xref: /openbmc/qemu/target/arm/kvm.c (revision 93dd625f)
1 /*
2  * ARM implementation of KVM hooks
3  *
4  * Copyright Christoffer Dall 2009-2010
5  *
6  * This work is licensed under the terms of the GNU GPL, version 2 or later.
7  * See the COPYING file in the top-level directory.
8  *
9  */
10 
11 #include "qemu/osdep.h"
12 #include <sys/ioctl.h>
13 
14 #include <linux/kvm.h>
15 
16 #include "qemu-common.h"
17 #include "qemu/timer.h"
18 #include "qemu/error-report.h"
19 #include "qemu/main-loop.h"
20 #include "qom/object.h"
21 #include "qapi/error.h"
22 #include "sysemu/sysemu.h"
23 #include "sysemu/kvm.h"
24 #include "sysemu/kvm_int.h"
25 #include "kvm_arm.h"
26 #include "cpu.h"
27 #include "trace.h"
28 #include "internals.h"
29 #include "hw/pci/pci.h"
30 #include "exec/memattrs.h"
31 #include "exec/address-spaces.h"
32 #include "hw/boards.h"
33 #include "hw/irq.h"
34 #include "qemu/log.h"
35 
36 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
37     KVM_CAP_LAST_INFO
38 };
39 
40 static bool cap_has_mp_state;
41 static bool cap_has_inject_serror_esr;
42 
43 static ARMHostCPUFeatures arm_host_cpu_features;
44 
45 int kvm_arm_vcpu_init(CPUState *cs)
46 {
47     ARMCPU *cpu = ARM_CPU(cs);
48     struct kvm_vcpu_init init;
49 
50     init.target = cpu->kvm_target;
51     memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
52 
53     return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
54 }
55 
56 int kvm_arm_vcpu_finalize(CPUState *cs, int feature)
57 {
58     return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_FINALIZE, &feature);
59 }
60 
61 void kvm_arm_init_serror_injection(CPUState *cs)
62 {
63     cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state,
64                                     KVM_CAP_ARM_INJECT_SERROR_ESR);
65 }
66 
67 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
68                                       int *fdarray,
69                                       struct kvm_vcpu_init *init)
70 {
71     int ret = 0, kvmfd = -1, vmfd = -1, cpufd = -1;
72 
73     kvmfd = qemu_open("/dev/kvm", O_RDWR);
74     if (kvmfd < 0) {
75         goto err;
76     }
77     vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0);
78     if (vmfd < 0) {
79         goto err;
80     }
81     cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
82     if (cpufd < 0) {
83         goto err;
84     }
85 
86     if (!init) {
87         /* Caller doesn't want the VCPU to be initialized, so skip it */
88         goto finish;
89     }
90 
91     if (init->target == -1) {
92         struct kvm_vcpu_init preferred;
93 
94         ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, &preferred);
95         if (!ret) {
96             init->target = preferred.target;
97         }
98     }
99     if (ret >= 0) {
100         ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
101         if (ret < 0) {
102             goto err;
103         }
104     } else if (cpus_to_try) {
105         /* Old kernel which doesn't know about the
106          * PREFERRED_TARGET ioctl: we know it will only support
107          * creating one kind of guest CPU which is its preferred
108          * CPU type.
109          */
110         struct kvm_vcpu_init try;
111 
112         while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
113             try.target = *cpus_to_try++;
114             memcpy(try.features, init->features, sizeof(init->features));
115             ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, &try);
116             if (ret >= 0) {
117                 break;
118             }
119         }
120         if (ret < 0) {
121             goto err;
122         }
123         init->target = try.target;
124     } else {
125         /* Treat a NULL cpus_to_try argument the same as an empty
126          * list, which means we will fail the call since this must
127          * be an old kernel which doesn't support PREFERRED_TARGET.
128          */
129         goto err;
130     }
131 
132 finish:
133     fdarray[0] = kvmfd;
134     fdarray[1] = vmfd;
135     fdarray[2] = cpufd;
136 
137     return true;
138 
139 err:
140     if (cpufd >= 0) {
141         close(cpufd);
142     }
143     if (vmfd >= 0) {
144         close(vmfd);
145     }
146     if (kvmfd >= 0) {
147         close(kvmfd);
148     }
149 
150     return false;
151 }
152 
153 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
154 {
155     int i;
156 
157     for (i = 2; i >= 0; i--) {
158         close(fdarray[i]);
159     }
160 }
161 
162 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
163 {
164     CPUARMState *env = &cpu->env;
165 
166     if (!arm_host_cpu_features.dtb_compatible) {
167         if (!kvm_enabled() ||
168             !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) {
169             /* We can't report this error yet, so flag that we need to
170              * in arm_cpu_realizefn().
171              */
172             cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
173             cpu->host_cpu_probe_failed = true;
174             return;
175         }
176     }
177 
178     cpu->kvm_target = arm_host_cpu_features.target;
179     cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
180     cpu->isar = arm_host_cpu_features.isar;
181     env->features = arm_host_cpu_features.features;
182 }
183 
184 static bool kvm_no_adjvtime_get(Object *obj, Error **errp)
185 {
186     return !ARM_CPU(obj)->kvm_adjvtime;
187 }
188 
189 static void kvm_no_adjvtime_set(Object *obj, bool value, Error **errp)
190 {
191     ARM_CPU(obj)->kvm_adjvtime = !value;
192 }
193 
194 /* KVM VCPU properties should be prefixed with "kvm-". */
195 void kvm_arm_add_vcpu_properties(Object *obj)
196 {
197     ARMCPU *cpu = ARM_CPU(obj);
198     CPUARMState *env = &cpu->env;
199 
200     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
201         cpu->kvm_adjvtime = true;
202         object_property_add_bool(obj, "kvm-no-adjvtime", kvm_no_adjvtime_get,
203                                  kvm_no_adjvtime_set);
204         object_property_set_description(obj, "kvm-no-adjvtime",
205                                         "Set on to disable the adjustment of "
206                                         "the virtual counter. VM stopped time "
207                                         "will be counted.");
208     }
209 }
210 
211 bool kvm_arm_pmu_supported(void)
212 {
213     return kvm_check_extension(kvm_state, KVM_CAP_ARM_PMU_V3);
214 }
215 
216 int kvm_arm_get_max_vm_ipa_size(MachineState *ms)
217 {
218     KVMState *s = KVM_STATE(ms->accelerator);
219     int ret;
220 
221     ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE);
222     return ret > 0 ? ret : 40;
223 }
224 
225 int kvm_arch_init(MachineState *ms, KVMState *s)
226 {
227     int ret = 0;
228     /* For ARM interrupt delivery is always asynchronous,
229      * whether we are using an in-kernel VGIC or not.
230      */
231     kvm_async_interrupts_allowed = true;
232 
233     /*
234      * PSCI wakes up secondary cores, so we always need to
235      * have vCPUs waiting in kernel space
236      */
237     kvm_halt_in_kernel_allowed = true;
238 
239     cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
240 
241     if (ms->smp.cpus > 256 &&
242         !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) {
243         error_report("Using more than 256 vcpus requires a host kernel "
244                      "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2");
245         ret = -EINVAL;
246     }
247 
248     return ret;
249 }
250 
251 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
252 {
253     return cpu->cpu_index;
254 }
255 
256 /* We track all the KVM devices which need their memory addresses
257  * passing to the kernel in a list of these structures.
258  * When board init is complete we run through the list and
259  * tell the kernel the base addresses of the memory regions.
260  * We use a MemoryListener to track mapping and unmapping of
261  * the regions during board creation, so the board models don't
262  * need to do anything special for the KVM case.
263  *
264  * Sometimes the address must be OR'ed with some other fields
265  * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
266  * @kda_addr_ormask aims at storing the value of those fields.
267  */
268 typedef struct KVMDevice {
269     struct kvm_arm_device_addr kda;
270     struct kvm_device_attr kdattr;
271     uint64_t kda_addr_ormask;
272     MemoryRegion *mr;
273     QSLIST_ENTRY(KVMDevice) entries;
274     int dev_fd;
275 } KVMDevice;
276 
277 static QSLIST_HEAD(, KVMDevice) kvm_devices_head;
278 
279 static void kvm_arm_devlistener_add(MemoryListener *listener,
280                                     MemoryRegionSection *section)
281 {
282     KVMDevice *kd;
283 
284     QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
285         if (section->mr == kd->mr) {
286             kd->kda.addr = section->offset_within_address_space;
287         }
288     }
289 }
290 
291 static void kvm_arm_devlistener_del(MemoryListener *listener,
292                                     MemoryRegionSection *section)
293 {
294     KVMDevice *kd;
295 
296     QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
297         if (section->mr == kd->mr) {
298             kd->kda.addr = -1;
299         }
300     }
301 }
302 
303 static MemoryListener devlistener = {
304     .region_add = kvm_arm_devlistener_add,
305     .region_del = kvm_arm_devlistener_del,
306 };
307 
308 static void kvm_arm_set_device_addr(KVMDevice *kd)
309 {
310     struct kvm_device_attr *attr = &kd->kdattr;
311     int ret;
312 
313     /* If the device control API is available and we have a device fd on the
314      * KVMDevice struct, let's use the newer API
315      */
316     if (kd->dev_fd >= 0) {
317         uint64_t addr = kd->kda.addr;
318 
319         addr |= kd->kda_addr_ormask;
320         attr->addr = (uintptr_t)&addr;
321         ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
322     } else {
323         ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
324     }
325 
326     if (ret < 0) {
327         fprintf(stderr, "Failed to set device address: %s\n",
328                 strerror(-ret));
329         abort();
330     }
331 }
332 
333 static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
334 {
335     KVMDevice *kd, *tkd;
336 
337     QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
338         if (kd->kda.addr != -1) {
339             kvm_arm_set_device_addr(kd);
340         }
341         memory_region_unref(kd->mr);
342         QSLIST_REMOVE_HEAD(&kvm_devices_head, entries);
343         g_free(kd);
344     }
345     memory_listener_unregister(&devlistener);
346 }
347 
348 static Notifier notify = {
349     .notify = kvm_arm_machine_init_done,
350 };
351 
352 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
353                              uint64_t attr, int dev_fd, uint64_t addr_ormask)
354 {
355     KVMDevice *kd;
356 
357     if (!kvm_irqchip_in_kernel()) {
358         return;
359     }
360 
361     if (QSLIST_EMPTY(&kvm_devices_head)) {
362         memory_listener_register(&devlistener, &address_space_memory);
363         qemu_add_machine_init_done_notifier(&notify);
364     }
365     kd = g_new0(KVMDevice, 1);
366     kd->mr = mr;
367     kd->kda.id = devid;
368     kd->kda.addr = -1;
369     kd->kdattr.flags = 0;
370     kd->kdattr.group = group;
371     kd->kdattr.attr = attr;
372     kd->dev_fd = dev_fd;
373     kd->kda_addr_ormask = addr_ormask;
374     QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
375     memory_region_ref(kd->mr);
376 }
377 
378 static int compare_u64(const void *a, const void *b)
379 {
380     if (*(uint64_t *)a > *(uint64_t *)b) {
381         return 1;
382     }
383     if (*(uint64_t *)a < *(uint64_t *)b) {
384         return -1;
385     }
386     return 0;
387 }
388 
389 /*
390  * cpreg_values are sorted in ascending order by KVM register ID
391  * (see kvm_arm_init_cpreg_list). This allows us to cheaply find
392  * the storage for a KVM register by ID with a binary search.
393  */
394 static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx)
395 {
396     uint64_t *res;
397 
398     res = bsearch(&regidx, cpu->cpreg_indexes, cpu->cpreg_array_len,
399                   sizeof(uint64_t), compare_u64);
400     assert(res);
401 
402     return &cpu->cpreg_values[res - cpu->cpreg_indexes];
403 }
404 
405 /* Initialize the ARMCPU cpreg list according to the kernel's
406  * definition of what CPU registers it knows about (and throw away
407  * the previous TCG-created cpreg list).
408  */
409 int kvm_arm_init_cpreg_list(ARMCPU *cpu)
410 {
411     struct kvm_reg_list rl;
412     struct kvm_reg_list *rlp;
413     int i, ret, arraylen;
414     CPUState *cs = CPU(cpu);
415 
416     rl.n = 0;
417     ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
418     if (ret != -E2BIG) {
419         return ret;
420     }
421     rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
422     rlp->n = rl.n;
423     ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
424     if (ret) {
425         goto out;
426     }
427     /* Sort the list we get back from the kernel, since cpreg_tuples
428      * must be in strictly ascending order.
429      */
430     qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
431 
432     for (i = 0, arraylen = 0; i < rlp->n; i++) {
433         if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
434             continue;
435         }
436         switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
437         case KVM_REG_SIZE_U32:
438         case KVM_REG_SIZE_U64:
439             break;
440         default:
441             fprintf(stderr, "Can't handle size of register in kernel list\n");
442             ret = -EINVAL;
443             goto out;
444         }
445 
446         arraylen++;
447     }
448 
449     cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
450     cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
451     cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
452                                          arraylen);
453     cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
454                                         arraylen);
455     cpu->cpreg_array_len = arraylen;
456     cpu->cpreg_vmstate_array_len = arraylen;
457 
458     for (i = 0, arraylen = 0; i < rlp->n; i++) {
459         uint64_t regidx = rlp->reg[i];
460         if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
461             continue;
462         }
463         cpu->cpreg_indexes[arraylen] = regidx;
464         arraylen++;
465     }
466     assert(cpu->cpreg_array_len == arraylen);
467 
468     if (!write_kvmstate_to_list(cpu)) {
469         /* Shouldn't happen unless kernel is inconsistent about
470          * what registers exist.
471          */
472         fprintf(stderr, "Initial read of kernel register state failed\n");
473         ret = -EINVAL;
474         goto out;
475     }
476 
477 out:
478     g_free(rlp);
479     return ret;
480 }
481 
482 bool write_kvmstate_to_list(ARMCPU *cpu)
483 {
484     CPUState *cs = CPU(cpu);
485     int i;
486     bool ok = true;
487 
488     for (i = 0; i < cpu->cpreg_array_len; i++) {
489         struct kvm_one_reg r;
490         uint64_t regidx = cpu->cpreg_indexes[i];
491         uint32_t v32;
492         int ret;
493 
494         r.id = regidx;
495 
496         switch (regidx & KVM_REG_SIZE_MASK) {
497         case KVM_REG_SIZE_U32:
498             r.addr = (uintptr_t)&v32;
499             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
500             if (!ret) {
501                 cpu->cpreg_values[i] = v32;
502             }
503             break;
504         case KVM_REG_SIZE_U64:
505             r.addr = (uintptr_t)(cpu->cpreg_values + i);
506             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
507             break;
508         default:
509             abort();
510         }
511         if (ret) {
512             ok = false;
513         }
514     }
515     return ok;
516 }
517 
518 bool write_list_to_kvmstate(ARMCPU *cpu, int level)
519 {
520     CPUState *cs = CPU(cpu);
521     int i;
522     bool ok = true;
523 
524     for (i = 0; i < cpu->cpreg_array_len; i++) {
525         struct kvm_one_reg r;
526         uint64_t regidx = cpu->cpreg_indexes[i];
527         uint32_t v32;
528         int ret;
529 
530         if (kvm_arm_cpreg_level(regidx) > level) {
531             continue;
532         }
533 
534         r.id = regidx;
535         switch (regidx & KVM_REG_SIZE_MASK) {
536         case KVM_REG_SIZE_U32:
537             v32 = cpu->cpreg_values[i];
538             r.addr = (uintptr_t)&v32;
539             break;
540         case KVM_REG_SIZE_U64:
541             r.addr = (uintptr_t)(cpu->cpreg_values + i);
542             break;
543         default:
544             abort();
545         }
546         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
547         if (ret) {
548             /* We might fail for "unknown register" and also for
549              * "you tried to set a register which is constant with
550              * a different value from what it actually contains".
551              */
552             ok = false;
553         }
554     }
555     return ok;
556 }
557 
558 void kvm_arm_cpu_pre_save(ARMCPU *cpu)
559 {
560     /* KVM virtual time adjustment */
561     if (cpu->kvm_vtime_dirty) {
562         *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT) = cpu->kvm_vtime;
563     }
564 }
565 
566 void kvm_arm_cpu_post_load(ARMCPU *cpu)
567 {
568     /* KVM virtual time adjustment */
569     if (cpu->kvm_adjvtime) {
570         cpu->kvm_vtime = *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT);
571         cpu->kvm_vtime_dirty = true;
572     }
573 }
574 
575 void kvm_arm_reset_vcpu(ARMCPU *cpu)
576 {
577     int ret;
578 
579     /* Re-init VCPU so that all registers are set to
580      * their respective reset values.
581      */
582     ret = kvm_arm_vcpu_init(CPU(cpu));
583     if (ret < 0) {
584         fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
585         abort();
586     }
587     if (!write_kvmstate_to_list(cpu)) {
588         fprintf(stderr, "write_kvmstate_to_list failed\n");
589         abort();
590     }
591     /*
592      * Sync the reset values also into the CPUState. This is necessary
593      * because the next thing we do will be a kvm_arch_put_registers()
594      * which will update the list values from the CPUState before copying
595      * the list values back to KVM. It's OK to ignore failure returns here
596      * for the same reason we do so in kvm_arch_get_registers().
597      */
598     write_list_to_cpustate(cpu);
599 }
600 
601 /*
602  * Update KVM's MP_STATE based on what QEMU thinks it is
603  */
604 int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
605 {
606     if (cap_has_mp_state) {
607         struct kvm_mp_state mp_state = {
608             .mp_state = (cpu->power_state == PSCI_OFF) ?
609             KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
610         };
611         int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
612         if (ret) {
613             fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n",
614                     __func__, ret, strerror(-ret));
615             return -1;
616         }
617     }
618 
619     return 0;
620 }
621 
622 /*
623  * Sync the KVM MP_STATE into QEMU
624  */
625 int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
626 {
627     if (cap_has_mp_state) {
628         struct kvm_mp_state mp_state;
629         int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
630         if (ret) {
631             fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n",
632                     __func__, ret, strerror(-ret));
633             abort();
634         }
635         cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
636             PSCI_OFF : PSCI_ON;
637     }
638 
639     return 0;
640 }
641 
642 void kvm_arm_get_virtual_time(CPUState *cs)
643 {
644     ARMCPU *cpu = ARM_CPU(cs);
645     struct kvm_one_reg reg = {
646         .id = KVM_REG_ARM_TIMER_CNT,
647         .addr = (uintptr_t)&cpu->kvm_vtime,
648     };
649     int ret;
650 
651     if (cpu->kvm_vtime_dirty) {
652         return;
653     }
654 
655     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
656     if (ret) {
657         error_report("Failed to get KVM_REG_ARM_TIMER_CNT");
658         abort();
659     }
660 
661     cpu->kvm_vtime_dirty = true;
662 }
663 
664 void kvm_arm_put_virtual_time(CPUState *cs)
665 {
666     ARMCPU *cpu = ARM_CPU(cs);
667     struct kvm_one_reg reg = {
668         .id = KVM_REG_ARM_TIMER_CNT,
669         .addr = (uintptr_t)&cpu->kvm_vtime,
670     };
671     int ret;
672 
673     if (!cpu->kvm_vtime_dirty) {
674         return;
675     }
676 
677     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
678     if (ret) {
679         error_report("Failed to set KVM_REG_ARM_TIMER_CNT");
680         abort();
681     }
682 
683     cpu->kvm_vtime_dirty = false;
684 }
685 
686 int kvm_put_vcpu_events(ARMCPU *cpu)
687 {
688     CPUARMState *env = &cpu->env;
689     struct kvm_vcpu_events events;
690     int ret;
691 
692     if (!kvm_has_vcpu_events()) {
693         return 0;
694     }
695 
696     memset(&events, 0, sizeof(events));
697     events.exception.serror_pending = env->serror.pending;
698 
699     /* Inject SError to guest with specified syndrome if host kernel
700      * supports it, otherwise inject SError without syndrome.
701      */
702     if (cap_has_inject_serror_esr) {
703         events.exception.serror_has_esr = env->serror.has_esr;
704         events.exception.serror_esr = env->serror.esr;
705     }
706 
707     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
708     if (ret) {
709         error_report("failed to put vcpu events");
710     }
711 
712     return ret;
713 }
714 
715 int kvm_get_vcpu_events(ARMCPU *cpu)
716 {
717     CPUARMState *env = &cpu->env;
718     struct kvm_vcpu_events events;
719     int ret;
720 
721     if (!kvm_has_vcpu_events()) {
722         return 0;
723     }
724 
725     memset(&events, 0, sizeof(events));
726     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
727     if (ret) {
728         error_report("failed to get vcpu events");
729         return ret;
730     }
731 
732     env->serror.pending = events.exception.serror_pending;
733     env->serror.has_esr = events.exception.serror_has_esr;
734     env->serror.esr = events.exception.serror_esr;
735 
736     return 0;
737 }
738 
739 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
740 {
741 }
742 
743 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
744 {
745     ARMCPU *cpu;
746     uint32_t switched_level;
747 
748     if (kvm_irqchip_in_kernel()) {
749         /*
750          * We only need to sync timer states with user-space interrupt
751          * controllers, so return early and save cycles if we don't.
752          */
753         return MEMTXATTRS_UNSPECIFIED;
754     }
755 
756     cpu = ARM_CPU(cs);
757 
758     /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
759     if (run->s.regs.device_irq_level != cpu->device_irq_level) {
760         switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
761 
762         qemu_mutex_lock_iothread();
763 
764         if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
765             qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
766                          !!(run->s.regs.device_irq_level &
767                             KVM_ARM_DEV_EL1_VTIMER));
768             switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
769         }
770 
771         if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
772             qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
773                          !!(run->s.regs.device_irq_level &
774                             KVM_ARM_DEV_EL1_PTIMER));
775             switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
776         }
777 
778         if (switched_level & KVM_ARM_DEV_PMU) {
779             qemu_set_irq(cpu->pmu_interrupt,
780                          !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
781             switched_level &= ~KVM_ARM_DEV_PMU;
782         }
783 
784         if (switched_level) {
785             qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
786                           __func__, switched_level);
787         }
788 
789         /* We also mark unknown levels as processed to not waste cycles */
790         cpu->device_irq_level = run->s.regs.device_irq_level;
791         qemu_mutex_unlock_iothread();
792     }
793 
794     return MEMTXATTRS_UNSPECIFIED;
795 }
796 
797 void kvm_arm_vm_state_change(void *opaque, int running, RunState state)
798 {
799     CPUState *cs = opaque;
800     ARMCPU *cpu = ARM_CPU(cs);
801 
802     if (running) {
803         if (cpu->kvm_adjvtime) {
804             kvm_arm_put_virtual_time(cs);
805         }
806     } else {
807         if (cpu->kvm_adjvtime) {
808             kvm_arm_get_virtual_time(cs);
809         }
810     }
811 }
812 
813 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
814 {
815     int ret = 0;
816 
817     switch (run->exit_reason) {
818     case KVM_EXIT_DEBUG:
819         if (kvm_arm_handle_debug(cs, &run->debug.arch)) {
820             ret = EXCP_DEBUG;
821         } /* otherwise return to guest */
822         break;
823     default:
824         qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
825                       __func__, run->exit_reason);
826         break;
827     }
828     return ret;
829 }
830 
831 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
832 {
833     return true;
834 }
835 
836 int kvm_arch_process_async_events(CPUState *cs)
837 {
838     return 0;
839 }
840 
841 /* The #ifdef protections are until 32bit headers are imported and can
842  * be removed once both 32 and 64 bit reach feature parity.
843  */
844 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
845 {
846 #ifdef KVM_GUESTDBG_USE_SW_BP
847     if (kvm_sw_breakpoints_active(cs)) {
848         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
849     }
850 #endif
851 #ifdef KVM_GUESTDBG_USE_HW
852     if (kvm_arm_hw_debug_active(cs)) {
853         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
854         kvm_arm_copy_hw_debug_data(&dbg->arch);
855     }
856 #endif
857 }
858 
859 void kvm_arch_init_irq_routing(KVMState *s)
860 {
861 }
862 
863 int kvm_arch_irqchip_create(KVMState *s)
864 {
865     if (kvm_kernel_irqchip_split()) {
866         perror("-machine kernel_irqchip=split is not supported on ARM.");
867         exit(1);
868     }
869 
870     /* If we can create the VGIC using the newer device control API, we
871      * let the device do this when it initializes itself, otherwise we
872      * fall back to the old API */
873     return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
874 }
875 
876 int kvm_arm_vgic_probe(void)
877 {
878     int val = 0;
879 
880     if (kvm_create_device(kvm_state,
881                           KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
882         val |= KVM_ARM_VGIC_V3;
883     }
884     if (kvm_create_device(kvm_state,
885                           KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
886         val |= KVM_ARM_VGIC_V2;
887     }
888     return val;
889 }
890 
891 int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level)
892 {
893     int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq;
894     int cpu_idx1 = cpu % 256;
895     int cpu_idx2 = cpu / 256;
896 
897     kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) |
898                (cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT);
899 
900     return kvm_set_irq(kvm_state, kvm_irq, !!level);
901 }
902 
903 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
904                              uint64_t address, uint32_t data, PCIDevice *dev)
905 {
906     AddressSpace *as = pci_device_iommu_address_space(dev);
907     hwaddr xlat, len, doorbell_gpa;
908     MemoryRegionSection mrs;
909     MemoryRegion *mr;
910     int ret = 1;
911 
912     if (as == &address_space_memory) {
913         return 0;
914     }
915 
916     /* MSI doorbell address is translated by an IOMMU */
917 
918     rcu_read_lock();
919     mr = address_space_translate(as, address, &xlat, &len, true,
920                                  MEMTXATTRS_UNSPECIFIED);
921     if (!mr) {
922         goto unlock;
923     }
924     mrs = memory_region_find(mr, xlat, 1);
925     if (!mrs.mr) {
926         goto unlock;
927     }
928 
929     doorbell_gpa = mrs.offset_within_address_space;
930     memory_region_unref(mrs.mr);
931 
932     route->u.msi.address_lo = doorbell_gpa;
933     route->u.msi.address_hi = doorbell_gpa >> 32;
934 
935     trace_kvm_arm_fixup_msi_route(address, doorbell_gpa);
936 
937     ret = 0;
938 
939 unlock:
940     rcu_read_unlock();
941     return ret;
942 }
943 
944 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
945                                 int vector, PCIDevice *dev)
946 {
947     return 0;
948 }
949 
950 int kvm_arch_release_virq_post(int virq)
951 {
952     return 0;
953 }
954 
955 int kvm_arch_msi_data_to_gsi(uint32_t data)
956 {
957     return (data - 32) & 0xffff;
958 }
959