xref: /openbmc/qemu/target/arm/kvm.c (revision 9543fdaf)
1 /*
2  * ARM implementation of KVM hooks
3  *
4  * Copyright Christoffer Dall 2009-2010
5  *
6  * This work is licensed under the terms of the GNU GPL, version 2 or later.
7  * See the COPYING file in the top-level directory.
8  *
9  */
10 
11 #include "qemu/osdep.h"
12 #include <sys/ioctl.h>
13 
14 #include <linux/kvm.h>
15 
16 #include "qemu-common.h"
17 #include "qemu/timer.h"
18 #include "qemu/error-report.h"
19 #include "sysemu/sysemu.h"
20 #include "sysemu/kvm.h"
21 #include "kvm_arm.h"
22 #include "cpu.h"
23 #include "trace.h"
24 #include "internals.h"
25 #include "hw/arm/arm.h"
26 #include "hw/pci/pci.h"
27 #include "exec/memattrs.h"
28 #include "exec/address-spaces.h"
29 #include "hw/boards.h"
30 #include "qemu/log.h"
31 
32 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
33     KVM_CAP_LAST_INFO
34 };
35 
36 static bool cap_has_mp_state;
37 static bool cap_has_inject_serror_esr;
38 
39 static ARMHostCPUFeatures arm_host_cpu_features;
40 
41 int kvm_arm_vcpu_init(CPUState *cs)
42 {
43     ARMCPU *cpu = ARM_CPU(cs);
44     struct kvm_vcpu_init init;
45 
46     init.target = cpu->kvm_target;
47     memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
48 
49     return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
50 }
51 
52 void kvm_arm_init_serror_injection(CPUState *cs)
53 {
54     cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state,
55                                     KVM_CAP_ARM_INJECT_SERROR_ESR);
56 }
57 
58 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
59                                       int *fdarray,
60                                       struct kvm_vcpu_init *init)
61 {
62     int ret, kvmfd = -1, vmfd = -1, cpufd = -1;
63 
64     kvmfd = qemu_open("/dev/kvm", O_RDWR);
65     if (kvmfd < 0) {
66         goto err;
67     }
68     vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0);
69     if (vmfd < 0) {
70         goto err;
71     }
72     cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
73     if (cpufd < 0) {
74         goto err;
75     }
76 
77     if (!init) {
78         /* Caller doesn't want the VCPU to be initialized, so skip it */
79         goto finish;
80     }
81 
82     ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, init);
83     if (ret >= 0) {
84         ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
85         if (ret < 0) {
86             goto err;
87         }
88     } else if (cpus_to_try) {
89         /* Old kernel which doesn't know about the
90          * PREFERRED_TARGET ioctl: we know it will only support
91          * creating one kind of guest CPU which is its preferred
92          * CPU type.
93          */
94         while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
95             init->target = *cpus_to_try++;
96             memset(init->features, 0, sizeof(init->features));
97             ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
98             if (ret >= 0) {
99                 break;
100             }
101         }
102         if (ret < 0) {
103             goto err;
104         }
105     } else {
106         /* Treat a NULL cpus_to_try argument the same as an empty
107          * list, which means we will fail the call since this must
108          * be an old kernel which doesn't support PREFERRED_TARGET.
109          */
110         goto err;
111     }
112 
113 finish:
114     fdarray[0] = kvmfd;
115     fdarray[1] = vmfd;
116     fdarray[2] = cpufd;
117 
118     return true;
119 
120 err:
121     if (cpufd >= 0) {
122         close(cpufd);
123     }
124     if (vmfd >= 0) {
125         close(vmfd);
126     }
127     if (kvmfd >= 0) {
128         close(kvmfd);
129     }
130 
131     return false;
132 }
133 
134 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
135 {
136     int i;
137 
138     for (i = 2; i >= 0; i--) {
139         close(fdarray[i]);
140     }
141 }
142 
143 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
144 {
145     CPUARMState *env = &cpu->env;
146 
147     if (!arm_host_cpu_features.dtb_compatible) {
148         if (!kvm_enabled() ||
149             !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) {
150             /* We can't report this error yet, so flag that we need to
151              * in arm_cpu_realizefn().
152              */
153             cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
154             cpu->host_cpu_probe_failed = true;
155             return;
156         }
157     }
158 
159     cpu->kvm_target = arm_host_cpu_features.target;
160     cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
161     cpu->isar = arm_host_cpu_features.isar;
162     env->features = arm_host_cpu_features.features;
163 }
164 
165 int kvm_arch_init(MachineState *ms, KVMState *s)
166 {
167     /* For ARM interrupt delivery is always asynchronous,
168      * whether we are using an in-kernel VGIC or not.
169      */
170     kvm_async_interrupts_allowed = true;
171 
172     /*
173      * PSCI wakes up secondary cores, so we always need to
174      * have vCPUs waiting in kernel space
175      */
176     kvm_halt_in_kernel_allowed = true;
177 
178     cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
179 
180     return 0;
181 }
182 
183 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
184 {
185     return cpu->cpu_index;
186 }
187 
188 /* We track all the KVM devices which need their memory addresses
189  * passing to the kernel in a list of these structures.
190  * When board init is complete we run through the list and
191  * tell the kernel the base addresses of the memory regions.
192  * We use a MemoryListener to track mapping and unmapping of
193  * the regions during board creation, so the board models don't
194  * need to do anything special for the KVM case.
195  *
196  * Sometimes the address must be OR'ed with some other fields
197  * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
198  * @kda_addr_ormask aims at storing the value of those fields.
199  */
200 typedef struct KVMDevice {
201     struct kvm_arm_device_addr kda;
202     struct kvm_device_attr kdattr;
203     uint64_t kda_addr_ormask;
204     MemoryRegion *mr;
205     QSLIST_ENTRY(KVMDevice) entries;
206     int dev_fd;
207 } KVMDevice;
208 
209 static QSLIST_HEAD(kvm_devices_head, KVMDevice) kvm_devices_head;
210 
211 static void kvm_arm_devlistener_add(MemoryListener *listener,
212                                     MemoryRegionSection *section)
213 {
214     KVMDevice *kd;
215 
216     QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
217         if (section->mr == kd->mr) {
218             kd->kda.addr = section->offset_within_address_space;
219         }
220     }
221 }
222 
223 static void kvm_arm_devlistener_del(MemoryListener *listener,
224                                     MemoryRegionSection *section)
225 {
226     KVMDevice *kd;
227 
228     QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
229         if (section->mr == kd->mr) {
230             kd->kda.addr = -1;
231         }
232     }
233 }
234 
235 static MemoryListener devlistener = {
236     .region_add = kvm_arm_devlistener_add,
237     .region_del = kvm_arm_devlistener_del,
238 };
239 
240 static void kvm_arm_set_device_addr(KVMDevice *kd)
241 {
242     struct kvm_device_attr *attr = &kd->kdattr;
243     int ret;
244 
245     /* If the device control API is available and we have a device fd on the
246      * KVMDevice struct, let's use the newer API
247      */
248     if (kd->dev_fd >= 0) {
249         uint64_t addr = kd->kda.addr;
250 
251         addr |= kd->kda_addr_ormask;
252         attr->addr = (uintptr_t)&addr;
253         ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
254     } else {
255         ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
256     }
257 
258     if (ret < 0) {
259         fprintf(stderr, "Failed to set device address: %s\n",
260                 strerror(-ret));
261         abort();
262     }
263 }
264 
265 static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
266 {
267     KVMDevice *kd, *tkd;
268 
269     QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
270         if (kd->kda.addr != -1) {
271             kvm_arm_set_device_addr(kd);
272         }
273         memory_region_unref(kd->mr);
274         QSLIST_REMOVE_HEAD(&kvm_devices_head, entries);
275         g_free(kd);
276     }
277     memory_listener_unregister(&devlistener);
278 }
279 
280 static Notifier notify = {
281     .notify = kvm_arm_machine_init_done,
282 };
283 
284 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
285                              uint64_t attr, int dev_fd, uint64_t addr_ormask)
286 {
287     KVMDevice *kd;
288 
289     if (!kvm_irqchip_in_kernel()) {
290         return;
291     }
292 
293     if (QSLIST_EMPTY(&kvm_devices_head)) {
294         memory_listener_register(&devlistener, &address_space_memory);
295         qemu_add_machine_init_done_notifier(&notify);
296     }
297     kd = g_new0(KVMDevice, 1);
298     kd->mr = mr;
299     kd->kda.id = devid;
300     kd->kda.addr = -1;
301     kd->kdattr.flags = 0;
302     kd->kdattr.group = group;
303     kd->kdattr.attr = attr;
304     kd->dev_fd = dev_fd;
305     kd->kda_addr_ormask = addr_ormask;
306     QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
307     memory_region_ref(kd->mr);
308 }
309 
310 static int compare_u64(const void *a, const void *b)
311 {
312     if (*(uint64_t *)a > *(uint64_t *)b) {
313         return 1;
314     }
315     if (*(uint64_t *)a < *(uint64_t *)b) {
316         return -1;
317     }
318     return 0;
319 }
320 
321 /* Initialize the ARMCPU cpreg list according to the kernel's
322  * definition of what CPU registers it knows about (and throw away
323  * the previous TCG-created cpreg list).
324  */
325 int kvm_arm_init_cpreg_list(ARMCPU *cpu)
326 {
327     struct kvm_reg_list rl;
328     struct kvm_reg_list *rlp;
329     int i, ret, arraylen;
330     CPUState *cs = CPU(cpu);
331 
332     rl.n = 0;
333     ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
334     if (ret != -E2BIG) {
335         return ret;
336     }
337     rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
338     rlp->n = rl.n;
339     ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
340     if (ret) {
341         goto out;
342     }
343     /* Sort the list we get back from the kernel, since cpreg_tuples
344      * must be in strictly ascending order.
345      */
346     qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
347 
348     for (i = 0, arraylen = 0; i < rlp->n; i++) {
349         if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
350             continue;
351         }
352         switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
353         case KVM_REG_SIZE_U32:
354         case KVM_REG_SIZE_U64:
355             break;
356         default:
357             fprintf(stderr, "Can't handle size of register in kernel list\n");
358             ret = -EINVAL;
359             goto out;
360         }
361 
362         arraylen++;
363     }
364 
365     cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
366     cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
367     cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
368                                          arraylen);
369     cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
370                                         arraylen);
371     cpu->cpreg_array_len = arraylen;
372     cpu->cpreg_vmstate_array_len = arraylen;
373 
374     for (i = 0, arraylen = 0; i < rlp->n; i++) {
375         uint64_t regidx = rlp->reg[i];
376         if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
377             continue;
378         }
379         cpu->cpreg_indexes[arraylen] = regidx;
380         arraylen++;
381     }
382     assert(cpu->cpreg_array_len == arraylen);
383 
384     if (!write_kvmstate_to_list(cpu)) {
385         /* Shouldn't happen unless kernel is inconsistent about
386          * what registers exist.
387          */
388         fprintf(stderr, "Initial read of kernel register state failed\n");
389         ret = -EINVAL;
390         goto out;
391     }
392 
393 out:
394     g_free(rlp);
395     return ret;
396 }
397 
398 bool write_kvmstate_to_list(ARMCPU *cpu)
399 {
400     CPUState *cs = CPU(cpu);
401     int i;
402     bool ok = true;
403 
404     for (i = 0; i < cpu->cpreg_array_len; i++) {
405         struct kvm_one_reg r;
406         uint64_t regidx = cpu->cpreg_indexes[i];
407         uint32_t v32;
408         int ret;
409 
410         r.id = regidx;
411 
412         switch (regidx & KVM_REG_SIZE_MASK) {
413         case KVM_REG_SIZE_U32:
414             r.addr = (uintptr_t)&v32;
415             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
416             if (!ret) {
417                 cpu->cpreg_values[i] = v32;
418             }
419             break;
420         case KVM_REG_SIZE_U64:
421             r.addr = (uintptr_t)(cpu->cpreg_values + i);
422             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
423             break;
424         default:
425             abort();
426         }
427         if (ret) {
428             ok = false;
429         }
430     }
431     return ok;
432 }
433 
434 bool write_list_to_kvmstate(ARMCPU *cpu, int level)
435 {
436     CPUState *cs = CPU(cpu);
437     int i;
438     bool ok = true;
439 
440     for (i = 0; i < cpu->cpreg_array_len; i++) {
441         struct kvm_one_reg r;
442         uint64_t regidx = cpu->cpreg_indexes[i];
443         uint32_t v32;
444         int ret;
445 
446         if (kvm_arm_cpreg_level(regidx) > level) {
447             continue;
448         }
449 
450         r.id = regidx;
451         switch (regidx & KVM_REG_SIZE_MASK) {
452         case KVM_REG_SIZE_U32:
453             v32 = cpu->cpreg_values[i];
454             r.addr = (uintptr_t)&v32;
455             break;
456         case KVM_REG_SIZE_U64:
457             r.addr = (uintptr_t)(cpu->cpreg_values + i);
458             break;
459         default:
460             abort();
461         }
462         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
463         if (ret) {
464             /* We might fail for "unknown register" and also for
465              * "you tried to set a register which is constant with
466              * a different value from what it actually contains".
467              */
468             ok = false;
469         }
470     }
471     return ok;
472 }
473 
474 void kvm_arm_reset_vcpu(ARMCPU *cpu)
475 {
476     int ret;
477 
478     /* Re-init VCPU so that all registers are set to
479      * their respective reset values.
480      */
481     ret = kvm_arm_vcpu_init(CPU(cpu));
482     if (ret < 0) {
483         fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
484         abort();
485     }
486     if (!write_kvmstate_to_list(cpu)) {
487         fprintf(stderr, "write_kvmstate_to_list failed\n");
488         abort();
489     }
490 }
491 
492 /*
493  * Update KVM's MP_STATE based on what QEMU thinks it is
494  */
495 int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
496 {
497     if (cap_has_mp_state) {
498         struct kvm_mp_state mp_state = {
499             .mp_state = (cpu->power_state == PSCI_OFF) ?
500             KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
501         };
502         int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
503         if (ret) {
504             fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n",
505                     __func__, ret, strerror(-ret));
506             return -1;
507         }
508     }
509 
510     return 0;
511 }
512 
513 /*
514  * Sync the KVM MP_STATE into QEMU
515  */
516 int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
517 {
518     if (cap_has_mp_state) {
519         struct kvm_mp_state mp_state;
520         int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
521         if (ret) {
522             fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n",
523                     __func__, ret, strerror(-ret));
524             abort();
525         }
526         cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
527             PSCI_OFF : PSCI_ON;
528     }
529 
530     return 0;
531 }
532 
533 int kvm_put_vcpu_events(ARMCPU *cpu)
534 {
535     CPUARMState *env = &cpu->env;
536     struct kvm_vcpu_events events;
537     int ret;
538 
539     if (!kvm_has_vcpu_events()) {
540         return 0;
541     }
542 
543     memset(&events, 0, sizeof(events));
544     events.exception.serror_pending = env->serror.pending;
545 
546     /* Inject SError to guest with specified syndrome if host kernel
547      * supports it, otherwise inject SError without syndrome.
548      */
549     if (cap_has_inject_serror_esr) {
550         events.exception.serror_has_esr = env->serror.has_esr;
551         events.exception.serror_esr = env->serror.esr;
552     }
553 
554     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
555     if (ret) {
556         error_report("failed to put vcpu events");
557     }
558 
559     return ret;
560 }
561 
562 int kvm_get_vcpu_events(ARMCPU *cpu)
563 {
564     CPUARMState *env = &cpu->env;
565     struct kvm_vcpu_events events;
566     int ret;
567 
568     if (!kvm_has_vcpu_events()) {
569         return 0;
570     }
571 
572     memset(&events, 0, sizeof(events));
573     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
574     if (ret) {
575         error_report("failed to get vcpu events");
576         return ret;
577     }
578 
579     env->serror.pending = events.exception.serror_pending;
580     env->serror.has_esr = events.exception.serror_has_esr;
581     env->serror.esr = events.exception.serror_esr;
582 
583     return 0;
584 }
585 
586 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
587 {
588 }
589 
590 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
591 {
592     ARMCPU *cpu;
593     uint32_t switched_level;
594 
595     if (kvm_irqchip_in_kernel()) {
596         /*
597          * We only need to sync timer states with user-space interrupt
598          * controllers, so return early and save cycles if we don't.
599          */
600         return MEMTXATTRS_UNSPECIFIED;
601     }
602 
603     cpu = ARM_CPU(cs);
604 
605     /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
606     if (run->s.regs.device_irq_level != cpu->device_irq_level) {
607         switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
608 
609         qemu_mutex_lock_iothread();
610 
611         if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
612             qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
613                          !!(run->s.regs.device_irq_level &
614                             KVM_ARM_DEV_EL1_VTIMER));
615             switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
616         }
617 
618         if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
619             qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
620                          !!(run->s.regs.device_irq_level &
621                             KVM_ARM_DEV_EL1_PTIMER));
622             switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
623         }
624 
625         if (switched_level & KVM_ARM_DEV_PMU) {
626             qemu_set_irq(cpu->pmu_interrupt,
627                          !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
628             switched_level &= ~KVM_ARM_DEV_PMU;
629         }
630 
631         if (switched_level) {
632             qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
633                           __func__, switched_level);
634         }
635 
636         /* We also mark unknown levels as processed to not waste cycles */
637         cpu->device_irq_level = run->s.regs.device_irq_level;
638         qemu_mutex_unlock_iothread();
639     }
640 
641     return MEMTXATTRS_UNSPECIFIED;
642 }
643 
644 
645 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
646 {
647     int ret = 0;
648 
649     switch (run->exit_reason) {
650     case KVM_EXIT_DEBUG:
651         if (kvm_arm_handle_debug(cs, &run->debug.arch)) {
652             ret = EXCP_DEBUG;
653         } /* otherwise return to guest */
654         break;
655     default:
656         qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
657                       __func__, run->exit_reason);
658         break;
659     }
660     return ret;
661 }
662 
663 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
664 {
665     return true;
666 }
667 
668 int kvm_arch_process_async_events(CPUState *cs)
669 {
670     return 0;
671 }
672 
673 /* The #ifdef protections are until 32bit headers are imported and can
674  * be removed once both 32 and 64 bit reach feature parity.
675  */
676 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
677 {
678 #ifdef KVM_GUESTDBG_USE_SW_BP
679     if (kvm_sw_breakpoints_active(cs)) {
680         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
681     }
682 #endif
683 #ifdef KVM_GUESTDBG_USE_HW
684     if (kvm_arm_hw_debug_active(cs)) {
685         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
686         kvm_arm_copy_hw_debug_data(&dbg->arch);
687     }
688 #endif
689 }
690 
691 void kvm_arch_init_irq_routing(KVMState *s)
692 {
693 }
694 
695 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
696 {
697      if (machine_kernel_irqchip_split(ms)) {
698          perror("-machine kernel_irqchip=split is not supported on ARM.");
699          exit(1);
700     }
701 
702     /* If we can create the VGIC using the newer device control API, we
703      * let the device do this when it initializes itself, otherwise we
704      * fall back to the old API */
705     return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
706 }
707 
708 int kvm_arm_vgic_probe(void)
709 {
710     if (kvm_create_device(kvm_state,
711                           KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
712         return 3;
713     } else if (kvm_create_device(kvm_state,
714                                  KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
715         return 2;
716     } else {
717         return 0;
718     }
719 }
720 
721 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
722                              uint64_t address, uint32_t data, PCIDevice *dev)
723 {
724     AddressSpace *as = pci_device_iommu_address_space(dev);
725     hwaddr xlat, len, doorbell_gpa;
726     MemoryRegionSection mrs;
727     MemoryRegion *mr;
728     int ret = 1;
729 
730     if (as == &address_space_memory) {
731         return 0;
732     }
733 
734     /* MSI doorbell address is translated by an IOMMU */
735 
736     rcu_read_lock();
737     mr = address_space_translate(as, address, &xlat, &len, true,
738                                  MEMTXATTRS_UNSPECIFIED);
739     if (!mr) {
740         goto unlock;
741     }
742     mrs = memory_region_find(mr, xlat, 1);
743     if (!mrs.mr) {
744         goto unlock;
745     }
746 
747     doorbell_gpa = mrs.offset_within_address_space;
748     memory_region_unref(mrs.mr);
749 
750     route->u.msi.address_lo = doorbell_gpa;
751     route->u.msi.address_hi = doorbell_gpa >> 32;
752 
753     trace_kvm_arm_fixup_msi_route(address, doorbell_gpa);
754 
755     ret = 0;
756 
757 unlock:
758     rcu_read_unlock();
759     return ret;
760 }
761 
762 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
763                                 int vector, PCIDevice *dev)
764 {
765     return 0;
766 }
767 
768 int kvm_arch_release_virq_post(int virq)
769 {
770     return 0;
771 }
772 
773 int kvm_arch_msi_data_to_gsi(uint32_t data)
774 {
775     return (data - 32) & 0xffff;
776 }
777