices_head, entries);
382         g_free(kd);
383     }
384     memory_listener_unregister(&devlistener);
385 }
386 
387 static Notifier notify = {
388     .notify = kvm_arm_machine_init_done,
389 };
390 
391 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
392                              uint64_t attr, int dev_fd, uint64_t addr_ormask)
393 {
394     KVMDevice *kd;
395 
396     if (!kvm_irqchip_in_kernel()) {
397         return;
398     }
399 
400     if (QSLIST_EMPTY(&kvm_devices_head)) {
401         memory_listener_register(&devlistener, &address_space_memory);
402         qemu_add_machine_init_done_notifier(&notify);
403     }
404     kd = g_new0(KVMDevice, 1);
405     kd->mr = mr;
406     kd->kda.id = devid;
407     kd->kda.addr = -1;
408     kd->kdattr.flags = 0;
409     kd->kdattr.group = group;
410     kd->kdattr.attr = attr;
411     kd->dev_fd = dev_fd;
412     kd->kda_addr_ormask = addr_ormask;
413     QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
414     memory_region_ref(kd->mr);
415 }
416 
417 static int compare_u64(const void *a, const void *b)
418 {
419     if (*(uint64_t *)a > *(uint64_t *)b) {
420         return 1;
421     }
422     if (*(uint64_t *)a < *(uint64_t *)b) {
423         return -1;
424     }
425     return 0;
426 }
427 
428 /*
429  * cpreg_values are sorted in ascending order by KVM register ID
430  * (see kvm_arm_init_cpreg_list). This allows us to cheaply find
431  * the storage for a KVM register by ID with a binary search.
432  */
433 static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx)
434 {
435     uint64_t *res;
436 
437     res = bsearch(&regidx, cpu->cpreg_indexes, cpu->cpreg_array_len,
438                   sizeof(uint64_t), compare_u64);
439     assert(res);
440 
441     return &cpu->cpreg_values[res - cpu->cpreg_indexes];
442 }
443 
444 /* Initialize the ARMCPU cpreg list according to the kernel's
445  * definition of what CPU registers it knows about (and throw away
446  * the previous TCG-created cpreg list).
447  */
448 int kvm_arm_init_cpreg_list(ARMCPU *cpu)
449 {
450     struct kvm_reg_list rl;
451     struct kvm_reg_list *rlp;
452     int i, ret, arraylen;
453     CPUState *cs = CPU(cpu);
454 
455     rl.n = 0;
456     ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
457     if (ret != -E2BIG) {
458         return ret;
459     }
460     rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
461     rlp->n = rl.n;
462     ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
463     if (ret) {
464         goto out;
465     }
466     /* Sort the list we get back from the kernel, since cpreg_tuples
467      * must be in strictly ascending order.
468      */
469     qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
470 
471     for (i = 0, arraylen = 0; i < rlp->n; i++) {
472         if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
473             continue;
474         }
475         switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
476         case KVM_REG_SIZE_U32:
477         case KVM_REG_SIZE_U64:
478             break;
479         default:
480             fprintf(stderr, "Can't handle size of register in kernel list\n");
481             ret = -EINVAL;
482             goto out;
483         }
484 
485         arraylen++;
486     }
487 
488     cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
489     cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
490     cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
491                                          arraylen);
492     cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
493                                         arraylen);
494     cpu->cpreg_array_len = arraylen;
495     cpu->cpreg_vmstate_array_len = arraylen;
496 
497     for (i = 0, arraylen = 0; i < rlp->n; i++) {
498         uint64_t regidx = rlp->reg[i];
499         if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
500             continue;
501         }
502         cpu->cpreg_indexes[arraylen] = regidx;
503         arraylen++;
504     }
505     assert(cpu->cpreg_array_len == arraylen);
506 
507     if (!write_kvmstate_to_list(cpu)) {
508         /* Shouldn't happen unless kernel is inconsistent about
509          * what registers exist.
510          */
511         fprintf(stderr, "Initial read of kernel register state failed\n");
512         ret = -EINVAL;
513         goto out;
514     }
515 
516 out:
517     g_free(rlp);
518     return ret;
519 }
520 
521 bool write_kvmstate_to_list(ARMCPU *cpu)
522 {
523     CPUState *cs = CPU(cpu);
524     int i;
525     bool ok = true;
526 
527     for (i = 0; i < cpu->cpreg_array_len; i++) {
528         struct kvm_one_reg r;
529         uint64_t regidx = cpu->cpreg_indexes[i];
530         uint32_t v32;
531         int ret;
532 
533         r.id = regidx;
534 
535         switch (regidx & KVM_REG_SIZE_MASK) {
536         case KVM_REG_SIZE_U32:
537             r.addr = (uintptr_t)&v32;
538             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
539             if (!ret) {
540                 cpu->cpreg_values[i] = v32;
541             }
542             break;
543         case KVM_REG_SIZE_U64:
544             r.addr = (uintptr_t)(cpu->cpreg_values + i);
545             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
546             break;
547         default:
548             g_assert_not_reached();
549         }
550         if (ret) {
551             ok = false;
552         }
553     }
554     return ok;
555 }
556 
557 bool write_list_to_kvmstate(ARMCPU *cpu, int level)
558 {
559     CPUState *cs = CPU(cpu);
560     int i;
561     bool ok = true;
562 
563     for (i = 0; i < cpu->cpreg_array_len; i++) {
564         struct kvm_one_reg r;
565         uint64_t regidx = cpu->cpreg_indexes[i];
566         uint32_t v32;
567         int ret;
568 
569         if (kvm_arm_cpreg_level(regidx) > level) {
570             continue;
571         }
572 
573         r.id = regidx;
574         switch (regidx & KVM_REG_SIZE_MASK) {
575         case KVM_REG_SIZE_U32:
576             v32 = cpu->cpreg_values[i];
577             r.addr = (uintptr_t)&v32;
578             break;
579         case KVM_REG_SIZE_U64:
580             r.addr = (uintptr_t)(cpu->cpreg_values + i);
581             break;
582         default:
583             g_assert_not_reached();
584         }
585         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
586         if (ret) {
587             /* We might fail for "unknown register" and also for
588              * "you tried to set a register which is constant with
589              * a different value from what it actually contains".
590              */
591             ok = false;
592         }
593     }
594     return ok;
595 }
596 
597 void kvm_arm_cpu_pre_save(ARMCPU *cpu)
598 {
599     /* KVM virtual time adjustment */
600     if (cpu->kvm_vtime_dirty) {
601         *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT) = cpu->kvm_vtime;
602     }
603 }
604 
605 void kvm_arm_cpu_post_load(ARMCPU *cpu)
606 {
607     /* KVM virtual time adjustment */
608     if (cpu->kvm_adjvtime) {
609         cpu->kvm_vtime = *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT);
610         cpu->kvm_vtime_dirty = true;
611     }
612 }
613 
614 void kvm_arm_reset_vcpu(ARMCPU *cpu)
615 {
616     int ret;
617 
618     /* Re-init VCPU so that all registers are set to
619      * their respective reset values.
620      */
621     ret = kvm_arm_vcpu_init(CPU(cpu));
622     if (ret < 0) {
623         fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
624         abort();
625     }
626     if (!write_kvmstate_to_list(cpu)) {
627         fprintf(stderr, "write_kvmstate_to_list failed\n");
628         abort();
629     }
630     /*
631      * Sync the reset values also into the CPUState. This is necessary
632      * because the next thing we do will be a kvm_arch_put_registers()
633      * which will update the list values from the CPUState before copying
634      * the list values back to KVM. It's OK to ignore failure returns here
635      * for the same reason we do so in kvm_arch_get_registers().
636      */
637     write_list_to_cpustate(cpu);
638 }
639 
640 /*
641  * Update KVM's MP_STATE based on what QEMU thinks it is
642  */
643 int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
644 {
645     if (cap_has_mp_state) {
646         struct kvm_mp_state mp_state = {
647             .mp_state = (cpu->power_state == PSCI_OFF) ?
648             KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
649         };
650         int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
651         if (ret) {
652             fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n",
653                     __func__, ret, strerror(-ret));
654             return -1;
655         }
656     }
657 
658     return 0;
659 }
660 
661 /*
662  * Sync the KVM MP_STATE into QEMU
663  */
664 int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
665 {
666     if (cap_has_mp_state) {
667         struct kvm_mp_state mp_state;
668         int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
669         if (ret) {
670             fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n",
671                     __func__, ret, strerror(-ret));
672             abort();
673         }
674         cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
675             PSCI_OFF : PSCI_ON;
676     }
677 
678     return 0;
679 }
680 
681 void kvm_arm_get_virtual_time(CPUState *cs)
682 {
683     ARMCPU *cpu = ARM_CPU(cs);
684     struct kvm_one_reg reg = {
685         .id = KVM_REG_ARM_TIMER_CNT,
686         .addr = (uintptr_t)&cpu->kvm_vtime,
687     };
688     int ret;
689 
690     if (cpu->kvm_vtime_dirty) {
691         return;
692     }
693 
694     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
695     if (ret) {
696         error_report("Failed to get KVM_REG_ARM_TIMER_CNT");
697         abort();
698     }
699 
700     cpu->kvm_vtime_dirty = true;
701 }
702 
703 void kvm_arm_put_virtual_time(CPUState *cs)
704 {
705     ARMCPU *cpu = ARM_CPU(cs);
706     struct kvm_one_reg reg = {
707         .id = KVM_REG_ARM_TIMER_CNT,
708         .addr = (uintptr_t)&cpu->kvm_vtime,
709     };
710     int ret;
711 
712     if (!cpu->kvm_vtime_dirty) {
713         return;
714     }
715 
716     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
717     if (ret) {
718         error_report("Failed to set KVM_REG_ARM_TIMER_CNT");
719         abort();
720     }
721 
722     cpu->kvm_vtime_dirty = false;
723 }
724 
725 int kvm_put_vcpu_events(ARMCPU *cpu)
726 {
727     CPUARMState *env = &cpu->env;
728     struct kvm_vcpu_events events;
729     int ret;
730 
731     if (!kvm_has_vcpu_events()) {
732         return 0;
733     }
734 
735     memset(&events, 0, sizeof(events));
736     events.exception.serror_pending = env->serror.pending;
737 
738     /* Inject SError to guest with specified syndrome if host kernel
739      * supports it, otherwise inject SError without syndrome.
740      */
741     if (cap_has_inject_serror_esr) {
742         events.exception.serror_has_esr = env->serror.has_esr;
743         events.exception.serror_esr = env->serror.esr;
744     }
745 
746     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
747     if (ret) {
748         error_report("failed to put vcpu events");
749     }
750 
751     return ret;
752 }
753 
754 int kvm_get_vcpu_events(ARMCPU *cpu)
755 {
756     CPUARMState *env = &cpu->env;
757     struct kvm_vcpu_events events;
758     int ret;
759 
760     if (!kvm_has_vcpu_events()) {
761         return 0;
762     }
763 
764     memset(&events, 0, sizeof(events));
765     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
766     if (ret) {
767         error_report("failed to get vcpu events");
768         return ret;
769     }
770 
771     env->serror.pending = events.exception.serror_pending;
772     env->serror.has_esr = events.exception.serror_has_esr;
773     env->serror.esr = events.exception.serror_esr;
774 
775     return 0;
776 }
777 
778 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
779 {
780     ARMCPU *cpu = ARM_CPU(cs);
781     CPUARMState *env = &cpu->env;
782 
783     if (unlikely(env->ext_dabt_raised)) {
784         /*
785          * Verifying that the ext DABT has been properly injected,
786          * otherwise risking indefinitely re-running the faulting instruction
787          * Covering a very narrow case for kernels 5.5..5.5.4
788          * when injected abort was misconfigured to be
789          * an IMPLEMENTATION DEFINED exception (for 32-bit EL1)
790          */
791         if (!arm_feature(env, ARM_FEATURE_AARCH64) &&
792             unlikely(!kvm_arm_verify_ext_dabt_pending(cs))) {
793 
794             error_report("Data abort exception with no valid ISS generated by "
795                    "guest memory access. KVM unable to emulate faulting "
796                    "instruction. Failed to inject an external data abort "
797                    "into the guest.");
798             abort();
799        }
800        /* Clear the status */
801        env->ext_dabt_raised = 0;
802     }
803 }
804 
805 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
806 {
807     ARMCPU *cpu;
808     uint32_t switched_level;
809 
810     if (kvm_irqchip_in_kernel()) {
811         /*
812          * We only need to sync timer states with user-space interrupt
813          * controllers, so return early and save cycles if we don't.
814          */
815         return MEMTXATTRS_UNSPECIFIED;
816     }
817 
818     cpu = ARM_CPU(cs);
819 
820     /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
821     if (run->s.regs.device_irq_level != cpu->device_irq_level) {
822         switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
823 
824         qemu_mutex_lock_iothread();
825 
826         if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
827             qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
828                          !!(run->s.regs.device_irq_level &
829                             KVM_ARM_DEV_EL1_VTIMER));
830             switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
831         }
832 
833         if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
834             qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
835                          !!(run->s.regs.device_irq_level &
836                             KVM_ARM_DEV_EL1_PTIMER));
837             switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
838         }
839 
840         if (switched_level & KVM_ARM_DEV_PMU) {
841             qemu_set_irq(cpu->pmu_interrupt,
842                          !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
843             switched_level &= ~KVM_ARM_DEV_PMU;
844         }
845 
846         if (switched_level) {
847             qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
848                           __func__, switched_level);
849         }
850 
851         /* We also mark unknown levels as processed to not waste cycles */
852         cpu->device_irq_level = run->s.regs.device_irq_level;
853         qemu_mutex_unlock_iothread();
854     }
855 
856     return MEMTXATTRS_UNSPECIFIED;
857 }
858 
859 void kvm_arm_vm_state_change(void *opaque, bool running, RunState state)
860 {
861     CPUState *cs = opaque;
862     ARMCPU *cpu = ARM_CPU(cs);
863 
864     if (running) {
865         if (cpu->kvm_adjvtime) {
866             kvm_arm_put_virtual_time(cs);
867         }
868     } else {
869         if (cpu->kvm_adjvtime) {
870             kvm_arm_get_virtual_time(cs);
871         }
872     }
873 }
874 
875 /**
876  * kvm_arm_handle_dabt_nisv:
877  * @cs: CPUState
878  * @esr_iss: ISS encoding (limited) for the exception from Data Abort
879  *           ISV bit set to '0b0' -> no valid instruction syndrome
880  * @fault_ipa: faulting address for the synchronous data abort
881  *
882  * Returns: 0 if the exception has been handled, < 0 otherwise
883  */
884 static int kvm_arm_handle_dabt_nisv(CPUState *cs, uint64_t esr_iss,
885                                     uint64_t fault_ipa)
886 {
887     ARMCPU *cpu = ARM_CPU(cs);
888     CPUARMState *env = &cpu->env;
889     /*
890      * Request KVM to inject the external data abort into the guest
891      */
892     if (cap_has_inject_ext_dabt) {
893         struct kvm_vcpu_events events = { };
894         /*
895          * The external data abort event will be handled immediately by KVM
896          * using the address fault that triggered the exit on given VCPU.
897          * Requesting injection of the external data abort does not rely
898          * on any other VCPU state. Therefore, in this particular case, the VCPU
899          * synchronization can be exceptionally skipped.
900          */
901         events.exception.ext_dabt_pending = 1;
902         /* KVM_CAP_ARM_INJECT_EXT_DABT implies KVM_CAP_VCPU_EVENTS */
903         if (!kvm_vcpu_ioctl(cs, KVM_SET_VCPU_EVENTS, &events)) {
904             env->ext_dabt_raised = 1;
905             return 0;
906         }
907     } else {
908         error_report("Data abort exception triggered by guest memory access "
909                      "at physical address: 0x"  TARGET_FMT_lx,
910                      (target_ulong)fault_ipa);
911         error_printf("KVM unable to emulate faulting instruction.\n");
912     }
913     return -1;
914 }
915 
916 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
917 {
918     int ret = 0;
919 
920     switch (run->exit_reason) {
921     case KVM_EXIT_DEBUG:
922         if (kvm_arm_handle_debug(cs, &run->debug.arch)) {
923             ret = EXCP_DEBUG;
924         } /* otherwise return to guest */
925         break;
926     case KVM_EXIT_ARM_NISV:
927         /* External DABT with no valid iss to decode */
928         ret = kvm_arm_handle_dabt_nisv(cs, run->arm_nisv.esr_iss,
929                                        run->arm_nisv.fault_ipa);
930         break;
931     default:
932         qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
933                       __func__, run->exit_reason);
934         break;
935     }
936     return ret;
937 }
938 
939 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
940 {
941     return true;
942 }
943 
944 int kvm_arch_process_async_events(CPUState *cs)
945 {
946     return 0;
947 }
948 
949 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
950 {
951     if (kvm_sw_breakpoints_active(cs)) {
952         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
953     }
954     if (kvm_arm_hw_debug_active(cs)) {
955         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
956         kvm_arm_copy_hw_debug_data(&dbg->arch);
957     }
958 }
959 
960 void kvm_arch_init_irq_routing(KVMState *s)
961 {
962 }
963 
964 int kvm_arch_irqchip_create(KVMState *s)
965 {
966     if (kvm_kernel_irqchip_split()) {
967         error_report("-machine kernel_irqchip=split is not supported on ARM.");
968         exit(1);
969     }
970 
971     /* If we can create the VGIC using the newer device control API, we
972      * let the device do this when it initializes itself, otherwise we
973      * fall back to the old API */
974     return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
975 }
976 
977 int kvm_arm_vgic_probe(void)
978 {
979     int val = 0;
980 
981     if (kvm_create_device(kvm_state,
982                           KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
983         val |= KVM_ARM_VGIC_V3;
984     }
985     if (kvm_create_device(kvm_state,
986                           KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
987         val |= KVM_ARM_VGIC_V2;
988     }
989     return val;
990 }
991 
992 int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level)
993 {
994     int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq;
995     int cpu_idx1 = cpu % 256;
996     int cpu_idx2 = cpu / 256;
997 
998     kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) |
999                (cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT);
1000 
1001     return kvm_set_irq(kvm_state, kvm_irq, !!level);
1002 }
1003 
1004 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
1005                              uint64_t address, uint32_t data, PCIDevice *dev)
1006 {
1007     AddressSpace *as = pci_device_iommu_address_space(dev);
1008     hwaddr xlat, len, doorbell_gpa;
1009     MemoryRegionSection mrs;
1010     MemoryRegion *mr;
1011 
1012     if (as == &address_space_memory) {
1013         return 0;
1014     }
1015 
1016     /* MSI doorbell address is translated by an IOMMU */
1017 
1018     RCU_READ_LOCK_GUARD();
1019 
1020     mr = address_space_translate(as, address, &xlat, &len, true,
1021                                  MEMTXATTRS_UNSPECIFIED);
1022 
1023     if (!mr) {
1024         return 1;
1025     }
1026 
1027     mrs = memory_region_find(mr, xlat, 1);
1028 
1029     if (!mrs.mr) {
1030         return 1;
1031     }
1032 
1033     doorbell_gpa = mrs.offset_within_address_space;
1034     memory_region_unref(mrs.mr);
1035 
1036     route->u.msi.address_lo = doorbell_gpa;
1037     route->u.msi.address_hi = doorbell_gpa >> 32;
1038 
1039     trace_kvm_arm_fixup_msi_route(address, doorbell_gpa);
1040 
1041     return 0;
1042 }
1043 
1044 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
1045                                 int vector, PCIDevice *dev)
1046 {
1047     return 0;
1048 }
1049 
1050 int kvm_arch_release_virq_post(int virq)
1051 {
1052     return 0;
1053 }
1054 
1055 int kvm_arch_msi_data_to_gsi(uint32_t data)
1056 {
1057     return (data - 32) & 0xffff;
1058 }
1059 
1060 bool kvm_arch_cpu_check_are_resettable(void)
1061 {
1062     return true;
1063 }
1064 
1065 void kvm_arch_accel_class_init(ObjectClass *oc)
1066 {
1067 }
1068