1 /* 2 * ARM implementation of KVM hooks 3 * 4 * Copyright Christoffer Dall 2009-2010 5 * 6 * This work is licensed under the terms of the GNU GPL, version 2 or later. 7 * See the COPYING file in the top-level directory. 8 * 9 */ 10 11 #include "qemu/osdep.h" 12 #include <sys/ioctl.h> 13 14 #include <linux/kvm.h> 15 16 #include "qemu-common.h" 17 #include "qemu/timer.h" 18 #include "qemu/error-report.h" 19 #include "sysemu/sysemu.h" 20 #include "sysemu/kvm.h" 21 #include "kvm_arm.h" 22 #include "cpu.h" 23 #include "trace.h" 24 #include "internals.h" 25 #include "hw/arm/arm.h" 26 #include "hw/pci/pci.h" 27 #include "exec/memattrs.h" 28 #include "exec/address-spaces.h" 29 #include "hw/boards.h" 30 #include "qemu/log.h" 31 32 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 33 KVM_CAP_LAST_INFO 34 }; 35 36 static bool cap_has_mp_state; 37 static bool cap_has_inject_serror_esr; 38 39 static ARMHostCPUFeatures arm_host_cpu_features; 40 41 int kvm_arm_vcpu_init(CPUState *cs) 42 { 43 ARMCPU *cpu = ARM_CPU(cs); 44 struct kvm_vcpu_init init; 45 46 init.target = cpu->kvm_target; 47 memcpy(init.features, cpu->kvm_init_features, sizeof(init.features)); 48 49 return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init); 50 } 51 52 void kvm_arm_init_serror_injection(CPUState *cs) 53 { 54 cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state, 55 KVM_CAP_ARM_INJECT_SERROR_ESR); 56 } 57 58 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try, 59 int *fdarray, 60 struct kvm_vcpu_init *init) 61 { 62 int ret, kvmfd = -1, vmfd = -1, cpufd = -1; 63 64 kvmfd = qemu_open("/dev/kvm", O_RDWR); 65 if (kvmfd < 0) { 66 goto err; 67 } 68 vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0); 69 if (vmfd < 0) { 70 goto err; 71 } 72 cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0); 73 if (cpufd < 0) { 74 goto err; 75 } 76 77 if (!init) { 78 /* Caller doesn't want the VCPU to be initialized, so skip it */ 79 goto finish; 80 } 81 82 ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, init); 83 if (ret >= 0) { 84 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init); 85 if (ret < 0) { 86 goto err; 87 } 88 } else if (cpus_to_try) { 89 /* Old kernel which doesn't know about the 90 * PREFERRED_TARGET ioctl: we know it will only support 91 * creating one kind of guest CPU which is its preferred 92 * CPU type. 93 */ 94 while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) { 95 init->target = *cpus_to_try++; 96 memset(init->features, 0, sizeof(init->features)); 97 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init); 98 if (ret >= 0) { 99 break; 100 } 101 } 102 if (ret < 0) { 103 goto err; 104 } 105 } else { 106 /* Treat a NULL cpus_to_try argument the same as an empty 107 * list, which means we will fail the call since this must 108 * be an old kernel which doesn't support PREFERRED_TARGET. 109 */ 110 goto err; 111 } 112 113 finish: 114 fdarray[0] = kvmfd; 115 fdarray[1] = vmfd; 116 fdarray[2] = cpufd; 117 118 return true; 119 120 err: 121 if (cpufd >= 0) { 122 close(cpufd); 123 } 124 if (vmfd >= 0) { 125 close(vmfd); 126 } 127 if (kvmfd >= 0) { 128 close(kvmfd); 129 } 130 131 return false; 132 } 133 134 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray) 135 { 136 int i; 137 138 for (i = 2; i >= 0; i--) { 139 close(fdarray[i]); 140 } 141 } 142 143 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu) 144 { 145 CPUARMState *env = &cpu->env; 146 147 if (!arm_host_cpu_features.dtb_compatible) { 148 if (!kvm_enabled() || 149 !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) { 150 /* We can't report this error yet, so flag that we need to 151 * in arm_cpu_realizefn(). 152 */ 153 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE; 154 cpu->host_cpu_probe_failed = true; 155 return; 156 } 157 } 158 159 cpu->kvm_target = arm_host_cpu_features.target; 160 cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible; 161 cpu->isar = arm_host_cpu_features.isar; 162 env->features = arm_host_cpu_features.features; 163 } 164 165 int kvm_arch_init(MachineState *ms, KVMState *s) 166 { 167 /* For ARM interrupt delivery is always asynchronous, 168 * whether we are using an in-kernel VGIC or not. 169 */ 170 kvm_async_interrupts_allowed = true; 171 172 /* 173 * PSCI wakes up secondary cores, so we always need to 174 * have vCPUs waiting in kernel space 175 */ 176 kvm_halt_in_kernel_allowed = true; 177 178 cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE); 179 180 return 0; 181 } 182 183 unsigned long kvm_arch_vcpu_id(CPUState *cpu) 184 { 185 return cpu->cpu_index; 186 } 187 188 /* We track all the KVM devices which need their memory addresses 189 * passing to the kernel in a list of these structures. 190 * When board init is complete we run through the list and 191 * tell the kernel the base addresses of the memory regions. 192 * We use a MemoryListener to track mapping and unmapping of 193 * the regions during board creation, so the board models don't 194 * need to do anything special for the KVM case. 195 * 196 * Sometimes the address must be OR'ed with some other fields 197 * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION). 198 * @kda_addr_ormask aims at storing the value of those fields. 199 */ 200 typedef struct KVMDevice { 201 struct kvm_arm_device_addr kda; 202 struct kvm_device_attr kdattr; 203 uint64_t kda_addr_ormask; 204 MemoryRegion *mr; 205 QSLIST_ENTRY(KVMDevice) entries; 206 int dev_fd; 207 } KVMDevice; 208 209 static QSLIST_HEAD(kvm_devices_head, KVMDevice) kvm_devices_head; 210 211 static void kvm_arm_devlistener_add(MemoryListener *listener, 212 MemoryRegionSection *section) 213 { 214 KVMDevice *kd; 215 216 QSLIST_FOREACH(kd, &kvm_devices_head, entries) { 217 if (section->mr == kd->mr) { 218 kd->kda.addr = section->offset_within_address_space; 219 } 220 } 221 } 222 223 static void kvm_arm_devlistener_del(MemoryListener *listener, 224 MemoryRegionSection *section) 225 { 226 KVMDevice *kd; 227 228 QSLIST_FOREACH(kd, &kvm_devices_head, entries) { 229 if (section->mr == kd->mr) { 230 kd->kda.addr = -1; 231 } 232 } 233 } 234 235 static MemoryListener devlistener = { 236 .region_add = kvm_arm_devlistener_add, 237 .region_del = kvm_arm_devlistener_del, 238 }; 239 240 static void kvm_arm_set_device_addr(KVMDevice *kd) 241 { 242 struct kvm_device_attr *attr = &kd->kdattr; 243 int ret; 244 245 /* If the device control API is available and we have a device fd on the 246 * KVMDevice struct, let's use the newer API 247 */ 248 if (kd->dev_fd >= 0) { 249 uint64_t addr = kd->kda.addr; 250 251 addr |= kd->kda_addr_ormask; 252 attr->addr = (uintptr_t)&addr; 253 ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr); 254 } else { 255 ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda); 256 } 257 258 if (ret < 0) { 259 fprintf(stderr, "Failed to set device address: %s\n", 260 strerror(-ret)); 261 abort(); 262 } 263 } 264 265 static void kvm_arm_machine_init_done(Notifier *notifier, void *data) 266 { 267 KVMDevice *kd, *tkd; 268 269 QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) { 270 if (kd->kda.addr != -1) { 271 kvm_arm_set_device_addr(kd); 272 } 273 memory_region_unref(kd->mr); 274 QSLIST_REMOVE_HEAD(&kvm_devices_head, entries); 275 g_free(kd); 276 } 277 memory_listener_unregister(&devlistener); 278 } 279 280 static Notifier notify = { 281 .notify = kvm_arm_machine_init_done, 282 }; 283 284 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group, 285 uint64_t attr, int dev_fd, uint64_t addr_ormask) 286 { 287 KVMDevice *kd; 288 289 if (!kvm_irqchip_in_kernel()) { 290 return; 291 } 292 293 if (QSLIST_EMPTY(&kvm_devices_head)) { 294 memory_listener_register(&devlistener, &address_space_memory); 295 qemu_add_machine_init_done_notifier(¬ify); 296 } 297 kd = g_new0(KVMDevice, 1); 298 kd->mr = mr; 299 kd->kda.id = devid; 300 kd->kda.addr = -1; 301 kd->kdattr.flags = 0; 302 kd->kdattr.group = group; 303 kd->kdattr.attr = attr; 304 kd->dev_fd = dev_fd; 305 kd->kda_addr_ormask = addr_ormask; 306 QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries); 307 memory_region_ref(kd->mr); 308 } 309 310 static int compare_u64(const void *a, const void *b) 311 { 312 if (*(uint64_t *)a > *(uint64_t *)b) { 313 return 1; 314 } 315 if (*(uint64_t *)a < *(uint64_t *)b) { 316 return -1; 317 } 318 return 0; 319 } 320 321 /* Initialize the ARMCPU cpreg list according to the kernel's 322 * definition of what CPU registers it knows about (and throw away 323 * the previous TCG-created cpreg list). 324 */ 325 int kvm_arm_init_cpreg_list(ARMCPU *cpu) 326 { 327 struct kvm_reg_list rl; 328 struct kvm_reg_list *rlp; 329 int i, ret, arraylen; 330 CPUState *cs = CPU(cpu); 331 332 rl.n = 0; 333 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl); 334 if (ret != -E2BIG) { 335 return ret; 336 } 337 rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t)); 338 rlp->n = rl.n; 339 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp); 340 if (ret) { 341 goto out; 342 } 343 /* Sort the list we get back from the kernel, since cpreg_tuples 344 * must be in strictly ascending order. 345 */ 346 qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64); 347 348 for (i = 0, arraylen = 0; i < rlp->n; i++) { 349 if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) { 350 continue; 351 } 352 switch (rlp->reg[i] & KVM_REG_SIZE_MASK) { 353 case KVM_REG_SIZE_U32: 354 case KVM_REG_SIZE_U64: 355 break; 356 default: 357 fprintf(stderr, "Can't handle size of register in kernel list\n"); 358 ret = -EINVAL; 359 goto out; 360 } 361 362 arraylen++; 363 } 364 365 cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen); 366 cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen); 367 cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes, 368 arraylen); 369 cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values, 370 arraylen); 371 cpu->cpreg_array_len = arraylen; 372 cpu->cpreg_vmstate_array_len = arraylen; 373 374 for (i = 0, arraylen = 0; i < rlp->n; i++) { 375 uint64_t regidx = rlp->reg[i]; 376 if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) { 377 continue; 378 } 379 cpu->cpreg_indexes[arraylen] = regidx; 380 arraylen++; 381 } 382 assert(cpu->cpreg_array_len == arraylen); 383 384 if (!write_kvmstate_to_list(cpu)) { 385 /* Shouldn't happen unless kernel is inconsistent about 386 * what registers exist. 387 */ 388 fprintf(stderr, "Initial read of kernel register state failed\n"); 389 ret = -EINVAL; 390 goto out; 391 } 392 393 out: 394 g_free(rlp); 395 return ret; 396 } 397 398 bool write_kvmstate_to_list(ARMCPU *cpu) 399 { 400 CPUState *cs = CPU(cpu); 401 int i; 402 bool ok = true; 403 404 for (i = 0; i < cpu->cpreg_array_len; i++) { 405 struct kvm_one_reg r; 406 uint64_t regidx = cpu->cpreg_indexes[i]; 407 uint32_t v32; 408 int ret; 409 410 r.id = regidx; 411 412 switch (regidx & KVM_REG_SIZE_MASK) { 413 case KVM_REG_SIZE_U32: 414 r.addr = (uintptr_t)&v32; 415 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); 416 if (!ret) { 417 cpu->cpreg_values[i] = v32; 418 } 419 break; 420 case KVM_REG_SIZE_U64: 421 r.addr = (uintptr_t)(cpu->cpreg_values + i); 422 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); 423 break; 424 default: 425 abort(); 426 } 427 if (ret) { 428 ok = false; 429 } 430 } 431 return ok; 432 } 433 434 bool write_list_to_kvmstate(ARMCPU *cpu, int level) 435 { 436 CPUState *cs = CPU(cpu); 437 int i; 438 bool ok = true; 439 440 for (i = 0; i < cpu->cpreg_array_len; i++) { 441 struct kvm_one_reg r; 442 uint64_t regidx = cpu->cpreg_indexes[i]; 443 uint32_t v32; 444 int ret; 445 446 if (kvm_arm_cpreg_level(regidx) > level) { 447 continue; 448 } 449 450 r.id = regidx; 451 switch (regidx & KVM_REG_SIZE_MASK) { 452 case KVM_REG_SIZE_U32: 453 v32 = cpu->cpreg_values[i]; 454 r.addr = (uintptr_t)&v32; 455 break; 456 case KVM_REG_SIZE_U64: 457 r.addr = (uintptr_t)(cpu->cpreg_values + i); 458 break; 459 default: 460 abort(); 461 } 462 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); 463 if (ret) { 464 /* We might fail for "unknown register" and also for 465 * "you tried to set a register which is constant with 466 * a different value from what it actually contains". 467 */ 468 ok = false; 469 } 470 } 471 return ok; 472 } 473 474 void kvm_arm_reset_vcpu(ARMCPU *cpu) 475 { 476 int ret; 477 478 /* Re-init VCPU so that all registers are set to 479 * their respective reset values. 480 */ 481 ret = kvm_arm_vcpu_init(CPU(cpu)); 482 if (ret < 0) { 483 fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret)); 484 abort(); 485 } 486 if (!write_kvmstate_to_list(cpu)) { 487 fprintf(stderr, "write_kvmstate_to_list failed\n"); 488 abort(); 489 } 490 } 491 492 /* 493 * Update KVM's MP_STATE based on what QEMU thinks it is 494 */ 495 int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu) 496 { 497 if (cap_has_mp_state) { 498 struct kvm_mp_state mp_state = { 499 .mp_state = (cpu->power_state == PSCI_OFF) ? 500 KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE 501 }; 502 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); 503 if (ret) { 504 fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n", 505 __func__, ret, strerror(-ret)); 506 return -1; 507 } 508 } 509 510 return 0; 511 } 512 513 /* 514 * Sync the KVM MP_STATE into QEMU 515 */ 516 int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu) 517 { 518 if (cap_has_mp_state) { 519 struct kvm_mp_state mp_state; 520 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state); 521 if (ret) { 522 fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n", 523 __func__, ret, strerror(-ret)); 524 abort(); 525 } 526 cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ? 527 PSCI_OFF : PSCI_ON; 528 } 529 530 return 0; 531 } 532 533 int kvm_put_vcpu_events(ARMCPU *cpu) 534 { 535 CPUARMState *env = &cpu->env; 536 struct kvm_vcpu_events events; 537 int ret; 538 539 if (!kvm_has_vcpu_events()) { 540 return 0; 541 } 542 543 memset(&events, 0, sizeof(events)); 544 events.exception.serror_pending = env->serror.pending; 545 546 /* Inject SError to guest with specified syndrome if host kernel 547 * supports it, otherwise inject SError without syndrome. 548 */ 549 if (cap_has_inject_serror_esr) { 550 events.exception.serror_has_esr = env->serror.has_esr; 551 events.exception.serror_esr = env->serror.esr; 552 } 553 554 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); 555 if (ret) { 556 error_report("failed to put vcpu events"); 557 } 558 559 return ret; 560 } 561 562 int kvm_get_vcpu_events(ARMCPU *cpu) 563 { 564 CPUARMState *env = &cpu->env; 565 struct kvm_vcpu_events events; 566 int ret; 567 568 if (!kvm_has_vcpu_events()) { 569 return 0; 570 } 571 572 memset(&events, 0, sizeof(events)); 573 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); 574 if (ret) { 575 error_report("failed to get vcpu events"); 576 return ret; 577 } 578 579 env->serror.pending = events.exception.serror_pending; 580 env->serror.has_esr = events.exception.serror_has_esr; 581 env->serror.esr = events.exception.serror_esr; 582 583 return 0; 584 } 585 586 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run) 587 { 588 } 589 590 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) 591 { 592 ARMCPU *cpu; 593 uint32_t switched_level; 594 595 if (kvm_irqchip_in_kernel()) { 596 /* 597 * We only need to sync timer states with user-space interrupt 598 * controllers, so return early and save cycles if we don't. 599 */ 600 return MEMTXATTRS_UNSPECIFIED; 601 } 602 603 cpu = ARM_CPU(cs); 604 605 /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */ 606 if (run->s.regs.device_irq_level != cpu->device_irq_level) { 607 switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level; 608 609 qemu_mutex_lock_iothread(); 610 611 if (switched_level & KVM_ARM_DEV_EL1_VTIMER) { 612 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT], 613 !!(run->s.regs.device_irq_level & 614 KVM_ARM_DEV_EL1_VTIMER)); 615 switched_level &= ~KVM_ARM_DEV_EL1_VTIMER; 616 } 617 618 if (switched_level & KVM_ARM_DEV_EL1_PTIMER) { 619 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS], 620 !!(run->s.regs.device_irq_level & 621 KVM_ARM_DEV_EL1_PTIMER)); 622 switched_level &= ~KVM_ARM_DEV_EL1_PTIMER; 623 } 624 625 if (switched_level & KVM_ARM_DEV_PMU) { 626 qemu_set_irq(cpu->pmu_interrupt, 627 !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU)); 628 switched_level &= ~KVM_ARM_DEV_PMU; 629 } 630 631 if (switched_level) { 632 qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n", 633 __func__, switched_level); 634 } 635 636 /* We also mark unknown levels as processed to not waste cycles */ 637 cpu->device_irq_level = run->s.regs.device_irq_level; 638 qemu_mutex_unlock_iothread(); 639 } 640 641 return MEMTXATTRS_UNSPECIFIED; 642 } 643 644 645 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 646 { 647 int ret = 0; 648 649 switch (run->exit_reason) { 650 case KVM_EXIT_DEBUG: 651 if (kvm_arm_handle_debug(cs, &run->debug.arch)) { 652 ret = EXCP_DEBUG; 653 } /* otherwise return to guest */ 654 break; 655 default: 656 qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n", 657 __func__, run->exit_reason); 658 break; 659 } 660 return ret; 661 } 662 663 bool kvm_arch_stop_on_emulation_error(CPUState *cs) 664 { 665 return true; 666 } 667 668 int kvm_arch_process_async_events(CPUState *cs) 669 { 670 return 0; 671 } 672 673 /* The #ifdef protections are until 32bit headers are imported and can 674 * be removed once both 32 and 64 bit reach feature parity. 675 */ 676 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg) 677 { 678 #ifdef KVM_GUESTDBG_USE_SW_BP 679 if (kvm_sw_breakpoints_active(cs)) { 680 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; 681 } 682 #endif 683 #ifdef KVM_GUESTDBG_USE_HW 684 if (kvm_arm_hw_debug_active(cs)) { 685 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW; 686 kvm_arm_copy_hw_debug_data(&dbg->arch); 687 } 688 #endif 689 } 690 691 void kvm_arch_init_irq_routing(KVMState *s) 692 { 693 } 694 695 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s) 696 { 697 if (machine_kernel_irqchip_split(ms)) { 698 perror("-machine kernel_irqchip=split is not supported on ARM."); 699 exit(1); 700 } 701 702 /* If we can create the VGIC using the newer device control API, we 703 * let the device do this when it initializes itself, otherwise we 704 * fall back to the old API */ 705 return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL); 706 } 707 708 int kvm_arm_vgic_probe(void) 709 { 710 if (kvm_create_device(kvm_state, 711 KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) { 712 return 3; 713 } else if (kvm_create_device(kvm_state, 714 KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) { 715 return 2; 716 } else { 717 return 0; 718 } 719 } 720 721 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 722 uint64_t address, uint32_t data, PCIDevice *dev) 723 { 724 AddressSpace *as = pci_device_iommu_address_space(dev); 725 hwaddr xlat, len, doorbell_gpa; 726 MemoryRegionSection mrs; 727 MemoryRegion *mr; 728 int ret = 1; 729 730 if (as == &address_space_memory) { 731 return 0; 732 } 733 734 /* MSI doorbell address is translated by an IOMMU */ 735 736 rcu_read_lock(); 737 mr = address_space_translate(as, address, &xlat, &len, true, 738 MEMTXATTRS_UNSPECIFIED); 739 if (!mr) { 740 goto unlock; 741 } 742 mrs = memory_region_find(mr, xlat, 1); 743 if (!mrs.mr) { 744 goto unlock; 745 } 746 747 doorbell_gpa = mrs.offset_within_address_space; 748 memory_region_unref(mrs.mr); 749 750 route->u.msi.address_lo = doorbell_gpa; 751 route->u.msi.address_hi = doorbell_gpa >> 32; 752 753 trace_kvm_arm_fixup_msi_route(address, doorbell_gpa); 754 755 ret = 0; 756 757 unlock: 758 rcu_read_unlock(); 759 return ret; 760 } 761 762 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 763 int vector, PCIDevice *dev) 764 { 765 return 0; 766 } 767 768 int kvm_arch_release_virq_post(int virq) 769 { 770 return 0; 771 } 772 773 int kvm_arch_msi_data_to_gsi(uint32_t data) 774 { 775 return (data - 32) & 0xffff; 776 } 777