xref: /openbmc/qemu/target/arm/kvm.c (revision 8d3031fa)
1 /*
2  * ARM implementation of KVM hooks
3  *
4  * Copyright Christoffer Dall 2009-2010
5  * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
6  * Copyright Alex Bennée 2014, Linaro
7  *
8  * This work is licensed under the terms of the GNU GPL, version 2 or later.
9  * See the COPYING file in the top-level directory.
10  *
11  */
12 
13 #include "qemu/osdep.h"
14 #include <sys/ioctl.h>
15 
16 #include <linux/kvm.h>
17 
18 #include "qemu/timer.h"
19 #include "qemu/error-report.h"
20 #include "qemu/main-loop.h"
21 #include "qom/object.h"
22 #include "qapi/error.h"
23 #include "sysemu/sysemu.h"
24 #include "sysemu/runstate.h"
25 #include "sysemu/kvm.h"
26 #include "sysemu/kvm_int.h"
27 #include "kvm_arm.h"
28 #include "cpu.h"
29 #include "trace.h"
30 #include "internals.h"
31 #include "hw/pci/pci.h"
32 #include "exec/memattrs.h"
33 #include "exec/address-spaces.h"
34 #include "gdbstub/enums.h"
35 #include "hw/boards.h"
36 #include "hw/irq.h"
37 #include "qapi/visitor.h"
38 #include "qemu/log.h"
39 #include "hw/acpi/acpi.h"
40 #include "hw/acpi/ghes.h"
41 #include "target/arm/gtimer.h"
42 
43 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
44     KVM_CAP_LAST_INFO
45 };
46 
47 static bool cap_has_mp_state;
48 static bool cap_has_inject_serror_esr;
49 static bool cap_has_inject_ext_dabt;
50 
51 /**
52  * ARMHostCPUFeatures: information about the host CPU (identified
53  * by asking the host kernel)
54  */
55 typedef struct ARMHostCPUFeatures {
56     ARMISARegisters isar;
57     uint64_t features;
58     uint32_t target;
59     const char *dtb_compatible;
60 } ARMHostCPUFeatures;
61 
62 static ARMHostCPUFeatures arm_host_cpu_features;
63 
64 /**
65  * kvm_arm_vcpu_init:
66  * @cpu: ARMCPU
67  *
68  * Initialize (or reinitialize) the VCPU by invoking the
69  * KVM_ARM_VCPU_INIT ioctl with the CPU type and feature
70  * bitmask specified in the CPUState.
71  *
72  * Returns: 0 if success else < 0 error code
73  */
74 static int kvm_arm_vcpu_init(ARMCPU *cpu)
75 {
76     struct kvm_vcpu_init init;
77 
78     init.target = cpu->kvm_target;
79     memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
80 
81     return kvm_vcpu_ioctl(CPU(cpu), KVM_ARM_VCPU_INIT, &init);
82 }
83 
84 /**
85  * kvm_arm_vcpu_finalize:
86  * @cpu: ARMCPU
87  * @feature: feature to finalize
88  *
89  * Finalizes the configuration of the specified VCPU feature by
90  * invoking the KVM_ARM_VCPU_FINALIZE ioctl. Features requiring
91  * this are documented in the "KVM_ARM_VCPU_FINALIZE" section of
92  * KVM's API documentation.
93  *
94  * Returns: 0 if success else < 0 error code
95  */
96 static int kvm_arm_vcpu_finalize(ARMCPU *cpu, int feature)
97 {
98     return kvm_vcpu_ioctl(CPU(cpu), KVM_ARM_VCPU_FINALIZE, &feature);
99 }
100 
101 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
102                                       int *fdarray,
103                                       struct kvm_vcpu_init *init)
104 {
105     int ret = 0, kvmfd = -1, vmfd = -1, cpufd = -1;
106     int max_vm_pa_size;
107 
108     kvmfd = qemu_open_old("/dev/kvm", O_RDWR);
109     if (kvmfd < 0) {
110         goto err;
111     }
112     max_vm_pa_size = ioctl(kvmfd, KVM_CHECK_EXTENSION, KVM_CAP_ARM_VM_IPA_SIZE);
113     if (max_vm_pa_size < 0) {
114         max_vm_pa_size = 0;
115     }
116     do {
117         vmfd = ioctl(kvmfd, KVM_CREATE_VM, max_vm_pa_size);
118     } while (vmfd == -1 && errno == EINTR);
119     if (vmfd < 0) {
120         goto err;
121     }
122     cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
123     if (cpufd < 0) {
124         goto err;
125     }
126 
127     if (!init) {
128         /* Caller doesn't want the VCPU to be initialized, so skip it */
129         goto finish;
130     }
131 
132     if (init->target == -1) {
133         struct kvm_vcpu_init preferred;
134 
135         ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, &preferred);
136         if (!ret) {
137             init->target = preferred.target;
138         }
139     }
140     if (ret >= 0) {
141         ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
142         if (ret < 0) {
143             goto err;
144         }
145     } else if (cpus_to_try) {
146         /* Old kernel which doesn't know about the
147          * PREFERRED_TARGET ioctl: we know it will only support
148          * creating one kind of guest CPU which is its preferred
149          * CPU type.
150          */
151         struct kvm_vcpu_init try;
152 
153         while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
154             try.target = *cpus_to_try++;
155             memcpy(try.features, init->features, sizeof(init->features));
156             ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, &try);
157             if (ret >= 0) {
158                 break;
159             }
160         }
161         if (ret < 0) {
162             goto err;
163         }
164         init->target = try.target;
165     } else {
166         /* Treat a NULL cpus_to_try argument the same as an empty
167          * list, which means we will fail the call since this must
168          * be an old kernel which doesn't support PREFERRED_TARGET.
169          */
170         goto err;
171     }
172 
173 finish:
174     fdarray[0] = kvmfd;
175     fdarray[1] = vmfd;
176     fdarray[2] = cpufd;
177 
178     return true;
179 
180 err:
181     if (cpufd >= 0) {
182         close(cpufd);
183     }
184     if (vmfd >= 0) {
185         close(vmfd);
186     }
187     if (kvmfd >= 0) {
188         close(kvmfd);
189     }
190 
191     return false;
192 }
193 
194 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
195 {
196     int i;
197 
198     for (i = 2; i >= 0; i--) {
199         close(fdarray[i]);
200     }
201 }
202 
203 static int read_sys_reg32(int fd, uint32_t *pret, uint64_t id)
204 {
205     uint64_t ret;
206     struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)&ret };
207     int err;
208 
209     assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
210     err = ioctl(fd, KVM_GET_ONE_REG, &idreg);
211     if (err < 0) {
212         return -1;
213     }
214     *pret = ret;
215     return 0;
216 }
217 
218 static int read_sys_reg64(int fd, uint64_t *pret, uint64_t id)
219 {
220     struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)pret };
221 
222     assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
223     return ioctl(fd, KVM_GET_ONE_REG, &idreg);
224 }
225 
226 static bool kvm_arm_pauth_supported(void)
227 {
228     return (kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_ADDRESS) &&
229             kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_GENERIC));
230 }
231 
232 static bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
233 {
234     /* Identify the feature bits corresponding to the host CPU, and
235      * fill out the ARMHostCPUClass fields accordingly. To do this
236      * we have to create a scratch VM, create a single CPU inside it,
237      * and then query that CPU for the relevant ID registers.
238      */
239     int fdarray[3];
240     bool sve_supported;
241     bool pmu_supported = false;
242     uint64_t features = 0;
243     int err;
244 
245     /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
246      * we know these will only support creating one kind of guest CPU,
247      * which is its preferred CPU type. Fortunately these old kernels
248      * support only a very limited number of CPUs.
249      */
250     static const uint32_t cpus_to_try[] = {
251         KVM_ARM_TARGET_AEM_V8,
252         KVM_ARM_TARGET_FOUNDATION_V8,
253         KVM_ARM_TARGET_CORTEX_A57,
254         QEMU_KVM_ARM_TARGET_NONE
255     };
256     /*
257      * target = -1 informs kvm_arm_create_scratch_host_vcpu()
258      * to use the preferred target
259      */
260     struct kvm_vcpu_init init = { .target = -1, };
261 
262     /*
263      * Ask for SVE if supported, so that we can query ID_AA64ZFR0,
264      * which is otherwise RAZ.
265      */
266     sve_supported = kvm_arm_sve_supported();
267     if (sve_supported) {
268         init.features[0] |= 1 << KVM_ARM_VCPU_SVE;
269     }
270 
271     /*
272      * Ask for Pointer Authentication if supported, so that we get
273      * the unsanitized field values for AA64ISAR1_EL1.
274      */
275     if (kvm_arm_pauth_supported()) {
276         init.features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
277                              1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
278     }
279 
280     if (kvm_arm_pmu_supported()) {
281         init.features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
282         pmu_supported = true;
283         features |= 1ULL << ARM_FEATURE_PMU;
284     }
285 
286     if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
287         return false;
288     }
289 
290     ahcf->target = init.target;
291     ahcf->dtb_compatible = "arm,arm-v8";
292 
293     err = read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr0,
294                          ARM64_SYS_REG(3, 0, 0, 4, 0));
295     if (unlikely(err < 0)) {
296         /*
297          * Before v4.15, the kernel only exposed a limited number of system
298          * registers, not including any of the interesting AArch64 ID regs.
299          * For the most part we could leave these fields as zero with minimal
300          * effect, since this does not affect the values seen by the guest.
301          *
302          * However, it could cause problems down the line for QEMU,
303          * so provide a minimal v8.0 default.
304          *
305          * ??? Could read MIDR and use knowledge from cpu64.c.
306          * ??? Could map a page of memory into our temp guest and
307          *     run the tiniest of hand-crafted kernels to extract
308          *     the values seen by the guest.
309          * ??? Either of these sounds like too much effort just
310          *     to work around running a modern host kernel.
311          */
312         ahcf->isar.id_aa64pfr0 = 0x00000011; /* EL1&0, AArch64 only */
313         err = 0;
314     } else {
315         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr1,
316                               ARM64_SYS_REG(3, 0, 0, 4, 1));
317         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64smfr0,
318                               ARM64_SYS_REG(3, 0, 0, 4, 5));
319         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr0,
320                               ARM64_SYS_REG(3, 0, 0, 5, 0));
321         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr1,
322                               ARM64_SYS_REG(3, 0, 0, 5, 1));
323         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar0,
324                               ARM64_SYS_REG(3, 0, 0, 6, 0));
325         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar1,
326                               ARM64_SYS_REG(3, 0, 0, 6, 1));
327         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar2,
328                               ARM64_SYS_REG(3, 0, 0, 6, 2));
329         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr0,
330                               ARM64_SYS_REG(3, 0, 0, 7, 0));
331         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr1,
332                               ARM64_SYS_REG(3, 0, 0, 7, 1));
333         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr2,
334                               ARM64_SYS_REG(3, 0, 0, 7, 2));
335         err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr3,
336                               ARM64_SYS_REG(3, 0, 0, 7, 3));
337 
338         /*
339          * Note that if AArch32 support is not present in the host,
340          * the AArch32 sysregs are present to be read, but will
341          * return UNKNOWN values.  This is neither better nor worse
342          * than skipping the reads and leaving 0, as we must avoid
343          * considering the values in every case.
344          */
345         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr0,
346                               ARM64_SYS_REG(3, 0, 0, 1, 0));
347         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr1,
348                               ARM64_SYS_REG(3, 0, 0, 1, 1));
349         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr0,
350                               ARM64_SYS_REG(3, 0, 0, 1, 2));
351         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr0,
352                               ARM64_SYS_REG(3, 0, 0, 1, 4));
353         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr1,
354                               ARM64_SYS_REG(3, 0, 0, 1, 5));
355         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr2,
356                               ARM64_SYS_REG(3, 0, 0, 1, 6));
357         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr3,
358                               ARM64_SYS_REG(3, 0, 0, 1, 7));
359         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar0,
360                               ARM64_SYS_REG(3, 0, 0, 2, 0));
361         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar1,
362                               ARM64_SYS_REG(3, 0, 0, 2, 1));
363         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar2,
364                               ARM64_SYS_REG(3, 0, 0, 2, 2));
365         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar3,
366                               ARM64_SYS_REG(3, 0, 0, 2, 3));
367         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar4,
368                               ARM64_SYS_REG(3, 0, 0, 2, 4));
369         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar5,
370                               ARM64_SYS_REG(3, 0, 0, 2, 5));
371         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr4,
372                               ARM64_SYS_REG(3, 0, 0, 2, 6));
373         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar6,
374                               ARM64_SYS_REG(3, 0, 0, 2, 7));
375 
376         err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr0,
377                               ARM64_SYS_REG(3, 0, 0, 3, 0));
378         err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr1,
379                               ARM64_SYS_REG(3, 0, 0, 3, 1));
380         err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr2,
381                               ARM64_SYS_REG(3, 0, 0, 3, 2));
382         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr2,
383                               ARM64_SYS_REG(3, 0, 0, 3, 4));
384         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr1,
385                               ARM64_SYS_REG(3, 0, 0, 3, 5));
386         err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr5,
387                               ARM64_SYS_REG(3, 0, 0, 3, 6));
388 
389         /*
390          * DBGDIDR is a bit complicated because the kernel doesn't
391          * provide an accessor for it in 64-bit mode, which is what this
392          * scratch VM is in, and there's no architected "64-bit sysreg
393          * which reads the same as the 32-bit register" the way there is
394          * for other ID registers. Instead we synthesize a value from the
395          * AArch64 ID_AA64DFR0, the same way the kernel code in
396          * arch/arm64/kvm/sys_regs.c:trap_dbgidr() does.
397          * We only do this if the CPU supports AArch32 at EL1.
398          */
399         if (FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL1) >= 2) {
400             int wrps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, WRPS);
401             int brps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, BRPS);
402             int ctx_cmps =
403                 FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS);
404             int version = 6; /* ARMv8 debug architecture */
405             bool has_el3 =
406                 !!FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL3);
407             uint32_t dbgdidr = 0;
408 
409             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, WRPS, wrps);
410             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, BRPS, brps);
411             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, CTX_CMPS, ctx_cmps);
412             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, VERSION, version);
413             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, NSUHD_IMP, has_el3);
414             dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, SE_IMP, has_el3);
415             dbgdidr |= (1 << 15); /* RES1 bit */
416             ahcf->isar.dbgdidr = dbgdidr;
417         }
418 
419         if (pmu_supported) {
420             /* PMCR_EL0 is only accessible if the vCPU has feature PMU_V3 */
421             err |= read_sys_reg64(fdarray[2], &ahcf->isar.reset_pmcr_el0,
422                                   ARM64_SYS_REG(3, 3, 9, 12, 0));
423         }
424 
425         if (sve_supported) {
426             /*
427              * There is a range of kernels between kernel commit 73433762fcae
428              * and f81cb2c3ad41 which have a bug where the kernel doesn't
429              * expose SYS_ID_AA64ZFR0_EL1 via the ONE_REG API unless the VM has
430              * enabled SVE support, which resulted in an error rather than RAZ.
431              * So only read the register if we set KVM_ARM_VCPU_SVE above.
432              */
433             err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64zfr0,
434                                   ARM64_SYS_REG(3, 0, 0, 4, 4));
435         }
436     }
437 
438     kvm_arm_destroy_scratch_host_vcpu(fdarray);
439 
440     if (err < 0) {
441         return false;
442     }
443 
444     /*
445      * We can assume any KVM supporting CPU is at least a v8
446      * with VFPv4+Neon; this in turn implies most of the other
447      * feature bits.
448      */
449     features |= 1ULL << ARM_FEATURE_V8;
450     features |= 1ULL << ARM_FEATURE_NEON;
451     features |= 1ULL << ARM_FEATURE_AARCH64;
452     features |= 1ULL << ARM_FEATURE_GENERIC_TIMER;
453 
454     ahcf->features = features;
455 
456     return true;
457 }
458 
459 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
460 {
461     CPUARMState *env = &cpu->env;
462 
463     if (!arm_host_cpu_features.dtb_compatible) {
464         if (!kvm_enabled() ||
465             !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) {
466             /* We can't report this error yet, so flag that we need to
467              * in arm_cpu_realizefn().
468              */
469             cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
470             cpu->host_cpu_probe_failed = true;
471             return;
472         }
473     }
474 
475     cpu->kvm_target = arm_host_cpu_features.target;
476     cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
477     cpu->isar = arm_host_cpu_features.isar;
478     env->features = arm_host_cpu_features.features;
479 }
480 
481 static bool kvm_no_adjvtime_get(Object *obj, Error **errp)
482 {
483     return !ARM_CPU(obj)->kvm_adjvtime;
484 }
485 
486 static void kvm_no_adjvtime_set(Object *obj, bool value, Error **errp)
487 {
488     ARM_CPU(obj)->kvm_adjvtime = !value;
489 }
490 
491 static bool kvm_steal_time_get(Object *obj, Error **errp)
492 {
493     return ARM_CPU(obj)->kvm_steal_time != ON_OFF_AUTO_OFF;
494 }
495 
496 static void kvm_steal_time_set(Object *obj, bool value, Error **errp)
497 {
498     ARM_CPU(obj)->kvm_steal_time = value ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
499 }
500 
501 /* KVM VCPU properties should be prefixed with "kvm-". */
502 void kvm_arm_add_vcpu_properties(ARMCPU *cpu)
503 {
504     CPUARMState *env = &cpu->env;
505     Object *obj = OBJECT(cpu);
506 
507     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
508         cpu->kvm_adjvtime = true;
509         object_property_add_bool(obj, "kvm-no-adjvtime", kvm_no_adjvtime_get,
510                                  kvm_no_adjvtime_set);
511         object_property_set_description(obj, "kvm-no-adjvtime",
512                                         "Set on to disable the adjustment of "
513                                         "the virtual counter. VM stopped time "
514                                         "will be counted.");
515     }
516 
517     cpu->kvm_steal_time = ON_OFF_AUTO_AUTO;
518     object_property_add_bool(obj, "kvm-steal-time", kvm_steal_time_get,
519                              kvm_steal_time_set);
520     object_property_set_description(obj, "kvm-steal-time",
521                                     "Set off to disable KVM steal time.");
522 }
523 
524 bool kvm_arm_pmu_supported(void)
525 {
526     return kvm_check_extension(kvm_state, KVM_CAP_ARM_PMU_V3);
527 }
528 
529 int kvm_arm_get_max_vm_ipa_size(MachineState *ms, bool *fixed_ipa)
530 {
531     KVMState *s = KVM_STATE(ms->accelerator);
532     int ret;
533 
534     ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE);
535     *fixed_ipa = ret <= 0;
536 
537     return ret > 0 ? ret : 40;
538 }
539 
540 int kvm_arch_get_default_type(MachineState *ms)
541 {
542     bool fixed_ipa;
543     int size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
544     return fixed_ipa ? 0 : size;
545 }
546 
547 int kvm_arch_init(MachineState *ms, KVMState *s)
548 {
549     int ret = 0;
550     /* For ARM interrupt delivery is always asynchronous,
551      * whether we are using an in-kernel VGIC or not.
552      */
553     kvm_async_interrupts_allowed = true;
554 
555     /*
556      * PSCI wakes up secondary cores, so we always need to
557      * have vCPUs waiting in kernel space
558      */
559     kvm_halt_in_kernel_allowed = true;
560 
561     cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
562 
563     /* Check whether user space can specify guest syndrome value */
564     cap_has_inject_serror_esr =
565         kvm_check_extension(s, KVM_CAP_ARM_INJECT_SERROR_ESR);
566 
567     if (ms->smp.cpus > 256 &&
568         !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) {
569         error_report("Using more than 256 vcpus requires a host kernel "
570                      "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2");
571         ret = -EINVAL;
572     }
573 
574     if (kvm_check_extension(s, KVM_CAP_ARM_NISV_TO_USER)) {
575         if (kvm_vm_enable_cap(s, KVM_CAP_ARM_NISV_TO_USER, 0)) {
576             error_report("Failed to enable KVM_CAP_ARM_NISV_TO_USER cap");
577         } else {
578             /* Set status for supporting the external dabt injection */
579             cap_has_inject_ext_dabt = kvm_check_extension(s,
580                                     KVM_CAP_ARM_INJECT_EXT_DABT);
581         }
582     }
583 
584     if (s->kvm_eager_split_size) {
585         uint32_t sizes;
586 
587         sizes = kvm_vm_check_extension(s, KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES);
588         if (!sizes) {
589             s->kvm_eager_split_size = 0;
590             warn_report("Eager Page Split support not available");
591         } else if (!(s->kvm_eager_split_size & sizes)) {
592             error_report("Eager Page Split requested chunk size not valid");
593             ret = -EINVAL;
594         } else {
595             ret = kvm_vm_enable_cap(s, KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE, 0,
596                                     s->kvm_eager_split_size);
597             if (ret < 0) {
598                 error_report("Enabling of Eager Page Split failed: %s",
599                              strerror(-ret));
600             }
601         }
602     }
603 
604     max_hw_wps = kvm_check_extension(s, KVM_CAP_GUEST_DEBUG_HW_WPS);
605     hw_watchpoints = g_array_sized_new(true, true,
606                                        sizeof(HWWatchpoint), max_hw_wps);
607 
608     max_hw_bps = kvm_check_extension(s, KVM_CAP_GUEST_DEBUG_HW_BPS);
609     hw_breakpoints = g_array_sized_new(true, true,
610                                        sizeof(HWBreakpoint), max_hw_bps);
611 
612     return ret;
613 }
614 
615 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
616 {
617     return cpu->cpu_index;
618 }
619 
620 /* We track all the KVM devices which need their memory addresses
621  * passing to the kernel in a list of these structures.
622  * When board init is complete we run through the list and
623  * tell the kernel the base addresses of the memory regions.
624  * We use a MemoryListener to track mapping and unmapping of
625  * the regions during board creation, so the board models don't
626  * need to do anything special for the KVM case.
627  *
628  * Sometimes the address must be OR'ed with some other fields
629  * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
630  * @kda_addr_ormask aims at storing the value of those fields.
631  */
632 typedef struct KVMDevice {
633     struct kvm_arm_device_addr kda;
634     struct kvm_device_attr kdattr;
635     uint64_t kda_addr_ormask;
636     MemoryRegion *mr;
637     QSLIST_ENTRY(KVMDevice) entries;
638     int dev_fd;
639 } KVMDevice;
640 
641 static QSLIST_HEAD(, KVMDevice) kvm_devices_head;
642 
643 static void kvm_arm_devlistener_add(MemoryListener *listener,
644                                     MemoryRegionSection *section)
645 {
646     KVMDevice *kd;
647 
648     QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
649         if (section->mr == kd->mr) {
650             kd->kda.addr = section->offset_within_address_space;
651         }
652     }
653 }
654 
655 static void kvm_arm_devlistener_del(MemoryListener *listener,
656                                     MemoryRegionSection *section)
657 {
658     KVMDevice *kd;
659 
660     QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
661         if (section->mr == kd->mr) {
662             kd->kda.addr = -1;
663         }
664     }
665 }
666 
667 static MemoryListener devlistener = {
668     .name = "kvm-arm",
669     .region_add = kvm_arm_devlistener_add,
670     .region_del = kvm_arm_devlistener_del,
671     .priority = MEMORY_LISTENER_PRIORITY_MIN,
672 };
673 
674 static void kvm_arm_set_device_addr(KVMDevice *kd)
675 {
676     struct kvm_device_attr *attr = &kd->kdattr;
677     int ret;
678 
679     /* If the device control API is available and we have a device fd on the
680      * KVMDevice struct, let's use the newer API
681      */
682     if (kd->dev_fd >= 0) {
683         uint64_t addr = kd->kda.addr;
684 
685         addr |= kd->kda_addr_ormask;
686         attr->addr = (uintptr_t)&addr;
687         ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
688     } else {
689         ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
690     }
691 
692     if (ret < 0) {
693         fprintf(stderr, "Failed to set device address: %s\n",
694                 strerror(-ret));
695         abort();
696     }
697 }
698 
699 static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
700 {
701     KVMDevice *kd, *tkd;
702 
703     QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
704         if (kd->kda.addr != -1) {
705             kvm_arm_set_device_addr(kd);
706         }
707         memory_region_unref(kd->mr);
708         QSLIST_REMOVE_HEAD(&kvm_devices_head, entries);
709         g_free(kd);
710     }
711     memory_listener_unregister(&devlistener);
712 }
713 
714 static Notifier notify = {
715     .notify = kvm_arm_machine_init_done,
716 };
717 
718 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
719                              uint64_t attr, int dev_fd, uint64_t addr_ormask)
720 {
721     KVMDevice *kd;
722 
723     if (!kvm_irqchip_in_kernel()) {
724         return;
725     }
726 
727     if (QSLIST_EMPTY(&kvm_devices_head)) {
728         memory_listener_register(&devlistener, &address_space_memory);
729         qemu_add_machine_init_done_notifier(&notify);
730     }
731     kd = g_new0(KVMDevice, 1);
732     kd->mr = mr;
733     kd->kda.id = devid;
734     kd->kda.addr = -1;
735     kd->kdattr.flags = 0;
736     kd->kdattr.group = group;
737     kd->kdattr.attr = attr;
738     kd->dev_fd = dev_fd;
739     kd->kda_addr_ormask = addr_ormask;
740     QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
741     memory_region_ref(kd->mr);
742 }
743 
744 static int compare_u64(const void *a, const void *b)
745 {
746     if (*(uint64_t *)a > *(uint64_t *)b) {
747         return 1;
748     }
749     if (*(uint64_t *)a < *(uint64_t *)b) {
750         return -1;
751     }
752     return 0;
753 }
754 
755 /*
756  * cpreg_values are sorted in ascending order by KVM register ID
757  * (see kvm_arm_init_cpreg_list). This allows us to cheaply find
758  * the storage for a KVM register by ID with a binary search.
759  */
760 static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx)
761 {
762     uint64_t *res;
763 
764     res = bsearch(&regidx, cpu->cpreg_indexes, cpu->cpreg_array_len,
765                   sizeof(uint64_t), compare_u64);
766     assert(res);
767 
768     return &cpu->cpreg_values[res - cpu->cpreg_indexes];
769 }
770 
771 /**
772  * kvm_arm_reg_syncs_via_cpreg_list:
773  * @regidx: KVM register index
774  *
775  * Return true if this KVM register should be synchronized via the
776  * cpreg list of arbitrary system registers, false if it is synchronized
777  * by hand using code in kvm_arch_get/put_registers().
778  */
779 static bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
780 {
781     switch (regidx & KVM_REG_ARM_COPROC_MASK) {
782     case KVM_REG_ARM_CORE:
783     case KVM_REG_ARM64_SVE:
784         return false;
785     default:
786         return true;
787     }
788 }
789 
790 /**
791  * kvm_arm_init_cpreg_list:
792  * @cpu: ARMCPU
793  *
794  * Initialize the ARMCPU cpreg list according to the kernel's
795  * definition of what CPU registers it knows about (and throw away
796  * the previous TCG-created cpreg list).
797  *
798  * Returns: 0 if success, else < 0 error code
799  */
800 static int kvm_arm_init_cpreg_list(ARMCPU *cpu)
801 {
802     struct kvm_reg_list rl;
803     struct kvm_reg_list *rlp;
804     int i, ret, arraylen;
805     CPUState *cs = CPU(cpu);
806 
807     rl.n = 0;
808     ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
809     if (ret != -E2BIG) {
810         return ret;
811     }
812     rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
813     rlp->n = rl.n;
814     ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
815     if (ret) {
816         goto out;
817     }
818     /* Sort the list we get back from the kernel, since cpreg_tuples
819      * must be in strictly ascending order.
820      */
821     qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
822 
823     for (i = 0, arraylen = 0; i < rlp->n; i++) {
824         if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
825             continue;
826         }
827         switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
828         case KVM_REG_SIZE_U32:
829         case KVM_REG_SIZE_U64:
830             break;
831         default:
832             fprintf(stderr, "Can't handle size of register in kernel list\n");
833             ret = -EINVAL;
834             goto out;
835         }
836 
837         arraylen++;
838     }
839 
840     cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
841     cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
842     cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
843                                          arraylen);
844     cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
845                                         arraylen);
846     cpu->cpreg_array_len = arraylen;
847     cpu->cpreg_vmstate_array_len = arraylen;
848 
849     for (i = 0, arraylen = 0; i < rlp->n; i++) {
850         uint64_t regidx = rlp->reg[i];
851         if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
852             continue;
853         }
854         cpu->cpreg_indexes[arraylen] = regidx;
855         arraylen++;
856     }
857     assert(cpu->cpreg_array_len == arraylen);
858 
859     if (!write_kvmstate_to_list(cpu)) {
860         /* Shouldn't happen unless kernel is inconsistent about
861          * what registers exist.
862          */
863         fprintf(stderr, "Initial read of kernel register state failed\n");
864         ret = -EINVAL;
865         goto out;
866     }
867 
868 out:
869     g_free(rlp);
870     return ret;
871 }
872 
873 /**
874  * kvm_arm_cpreg_level:
875  * @regidx: KVM register index
876  *
877  * Return the level of this coprocessor/system register.  Return value is
878  * either KVM_PUT_RUNTIME_STATE, KVM_PUT_RESET_STATE, or KVM_PUT_FULL_STATE.
879  */
880 static int kvm_arm_cpreg_level(uint64_t regidx)
881 {
882     /*
883      * All system registers are assumed to be level KVM_PUT_RUNTIME_STATE.
884      * If a register should be written less often, you must add it here
885      * with a state of either KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
886      */
887     switch (regidx) {
888     case KVM_REG_ARM_TIMER_CNT:
889     case KVM_REG_ARM_PTIMER_CNT:
890         return KVM_PUT_FULL_STATE;
891     }
892     return KVM_PUT_RUNTIME_STATE;
893 }
894 
895 bool write_kvmstate_to_list(ARMCPU *cpu)
896 {
897     CPUState *cs = CPU(cpu);
898     int i;
899     bool ok = true;
900 
901     for (i = 0; i < cpu->cpreg_array_len; i++) {
902         uint64_t regidx = cpu->cpreg_indexes[i];
903         uint32_t v32;
904         int ret;
905 
906         switch (regidx & KVM_REG_SIZE_MASK) {
907         case KVM_REG_SIZE_U32:
908             ret = kvm_get_one_reg(cs, regidx, &v32);
909             if (!ret) {
910                 cpu->cpreg_values[i] = v32;
911             }
912             break;
913         case KVM_REG_SIZE_U64:
914             ret = kvm_get_one_reg(cs, regidx, cpu->cpreg_values + i);
915             break;
916         default:
917             g_assert_not_reached();
918         }
919         if (ret) {
920             ok = false;
921         }
922     }
923     return ok;
924 }
925 
926 bool write_list_to_kvmstate(ARMCPU *cpu, int level)
927 {
928     CPUState *cs = CPU(cpu);
929     int i;
930     bool ok = true;
931 
932     for (i = 0; i < cpu->cpreg_array_len; i++) {
933         uint64_t regidx = cpu->cpreg_indexes[i];
934         uint32_t v32;
935         int ret;
936 
937         if (kvm_arm_cpreg_level(regidx) > level) {
938             continue;
939         }
940 
941         switch (regidx & KVM_REG_SIZE_MASK) {
942         case KVM_REG_SIZE_U32:
943             v32 = cpu->cpreg_values[i];
944             ret = kvm_set_one_reg(cs, regidx, &v32);
945             break;
946         case KVM_REG_SIZE_U64:
947             ret = kvm_set_one_reg(cs, regidx, cpu->cpreg_values + i);
948             break;
949         default:
950             g_assert_not_reached();
951         }
952         if (ret) {
953             /* We might fail for "unknown register" and also for
954              * "you tried to set a register which is constant with
955              * a different value from what it actually contains".
956              */
957             ok = false;
958         }
959     }
960     return ok;
961 }
962 
963 void kvm_arm_cpu_pre_save(ARMCPU *cpu)
964 {
965     /* KVM virtual time adjustment */
966     if (cpu->kvm_vtime_dirty) {
967         *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT) = cpu->kvm_vtime;
968     }
969 }
970 
971 void kvm_arm_cpu_post_load(ARMCPU *cpu)
972 {
973     /* KVM virtual time adjustment */
974     if (cpu->kvm_adjvtime) {
975         cpu->kvm_vtime = *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT);
976         cpu->kvm_vtime_dirty = true;
977     }
978 }
979 
980 void kvm_arm_reset_vcpu(ARMCPU *cpu)
981 {
982     int ret;
983 
984     /* Re-init VCPU so that all registers are set to
985      * their respective reset values.
986      */
987     ret = kvm_arm_vcpu_init(cpu);
988     if (ret < 0) {
989         fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
990         abort();
991     }
992     if (!write_kvmstate_to_list(cpu)) {
993         fprintf(stderr, "write_kvmstate_to_list failed\n");
994         abort();
995     }
996     /*
997      * Sync the reset values also into the CPUState. This is necessary
998      * because the next thing we do will be a kvm_arch_put_registers()
999      * which will update the list values from the CPUState before copying
1000      * the list values back to KVM. It's OK to ignore failure returns here
1001      * for the same reason we do so in kvm_arch_get_registers().
1002      */
1003     write_list_to_cpustate(cpu);
1004 }
1005 
1006 /*
1007  * Update KVM's MP_STATE based on what QEMU thinks it is
1008  */
1009 static int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
1010 {
1011     if (cap_has_mp_state) {
1012         struct kvm_mp_state mp_state = {
1013             .mp_state = (cpu->power_state == PSCI_OFF) ?
1014             KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
1015         };
1016         return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
1017     }
1018     return 0;
1019 }
1020 
1021 /*
1022  * Sync the KVM MP_STATE into QEMU
1023  */
1024 static int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
1025 {
1026     if (cap_has_mp_state) {
1027         struct kvm_mp_state mp_state;
1028         int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
1029         if (ret) {
1030             return ret;
1031         }
1032         cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
1033             PSCI_OFF : PSCI_ON;
1034     }
1035     return 0;
1036 }
1037 
1038 /**
1039  * kvm_arm_get_virtual_time:
1040  * @cpu: ARMCPU
1041  *
1042  * Gets the VCPU's virtual counter and stores it in the KVM CPU state.
1043  */
1044 static void kvm_arm_get_virtual_time(ARMCPU *cpu)
1045 {
1046     int ret;
1047 
1048     if (cpu->kvm_vtime_dirty) {
1049         return;
1050     }
1051 
1052     ret = kvm_get_one_reg(CPU(cpu), KVM_REG_ARM_TIMER_CNT, &cpu->kvm_vtime);
1053     if (ret) {
1054         error_report("Failed to get KVM_REG_ARM_TIMER_CNT");
1055         abort();
1056     }
1057 
1058     cpu->kvm_vtime_dirty = true;
1059 }
1060 
1061 /**
1062  * kvm_arm_put_virtual_time:
1063  * @cpu: ARMCPU
1064  *
1065  * Sets the VCPU's virtual counter to the value stored in the KVM CPU state.
1066  */
1067 static void kvm_arm_put_virtual_time(ARMCPU *cpu)
1068 {
1069     int ret;
1070 
1071     if (!cpu->kvm_vtime_dirty) {
1072         return;
1073     }
1074 
1075     ret = kvm_set_one_reg(CPU(cpu), KVM_REG_ARM_TIMER_CNT, &cpu->kvm_vtime);
1076     if (ret) {
1077         error_report("Failed to set KVM_REG_ARM_TIMER_CNT");
1078         abort();
1079     }
1080 
1081     cpu->kvm_vtime_dirty = false;
1082 }
1083 
1084 /**
1085  * kvm_put_vcpu_events:
1086  * @cpu: ARMCPU
1087  *
1088  * Put VCPU related state to kvm.
1089  *
1090  * Returns: 0 if success else < 0 error code
1091  */
1092 static int kvm_put_vcpu_events(ARMCPU *cpu)
1093 {
1094     CPUARMState *env = &cpu->env;
1095     struct kvm_vcpu_events events;
1096     int ret;
1097 
1098     if (!kvm_has_vcpu_events()) {
1099         return 0;
1100     }
1101 
1102     memset(&events, 0, sizeof(events));
1103     events.exception.serror_pending = env->serror.pending;
1104 
1105     /* Inject SError to guest with specified syndrome if host kernel
1106      * supports it, otherwise inject SError without syndrome.
1107      */
1108     if (cap_has_inject_serror_esr) {
1109         events.exception.serror_has_esr = env->serror.has_esr;
1110         events.exception.serror_esr = env->serror.esr;
1111     }
1112 
1113     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
1114     if (ret) {
1115         error_report("failed to put vcpu events");
1116     }
1117 
1118     return ret;
1119 }
1120 
1121 /**
1122  * kvm_get_vcpu_events:
1123  * @cpu: ARMCPU
1124  *
1125  * Get VCPU related state from kvm.
1126  *
1127  * Returns: 0 if success else < 0 error code
1128  */
1129 static int kvm_get_vcpu_events(ARMCPU *cpu)
1130 {
1131     CPUARMState *env = &cpu->env;
1132     struct kvm_vcpu_events events;
1133     int ret;
1134 
1135     if (!kvm_has_vcpu_events()) {
1136         return 0;
1137     }
1138 
1139     memset(&events, 0, sizeof(events));
1140     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
1141     if (ret) {
1142         error_report("failed to get vcpu events");
1143         return ret;
1144     }
1145 
1146     env->serror.pending = events.exception.serror_pending;
1147     env->serror.has_esr = events.exception.serror_has_esr;
1148     env->serror.esr = events.exception.serror_esr;
1149 
1150     return 0;
1151 }
1152 
1153 #define ARM64_REG_ESR_EL1 ARM64_SYS_REG(3, 0, 5, 2, 0)
1154 #define ARM64_REG_TCR_EL1 ARM64_SYS_REG(3, 0, 2, 0, 2)
1155 
1156 /*
1157  * ESR_EL1
1158  * ISS encoding
1159  * AARCH64: DFSC,   bits [5:0]
1160  * AARCH32:
1161  *      TTBCR.EAE == 0
1162  *          FS[4]   - DFSR[10]
1163  *          FS[3:0] - DFSR[3:0]
1164  *      TTBCR.EAE == 1
1165  *          FS, bits [5:0]
1166  */
1167 #define ESR_DFSC(aarch64, lpae, v)        \
1168     ((aarch64 || (lpae)) ? ((v) & 0x3F)   \
1169                : (((v) >> 6) | ((v) & 0x1F)))
1170 
1171 #define ESR_DFSC_EXTABT(aarch64, lpae) \
1172     ((aarch64) ? 0x10 : (lpae) ? 0x10 : 0x8)
1173 
1174 /**
1175  * kvm_arm_verify_ext_dabt_pending:
1176  * @cpu: ARMCPU
1177  *
1178  * Verify the fault status code wrt the Ext DABT injection
1179  *
1180  * Returns: true if the fault status code is as expected, false otherwise
1181  */
1182 static bool kvm_arm_verify_ext_dabt_pending(ARMCPU *cpu)
1183 {
1184     CPUState *cs = CPU(cpu);
1185     uint64_t dfsr_val;
1186 
1187     if (!kvm_get_one_reg(cs, ARM64_REG_ESR_EL1, &dfsr_val)) {
1188         CPUARMState *env = &cpu->env;
1189         int aarch64_mode = arm_feature(env, ARM_FEATURE_AARCH64);
1190         int lpae = 0;
1191 
1192         if (!aarch64_mode) {
1193             uint64_t ttbcr;
1194 
1195             if (!kvm_get_one_reg(cs, ARM64_REG_TCR_EL1, &ttbcr)) {
1196                 lpae = arm_feature(env, ARM_FEATURE_LPAE)
1197                         && (ttbcr & TTBCR_EAE);
1198             }
1199         }
1200         /*
1201          * The verification here is based on the DFSC bits
1202          * of the ESR_EL1 reg only
1203          */
1204          return (ESR_DFSC(aarch64_mode, lpae, dfsr_val) ==
1205                 ESR_DFSC_EXTABT(aarch64_mode, lpae));
1206     }
1207     return false;
1208 }
1209 
1210 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
1211 {
1212     ARMCPU *cpu = ARM_CPU(cs);
1213     CPUARMState *env = &cpu->env;
1214 
1215     if (unlikely(env->ext_dabt_raised)) {
1216         /*
1217          * Verifying that the ext DABT has been properly injected,
1218          * otherwise risking indefinitely re-running the faulting instruction
1219          * Covering a very narrow case for kernels 5.5..5.5.4
1220          * when injected abort was misconfigured to be
1221          * an IMPLEMENTATION DEFINED exception (for 32-bit EL1)
1222          */
1223         if (!arm_feature(env, ARM_FEATURE_AARCH64) &&
1224             unlikely(!kvm_arm_verify_ext_dabt_pending(cpu))) {
1225 
1226             error_report("Data abort exception with no valid ISS generated by "
1227                    "guest memory access. KVM unable to emulate faulting "
1228                    "instruction. Failed to inject an external data abort "
1229                    "into the guest.");
1230             abort();
1231        }
1232        /* Clear the status */
1233        env->ext_dabt_raised = 0;
1234     }
1235 }
1236 
1237 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1238 {
1239     ARMCPU *cpu;
1240     uint32_t switched_level;
1241 
1242     if (kvm_irqchip_in_kernel()) {
1243         /*
1244          * We only need to sync timer states with user-space interrupt
1245          * controllers, so return early and save cycles if we don't.
1246          */
1247         return MEMTXATTRS_UNSPECIFIED;
1248     }
1249 
1250     cpu = ARM_CPU(cs);
1251 
1252     /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
1253     if (run->s.regs.device_irq_level != cpu->device_irq_level) {
1254         switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
1255 
1256         bql_lock();
1257 
1258         if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
1259             qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
1260                          !!(run->s.regs.device_irq_level &
1261                             KVM_ARM_DEV_EL1_VTIMER));
1262             switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
1263         }
1264 
1265         if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
1266             qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
1267                          !!(run->s.regs.device_irq_level &
1268                             KVM_ARM_DEV_EL1_PTIMER));
1269             switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
1270         }
1271 
1272         if (switched_level & KVM_ARM_DEV_PMU) {
1273             qemu_set_irq(cpu->pmu_interrupt,
1274                          !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
1275             switched_level &= ~KVM_ARM_DEV_PMU;
1276         }
1277 
1278         if (switched_level) {
1279             qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
1280                           __func__, switched_level);
1281         }
1282 
1283         /* We also mark unknown levels as processed to not waste cycles */
1284         cpu->device_irq_level = run->s.regs.device_irq_level;
1285         bql_unlock();
1286     }
1287 
1288     return MEMTXATTRS_UNSPECIFIED;
1289 }
1290 
1291 static void kvm_arm_vm_state_change(void *opaque, bool running, RunState state)
1292 {
1293     ARMCPU *cpu = opaque;
1294 
1295     if (running) {
1296         if (cpu->kvm_adjvtime) {
1297             kvm_arm_put_virtual_time(cpu);
1298         }
1299     } else {
1300         if (cpu->kvm_adjvtime) {
1301             kvm_arm_get_virtual_time(cpu);
1302         }
1303     }
1304 }
1305 
1306 /**
1307  * kvm_arm_handle_dabt_nisv:
1308  * @cpu: ARMCPU
1309  * @esr_iss: ISS encoding (limited) for the exception from Data Abort
1310  *           ISV bit set to '0b0' -> no valid instruction syndrome
1311  * @fault_ipa: faulting address for the synchronous data abort
1312  *
1313  * Returns: 0 if the exception has been handled, < 0 otherwise
1314  */
1315 static int kvm_arm_handle_dabt_nisv(ARMCPU *cpu, uint64_t esr_iss,
1316                                     uint64_t fault_ipa)
1317 {
1318     CPUARMState *env = &cpu->env;
1319     /*
1320      * Request KVM to inject the external data abort into the guest
1321      */
1322     if (cap_has_inject_ext_dabt) {
1323         struct kvm_vcpu_events events = { };
1324         /*
1325          * The external data abort event will be handled immediately by KVM
1326          * using the address fault that triggered the exit on given VCPU.
1327          * Requesting injection of the external data abort does not rely
1328          * on any other VCPU state. Therefore, in this particular case, the VCPU
1329          * synchronization can be exceptionally skipped.
1330          */
1331         events.exception.ext_dabt_pending = 1;
1332         /* KVM_CAP_ARM_INJECT_EXT_DABT implies KVM_CAP_VCPU_EVENTS */
1333         if (!kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events)) {
1334             env->ext_dabt_raised = 1;
1335             return 0;
1336         }
1337     } else {
1338         error_report("Data abort exception triggered by guest memory access "
1339                      "at physical address: 0x"  TARGET_FMT_lx,
1340                      (target_ulong)fault_ipa);
1341         error_printf("KVM unable to emulate faulting instruction.\n");
1342     }
1343     return -1;
1344 }
1345 
1346 /**
1347  * kvm_arm_handle_debug:
1348  * @cpu: ARMCPU
1349  * @debug_exit: debug part of the KVM exit structure
1350  *
1351  * Returns: TRUE if the debug exception was handled.
1352  *
1353  * See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register
1354  *
1355  * To minimise translating between kernel and user-space the kernel
1356  * ABI just provides user-space with the full exception syndrome
1357  * register value to be decoded in QEMU.
1358  */
1359 static bool kvm_arm_handle_debug(ARMCPU *cpu,
1360                                  struct kvm_debug_exit_arch *debug_exit)
1361 {
1362     int hsr_ec = syn_get_ec(debug_exit->hsr);
1363     CPUState *cs = CPU(cpu);
1364     CPUARMState *env = &cpu->env;
1365 
1366     /* Ensure PC is synchronised */
1367     kvm_cpu_synchronize_state(cs);
1368 
1369     switch (hsr_ec) {
1370     case EC_SOFTWARESTEP:
1371         if (cs->singlestep_enabled) {
1372             return true;
1373         } else {
1374             /*
1375              * The kernel should have suppressed the guest's ability to
1376              * single step at this point so something has gone wrong.
1377              */
1378             error_report("%s: guest single-step while debugging unsupported"
1379                          " (%"PRIx64", %"PRIx32")",
1380                          __func__, env->pc, debug_exit->hsr);
1381             return false;
1382         }
1383         break;
1384     case EC_AA64_BKPT:
1385         if (kvm_find_sw_breakpoint(cs, env->pc)) {
1386             return true;
1387         }
1388         break;
1389     case EC_BREAKPOINT:
1390         if (find_hw_breakpoint(cs, env->pc)) {
1391             return true;
1392         }
1393         break;
1394     case EC_WATCHPOINT:
1395     {
1396         CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far);
1397         if (wp) {
1398             cs->watchpoint_hit = wp;
1399             return true;
1400         }
1401         break;
1402     }
1403     default:
1404         error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")",
1405                      __func__, debug_exit->hsr, env->pc);
1406     }
1407 
1408     /* If we are not handling the debug exception it must belong to
1409      * the guest. Let's re-use the existing TCG interrupt code to set
1410      * everything up properly.
1411      */
1412     cs->exception_index = EXCP_BKPT;
1413     env->exception.syndrome = debug_exit->hsr;
1414     env->exception.vaddress = debug_exit->far;
1415     env->exception.target_el = 1;
1416     bql_lock();
1417     arm_cpu_do_interrupt(cs);
1418     bql_unlock();
1419 
1420     return false;
1421 }
1422 
1423 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1424 {
1425     ARMCPU *cpu = ARM_CPU(cs);
1426     int ret = 0;
1427 
1428     switch (run->exit_reason) {
1429     case KVM_EXIT_DEBUG:
1430         if (kvm_arm_handle_debug(cpu, &run->debug.arch)) {
1431             ret = EXCP_DEBUG;
1432         } /* otherwise return to guest */
1433         break;
1434     case KVM_EXIT_ARM_NISV:
1435         /* External DABT with no valid iss to decode */
1436         ret = kvm_arm_handle_dabt_nisv(cpu, run->arm_nisv.esr_iss,
1437                                        run->arm_nisv.fault_ipa);
1438         break;
1439     default:
1440         qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
1441                       __func__, run->exit_reason);
1442         break;
1443     }
1444     return ret;
1445 }
1446 
1447 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
1448 {
1449     return true;
1450 }
1451 
1452 int kvm_arch_process_async_events(CPUState *cs)
1453 {
1454     return 0;
1455 }
1456 
1457 /**
1458  * kvm_arm_hw_debug_active:
1459  * @cpu: ARMCPU
1460  *
1461  * Return: TRUE if any hardware breakpoints in use.
1462  */
1463 static bool kvm_arm_hw_debug_active(ARMCPU *cpu)
1464 {
1465     return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
1466 }
1467 
1468 /**
1469  * kvm_arm_copy_hw_debug_data:
1470  * @ptr: kvm_guest_debug_arch structure
1471  *
1472  * Copy the architecture specific debug registers into the
1473  * kvm_guest_debug ioctl structure.
1474  */
1475 static void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
1476 {
1477     int i;
1478     memset(ptr, 0, sizeof(struct kvm_guest_debug_arch));
1479 
1480     for (i = 0; i < max_hw_wps; i++) {
1481         HWWatchpoint *wp = get_hw_wp(i);
1482         ptr->dbg_wcr[i] = wp->wcr;
1483         ptr->dbg_wvr[i] = wp->wvr;
1484     }
1485     for (i = 0; i < max_hw_bps; i++) {
1486         HWBreakpoint *bp = get_hw_bp(i);
1487         ptr->dbg_bcr[i] = bp->bcr;
1488         ptr->dbg_bvr[i] = bp->bvr;
1489     }
1490 }
1491 
1492 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
1493 {
1494     if (kvm_sw_breakpoints_active(cs)) {
1495         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1496     }
1497     if (kvm_arm_hw_debug_active(ARM_CPU(cs))) {
1498         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
1499         kvm_arm_copy_hw_debug_data(&dbg->arch);
1500     }
1501 }
1502 
1503 void kvm_arch_init_irq_routing(KVMState *s)
1504 {
1505 }
1506 
1507 int kvm_arch_irqchip_create(KVMState *s)
1508 {
1509     if (kvm_kernel_irqchip_split()) {
1510         error_report("-machine kernel_irqchip=split is not supported on ARM.");
1511         exit(1);
1512     }
1513 
1514     /* If we can create the VGIC using the newer device control API, we
1515      * let the device do this when it initializes itself, otherwise we
1516      * fall back to the old API */
1517     return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
1518 }
1519 
1520 int kvm_arm_vgic_probe(void)
1521 {
1522     int val = 0;
1523 
1524     if (kvm_create_device(kvm_state,
1525                           KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
1526         val |= KVM_ARM_VGIC_V3;
1527     }
1528     if (kvm_create_device(kvm_state,
1529                           KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
1530         val |= KVM_ARM_VGIC_V2;
1531     }
1532     return val;
1533 }
1534 
1535 int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level)
1536 {
1537     int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq;
1538     int cpu_idx1 = cpu % 256;
1539     int cpu_idx2 = cpu / 256;
1540 
1541     kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) |
1542                (cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT);
1543 
1544     return kvm_set_irq(kvm_state, kvm_irq, !!level);
1545 }
1546 
1547 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
1548                              uint64_t address, uint32_t data, PCIDevice *dev)
1549 {
1550     AddressSpace *as = pci_device_iommu_address_space(dev);
1551     hwaddr xlat, len, doorbell_gpa;
1552     MemoryRegionSection mrs;
1553     MemoryRegion *mr;
1554 
1555     if (as == &address_space_memory) {
1556         return 0;
1557     }
1558 
1559     /* MSI doorbell address is translated by an IOMMU */
1560 
1561     RCU_READ_LOCK_GUARD();
1562 
1563     mr = address_space_translate(as, address, &xlat, &len, true,
1564                                  MEMTXATTRS_UNSPECIFIED);
1565 
1566     if (!mr) {
1567         return 1;
1568     }
1569 
1570     mrs = memory_region_find(mr, xlat, 1);
1571 
1572     if (!mrs.mr) {
1573         return 1;
1574     }
1575 
1576     doorbell_gpa = mrs.offset_within_address_space;
1577     memory_region_unref(mrs.mr);
1578 
1579     route->u.msi.address_lo = doorbell_gpa;
1580     route->u.msi.address_hi = doorbell_gpa >> 32;
1581 
1582     trace_kvm_arm_fixup_msi_route(address, doorbell_gpa);
1583 
1584     return 0;
1585 }
1586 
1587 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
1588                                 int vector, PCIDevice *dev)
1589 {
1590     return 0;
1591 }
1592 
1593 int kvm_arch_release_virq_post(int virq)
1594 {
1595     return 0;
1596 }
1597 
1598 int kvm_arch_msi_data_to_gsi(uint32_t data)
1599 {
1600     return (data - 32) & 0xffff;
1601 }
1602 
1603 static void kvm_arch_get_eager_split_size(Object *obj, Visitor *v,
1604                                           const char *name, void *opaque,
1605                                           Error **errp)
1606 {
1607     KVMState *s = KVM_STATE(obj);
1608     uint64_t value = s->kvm_eager_split_size;
1609 
1610     visit_type_size(v, name, &value, errp);
1611 }
1612 
1613 static void kvm_arch_set_eager_split_size(Object *obj, Visitor *v,
1614                                           const char *name, void *opaque,
1615                                           Error **errp)
1616 {
1617     KVMState *s = KVM_STATE(obj);
1618     uint64_t value;
1619 
1620     if (s->fd != -1) {
1621         error_setg(errp, "Unable to set early-split-size after KVM has been initialized");
1622         return;
1623     }
1624 
1625     if (!visit_type_size(v, name, &value, errp)) {
1626         return;
1627     }
1628 
1629     if (value && !is_power_of_2(value)) {
1630         error_setg(errp, "early-split-size must be a power of two");
1631         return;
1632     }
1633 
1634     s->kvm_eager_split_size = value;
1635 }
1636 
1637 void kvm_arch_accel_class_init(ObjectClass *oc)
1638 {
1639     object_class_property_add(oc, "eager-split-size", "size",
1640                               kvm_arch_get_eager_split_size,
1641                               kvm_arch_set_eager_split_size, NULL, NULL);
1642 
1643     object_class_property_set_description(oc, "eager-split-size",
1644         "Eager Page Split chunk size for hugepages. (default: 0, disabled)");
1645 }
1646 
1647 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
1648 {
1649     switch (type) {
1650     case GDB_BREAKPOINT_HW:
1651         return insert_hw_breakpoint(addr);
1652         break;
1653     case GDB_WATCHPOINT_READ:
1654     case GDB_WATCHPOINT_WRITE:
1655     case GDB_WATCHPOINT_ACCESS:
1656         return insert_hw_watchpoint(addr, len, type);
1657     default:
1658         return -ENOSYS;
1659     }
1660 }
1661 
1662 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
1663 {
1664     switch (type) {
1665     case GDB_BREAKPOINT_HW:
1666         return delete_hw_breakpoint(addr);
1667     case GDB_WATCHPOINT_READ:
1668     case GDB_WATCHPOINT_WRITE:
1669     case GDB_WATCHPOINT_ACCESS:
1670         return delete_hw_watchpoint(addr, len, type);
1671     default:
1672         return -ENOSYS;
1673     }
1674 }
1675 
1676 void kvm_arch_remove_all_hw_breakpoints(void)
1677 {
1678     if (cur_hw_wps > 0) {
1679         g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
1680     }
1681     if (cur_hw_bps > 0) {
1682         g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
1683     }
1684 }
1685 
1686 static bool kvm_arm_set_device_attr(ARMCPU *cpu, struct kvm_device_attr *attr,
1687                                     const char *name)
1688 {
1689     int err;
1690 
1691     err = kvm_vcpu_ioctl(CPU(cpu), KVM_HAS_DEVICE_ATTR, attr);
1692     if (err != 0) {
1693         error_report("%s: KVM_HAS_DEVICE_ATTR: %s", name, strerror(-err));
1694         return false;
1695     }
1696 
1697     err = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEVICE_ATTR, attr);
1698     if (err != 0) {
1699         error_report("%s: KVM_SET_DEVICE_ATTR: %s", name, strerror(-err));
1700         return false;
1701     }
1702 
1703     return true;
1704 }
1705 
1706 void kvm_arm_pmu_init(ARMCPU *cpu)
1707 {
1708     struct kvm_device_attr attr = {
1709         .group = KVM_ARM_VCPU_PMU_V3_CTRL,
1710         .attr = KVM_ARM_VCPU_PMU_V3_INIT,
1711     };
1712 
1713     if (!cpu->has_pmu) {
1714         return;
1715     }
1716     if (!kvm_arm_set_device_attr(cpu, &attr, "PMU")) {
1717         error_report("failed to init PMU");
1718         abort();
1719     }
1720 }
1721 
1722 void kvm_arm_pmu_set_irq(ARMCPU *cpu, int irq)
1723 {
1724     struct kvm_device_attr attr = {
1725         .group = KVM_ARM_VCPU_PMU_V3_CTRL,
1726         .addr = (intptr_t)&irq,
1727         .attr = KVM_ARM_VCPU_PMU_V3_IRQ,
1728     };
1729 
1730     if (!cpu->has_pmu) {
1731         return;
1732     }
1733     if (!kvm_arm_set_device_attr(cpu, &attr, "PMU")) {
1734         error_report("failed to set irq for PMU");
1735         abort();
1736     }
1737 }
1738 
1739 void kvm_arm_pvtime_init(ARMCPU *cpu, uint64_t ipa)
1740 {
1741     struct kvm_device_attr attr = {
1742         .group = KVM_ARM_VCPU_PVTIME_CTRL,
1743         .attr = KVM_ARM_VCPU_PVTIME_IPA,
1744         .addr = (uint64_t)&ipa,
1745     };
1746 
1747     if (cpu->kvm_steal_time == ON_OFF_AUTO_OFF) {
1748         return;
1749     }
1750     if (!kvm_arm_set_device_attr(cpu, &attr, "PVTIME IPA")) {
1751         error_report("failed to init PVTIME IPA");
1752         abort();
1753     }
1754 }
1755 
1756 void kvm_arm_steal_time_finalize(ARMCPU *cpu, Error **errp)
1757 {
1758     bool has_steal_time = kvm_check_extension(kvm_state, KVM_CAP_STEAL_TIME);
1759 
1760     if (cpu->kvm_steal_time == ON_OFF_AUTO_AUTO) {
1761         if (!has_steal_time || !arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1762             cpu->kvm_steal_time = ON_OFF_AUTO_OFF;
1763         } else {
1764             cpu->kvm_steal_time = ON_OFF_AUTO_ON;
1765         }
1766     } else if (cpu->kvm_steal_time == ON_OFF_AUTO_ON) {
1767         if (!has_steal_time) {
1768             error_setg(errp, "'kvm-steal-time' cannot be enabled "
1769                              "on this host");
1770             return;
1771         } else if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1772             /*
1773              * DEN0057A chapter 2 says "This specification only covers
1774              * systems in which the Execution state of the hypervisor
1775              * as well as EL1 of virtual machines is AArch64.". And,
1776              * to ensure that, the smc/hvc calls are only specified as
1777              * smc64/hvc64.
1778              */
1779             error_setg(errp, "'kvm-steal-time' cannot be enabled "
1780                              "for AArch32 guests");
1781             return;
1782         }
1783     }
1784 }
1785 
1786 bool kvm_arm_aarch32_supported(void)
1787 {
1788     return kvm_check_extension(kvm_state, KVM_CAP_ARM_EL1_32BIT);
1789 }
1790 
1791 bool kvm_arm_sve_supported(void)
1792 {
1793     return kvm_check_extension(kvm_state, KVM_CAP_ARM_SVE);
1794 }
1795 
1796 QEMU_BUILD_BUG_ON(KVM_ARM64_SVE_VQ_MIN != 1);
1797 
1798 uint32_t kvm_arm_sve_get_vls(ARMCPU *cpu)
1799 {
1800     /* Only call this function if kvm_arm_sve_supported() returns true. */
1801     static uint64_t vls[KVM_ARM64_SVE_VLS_WORDS];
1802     static bool probed;
1803     uint32_t vq = 0;
1804     int i;
1805 
1806     /*
1807      * KVM ensures all host CPUs support the same set of vector lengths.
1808      * So we only need to create the scratch VCPUs once and then cache
1809      * the results.
1810      */
1811     if (!probed) {
1812         struct kvm_vcpu_init init = {
1813             .target = -1,
1814             .features[0] = (1 << KVM_ARM_VCPU_SVE),
1815         };
1816         struct kvm_one_reg reg = {
1817             .id = KVM_REG_ARM64_SVE_VLS,
1818             .addr = (uint64_t)&vls[0],
1819         };
1820         int fdarray[3], ret;
1821 
1822         probed = true;
1823 
1824         if (!kvm_arm_create_scratch_host_vcpu(NULL, fdarray, &init)) {
1825             error_report("failed to create scratch VCPU with SVE enabled");
1826             abort();
1827         }
1828         ret = ioctl(fdarray[2], KVM_GET_ONE_REG, &reg);
1829         kvm_arm_destroy_scratch_host_vcpu(fdarray);
1830         if (ret) {
1831             error_report("failed to get KVM_REG_ARM64_SVE_VLS: %s",
1832                          strerror(errno));
1833             abort();
1834         }
1835 
1836         for (i = KVM_ARM64_SVE_VLS_WORDS - 1; i >= 0; --i) {
1837             if (vls[i]) {
1838                 vq = 64 - clz64(vls[i]) + i * 64;
1839                 break;
1840             }
1841         }
1842         if (vq > ARM_MAX_VQ) {
1843             warn_report("KVM supports vector lengths larger than "
1844                         "QEMU can enable");
1845             vls[0] &= MAKE_64BIT_MASK(0, ARM_MAX_VQ);
1846         }
1847     }
1848 
1849     return vls[0];
1850 }
1851 
1852 static int kvm_arm_sve_set_vls(ARMCPU *cpu)
1853 {
1854     uint64_t vls[KVM_ARM64_SVE_VLS_WORDS] = { cpu->sve_vq.map };
1855 
1856     assert(cpu->sve_max_vq <= KVM_ARM64_SVE_VQ_MAX);
1857 
1858     return kvm_set_one_reg(CPU(cpu), KVM_REG_ARM64_SVE_VLS, &vls[0]);
1859 }
1860 
1861 #define ARM_CPU_ID_MPIDR       3, 0, 0, 0, 5
1862 
1863 int kvm_arch_init_vcpu(CPUState *cs)
1864 {
1865     int ret;
1866     uint64_t mpidr;
1867     ARMCPU *cpu = ARM_CPU(cs);
1868     CPUARMState *env = &cpu->env;
1869     uint64_t psciver;
1870 
1871     if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
1872         !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
1873         error_report("KVM is not supported for this guest CPU type");
1874         return -EINVAL;
1875     }
1876 
1877     qemu_add_vm_change_state_handler(kvm_arm_vm_state_change, cpu);
1878 
1879     /* Determine init features for this CPU */
1880     memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
1881     if (cs->start_powered_off) {
1882         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
1883     }
1884     if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
1885         cpu->psci_version = QEMU_PSCI_VERSION_0_2;
1886         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
1887     }
1888     if (!arm_feature(env, ARM_FEATURE_AARCH64)) {
1889         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
1890     }
1891     if (cpu->has_pmu) {
1892         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
1893     }
1894     if (cpu_isar_feature(aa64_sve, cpu)) {
1895         assert(kvm_arm_sve_supported());
1896         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_SVE;
1897     }
1898     if (cpu_isar_feature(aa64_pauth, cpu)) {
1899         cpu->kvm_init_features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
1900                                       1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
1901     }
1902 
1903     /* Do KVM_ARM_VCPU_INIT ioctl */
1904     ret = kvm_arm_vcpu_init(cpu);
1905     if (ret) {
1906         return ret;
1907     }
1908 
1909     if (cpu_isar_feature(aa64_sve, cpu)) {
1910         ret = kvm_arm_sve_set_vls(cpu);
1911         if (ret) {
1912             return ret;
1913         }
1914         ret = kvm_arm_vcpu_finalize(cpu, KVM_ARM_VCPU_SVE);
1915         if (ret) {
1916             return ret;
1917         }
1918     }
1919 
1920     /*
1921      * KVM reports the exact PSCI version it is implementing via a
1922      * special sysreg. If it is present, use its contents to determine
1923      * what to report to the guest in the dtb (it is the PSCI version,
1924      * in the same 15-bits major 16-bits minor format that PSCI_VERSION
1925      * returns).
1926      */
1927     if (!kvm_get_one_reg(cs, KVM_REG_ARM_PSCI_VERSION, &psciver)) {
1928         cpu->psci_version = psciver;
1929     }
1930 
1931     /*
1932      * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
1933      * Currently KVM has its own idea about MPIDR assignment, so we
1934      * override our defaults with what we get from KVM.
1935      */
1936     ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
1937     if (ret) {
1938         return ret;
1939     }
1940     cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
1941 
1942     return kvm_arm_init_cpreg_list(cpu);
1943 }
1944 
1945 int kvm_arch_destroy_vcpu(CPUState *cs)
1946 {
1947     return 0;
1948 }
1949 
1950 /* Callers must hold the iothread mutex lock */
1951 static void kvm_inject_arm_sea(CPUState *c)
1952 {
1953     ARMCPU *cpu = ARM_CPU(c);
1954     CPUARMState *env = &cpu->env;
1955     uint32_t esr;
1956     bool same_el;
1957 
1958     c->exception_index = EXCP_DATA_ABORT;
1959     env->exception.target_el = 1;
1960 
1961     /*
1962      * Set the DFSC to synchronous external abort and set FnV to not valid,
1963      * this will tell guest the FAR_ELx is UNKNOWN for this abort.
1964      */
1965     same_el = arm_current_el(env) == env->exception.target_el;
1966     esr = syn_data_abort_no_iss(same_el, 1, 0, 0, 0, 0, 0x10);
1967 
1968     env->exception.syndrome = esr;
1969 
1970     arm_cpu_do_interrupt(c);
1971 }
1972 
1973 #define AARCH64_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
1974                  KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1975 
1976 #define AARCH64_SIMD_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
1977                  KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1978 
1979 #define AARCH64_SIMD_CTRL_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
1980                  KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1981 
1982 static int kvm_arch_put_fpsimd(CPUState *cs)
1983 {
1984     CPUARMState *env = &ARM_CPU(cs)->env;
1985     int i, ret;
1986 
1987     for (i = 0; i < 32; i++) {
1988         uint64_t *q = aa64_vfp_qreg(env, i);
1989 #if HOST_BIG_ENDIAN
1990         uint64_t fp_val[2] = { q[1], q[0] };
1991         ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]),
1992                                                         fp_val);
1993 #else
1994         ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q);
1995 #endif
1996         if (ret) {
1997             return ret;
1998         }
1999     }
2000 
2001     return 0;
2002 }
2003 
2004 /*
2005  * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
2006  * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
2007  * code the slice index to zero for now as it's unlikely we'll need more than
2008  * one slice for quite some time.
2009  */
2010 static int kvm_arch_put_sve(CPUState *cs)
2011 {
2012     ARMCPU *cpu = ARM_CPU(cs);
2013     CPUARMState *env = &cpu->env;
2014     uint64_t tmp[ARM_MAX_VQ * 2];
2015     uint64_t *r;
2016     int n, ret;
2017 
2018     for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
2019         r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2);
2020         ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r);
2021         if (ret) {
2022             return ret;
2023         }
2024     }
2025 
2026     for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
2027         r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0],
2028                         DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2029         ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r);
2030         if (ret) {
2031             return ret;
2032         }
2033     }
2034 
2035     r = sve_bswap64(tmp, &env->vfp.pregs[FFR_PRED_NUM].p[0],
2036                     DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2037     ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r);
2038     if (ret) {
2039         return ret;
2040     }
2041 
2042     return 0;
2043 }
2044 
2045 int kvm_arch_put_registers(CPUState *cs, int level, Error **errp)
2046 {
2047     uint64_t val;
2048     uint32_t fpr;
2049     int i, ret;
2050     unsigned int el;
2051 
2052     ARMCPU *cpu = ARM_CPU(cs);
2053     CPUARMState *env = &cpu->env;
2054 
2055     /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
2056      * AArch64 registers before pushing them out to 64-bit KVM.
2057      */
2058     if (!is_a64(env)) {
2059         aarch64_sync_32_to_64(env);
2060     }
2061 
2062     for (i = 0; i < 31; i++) {
2063         ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]),
2064                               &env->xregs[i]);
2065         if (ret) {
2066             return ret;
2067         }
2068     }
2069 
2070     /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
2071      * QEMU side we keep the current SP in xregs[31] as well.
2072      */
2073     aarch64_save_sp(env, 1);
2074 
2075     ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]);
2076     if (ret) {
2077         return ret;
2078     }
2079 
2080     ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]);
2081     if (ret) {
2082         return ret;
2083     }
2084 
2085     /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
2086     if (is_a64(env)) {
2087         val = pstate_read(env);
2088     } else {
2089         val = cpsr_read(env);
2090     }
2091     ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val);
2092     if (ret) {
2093         return ret;
2094     }
2095 
2096     ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc);
2097     if (ret) {
2098         return ret;
2099     }
2100 
2101     ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]);
2102     if (ret) {
2103         return ret;
2104     }
2105 
2106     /* Saved Program State Registers
2107      *
2108      * Before we restore from the banked_spsr[] array we need to
2109      * ensure that any modifications to env->spsr are correctly
2110      * reflected in the banks.
2111      */
2112     el = arm_current_el(env);
2113     if (el > 0 && !is_a64(env)) {
2114         i = bank_number(env->uncached_cpsr & CPSR_M);
2115         env->banked_spsr[i] = env->spsr;
2116     }
2117 
2118     /* KVM 0-4 map to QEMU banks 1-5 */
2119     for (i = 0; i < KVM_NR_SPSR; i++) {
2120         ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(spsr[i]),
2121                               &env->banked_spsr[i + 1]);
2122         if (ret) {
2123             return ret;
2124         }
2125     }
2126 
2127     if (cpu_isar_feature(aa64_sve, cpu)) {
2128         ret = kvm_arch_put_sve(cs);
2129     } else {
2130         ret = kvm_arch_put_fpsimd(cs);
2131     }
2132     if (ret) {
2133         return ret;
2134     }
2135 
2136     fpr = vfp_get_fpsr(env);
2137     ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr);
2138     if (ret) {
2139         return ret;
2140     }
2141 
2142     fpr = vfp_get_fpcr(env);
2143     ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr);
2144     if (ret) {
2145         return ret;
2146     }
2147 
2148     write_cpustate_to_list(cpu, true);
2149 
2150     if (!write_list_to_kvmstate(cpu, level)) {
2151         return -EINVAL;
2152     }
2153 
2154    /*
2155     * Setting VCPU events should be triggered after syncing the registers
2156     * to avoid overwriting potential changes made by KVM upon calling
2157     * KVM_SET_VCPU_EVENTS ioctl
2158     */
2159     ret = kvm_put_vcpu_events(cpu);
2160     if (ret) {
2161         return ret;
2162     }
2163 
2164     return kvm_arm_sync_mpstate_to_kvm(cpu);
2165 }
2166 
2167 static int kvm_arch_get_fpsimd(CPUState *cs)
2168 {
2169     CPUARMState *env = &ARM_CPU(cs)->env;
2170     int i, ret;
2171 
2172     for (i = 0; i < 32; i++) {
2173         uint64_t *q = aa64_vfp_qreg(env, i);
2174         ret = kvm_get_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q);
2175         if (ret) {
2176             return ret;
2177         } else {
2178 #if HOST_BIG_ENDIAN
2179             uint64_t t;
2180             t = q[0], q[0] = q[1], q[1] = t;
2181 #endif
2182         }
2183     }
2184 
2185     return 0;
2186 }
2187 
2188 /*
2189  * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
2190  * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
2191  * code the slice index to zero for now as it's unlikely we'll need more than
2192  * one slice for quite some time.
2193  */
2194 static int kvm_arch_get_sve(CPUState *cs)
2195 {
2196     ARMCPU *cpu = ARM_CPU(cs);
2197     CPUARMState *env = &cpu->env;
2198     uint64_t *r;
2199     int n, ret;
2200 
2201     for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
2202         r = &env->vfp.zregs[n].d[0];
2203         ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r);
2204         if (ret) {
2205             return ret;
2206         }
2207         sve_bswap64(r, r, cpu->sve_max_vq * 2);
2208     }
2209 
2210     for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
2211         r = &env->vfp.pregs[n].p[0];
2212         ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r);
2213         if (ret) {
2214             return ret;
2215         }
2216         sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2217     }
2218 
2219     r = &env->vfp.pregs[FFR_PRED_NUM].p[0];
2220     ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r);
2221     if (ret) {
2222         return ret;
2223     }
2224     sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2225 
2226     return 0;
2227 }
2228 
2229 int kvm_arch_get_registers(CPUState *cs, Error **errp)
2230 {
2231     uint64_t val;
2232     unsigned int el;
2233     uint32_t fpr;
2234     int i, ret;
2235 
2236     ARMCPU *cpu = ARM_CPU(cs);
2237     CPUARMState *env = &cpu->env;
2238 
2239     for (i = 0; i < 31; i++) {
2240         ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]),
2241                               &env->xregs[i]);
2242         if (ret) {
2243             return ret;
2244         }
2245     }
2246 
2247     ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]);
2248     if (ret) {
2249         return ret;
2250     }
2251 
2252     ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]);
2253     if (ret) {
2254         return ret;
2255     }
2256 
2257     ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val);
2258     if (ret) {
2259         return ret;
2260     }
2261 
2262     env->aarch64 = ((val & PSTATE_nRW) == 0);
2263     if (is_a64(env)) {
2264         pstate_write(env, val);
2265     } else {
2266         cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
2267     }
2268 
2269     /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
2270      * QEMU side we keep the current SP in xregs[31] as well.
2271      */
2272     aarch64_restore_sp(env, 1);
2273 
2274     ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc);
2275     if (ret) {
2276         return ret;
2277     }
2278 
2279     /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
2280      * incoming AArch64 regs received from 64-bit KVM.
2281      * We must perform this after all of the registers have been acquired from
2282      * the kernel.
2283      */
2284     if (!is_a64(env)) {
2285         aarch64_sync_64_to_32(env);
2286     }
2287 
2288     ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]);
2289     if (ret) {
2290         return ret;
2291     }
2292 
2293     /* Fetch the SPSR registers
2294      *
2295      * KVM SPSRs 0-4 map to QEMU banks 1-5
2296      */
2297     for (i = 0; i < KVM_NR_SPSR; i++) {
2298         ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(spsr[i]),
2299                               &env->banked_spsr[i + 1]);
2300         if (ret) {
2301             return ret;
2302         }
2303     }
2304 
2305     el = arm_current_el(env);
2306     if (el > 0 && !is_a64(env)) {
2307         i = bank_number(env->uncached_cpsr & CPSR_M);
2308         env->spsr = env->banked_spsr[i];
2309     }
2310 
2311     if (cpu_isar_feature(aa64_sve, cpu)) {
2312         ret = kvm_arch_get_sve(cs);
2313     } else {
2314         ret = kvm_arch_get_fpsimd(cs);
2315     }
2316     if (ret) {
2317         return ret;
2318     }
2319 
2320     ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr);
2321     if (ret) {
2322         return ret;
2323     }
2324     vfp_set_fpsr(env, fpr);
2325 
2326     ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr);
2327     if (ret) {
2328         return ret;
2329     }
2330     vfp_set_fpcr(env, fpr);
2331 
2332     ret = kvm_get_vcpu_events(cpu);
2333     if (ret) {
2334         return ret;
2335     }
2336 
2337     if (!write_kvmstate_to_list(cpu)) {
2338         return -EINVAL;
2339     }
2340     /* Note that it's OK to have registers which aren't in CPUState,
2341      * so we can ignore a failure return here.
2342      */
2343     write_list_to_cpustate(cpu);
2344 
2345     ret = kvm_arm_sync_mpstate_to_qemu(cpu);
2346 
2347     /* TODO: other registers */
2348     return ret;
2349 }
2350 
2351 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
2352 {
2353     ram_addr_t ram_addr;
2354     hwaddr paddr;
2355 
2356     assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
2357 
2358     if (acpi_ghes_present() && addr) {
2359         ram_addr = qemu_ram_addr_from_host(addr);
2360         if (ram_addr != RAM_ADDR_INVALID &&
2361             kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
2362             kvm_hwpoison_page_add(ram_addr);
2363             /*
2364              * If this is a BUS_MCEERR_AR, we know we have been called
2365              * synchronously from the vCPU thread, so we can easily
2366              * synchronize the state and inject an error.
2367              *
2368              * TODO: we currently don't tell the guest at all about
2369              * BUS_MCEERR_AO. In that case we might either be being
2370              * called synchronously from the vCPU thread, or a bit
2371              * later from the main thread, so doing the injection of
2372              * the error would be more complicated.
2373              */
2374             if (code == BUS_MCEERR_AR) {
2375                 kvm_cpu_synchronize_state(c);
2376                 if (!acpi_ghes_record_errors(ACPI_HEST_SRC_ID_SEA, paddr)) {
2377                     kvm_inject_arm_sea(c);
2378                 } else {
2379                     error_report("failed to record the error");
2380                     abort();
2381                 }
2382             }
2383             return;
2384         }
2385         if (code == BUS_MCEERR_AO) {
2386             error_report("Hardware memory error at addr %p for memory used by "
2387                 "QEMU itself instead of guest system!", addr);
2388         }
2389     }
2390 
2391     if (code == BUS_MCEERR_AR) {
2392         error_report("Hardware memory error!");
2393         exit(1);
2394     }
2395 }
2396 
2397 /* C6.6.29 BRK instruction */
2398 static const uint32_t brk_insn = 0xd4200000;
2399 
2400 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
2401 {
2402     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
2403         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
2404         return -EINVAL;
2405     }
2406     return 0;
2407 }
2408 
2409 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
2410 {
2411     static uint32_t brk;
2412 
2413     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
2414         brk != brk_insn ||
2415         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
2416         return -EINVAL;
2417     }
2418     return 0;
2419 }
2420