1 /* 2 * ARM implementation of KVM hooks 3 * 4 * Copyright Christoffer Dall 2009-2010 5 * Copyright Mian-M. Hamayun 2013, Virtual Open Systems 6 * Copyright Alex Bennée 2014, Linaro 7 * 8 * This work is licensed under the terms of the GNU GPL, version 2 or later. 9 * See the COPYING file in the top-level directory. 10 * 11 */ 12 13 #include "qemu/osdep.h" 14 #include <sys/ioctl.h> 15 16 #include <linux/kvm.h> 17 18 #include "qemu/timer.h" 19 #include "qemu/error-report.h" 20 #include "qemu/main-loop.h" 21 #include "qom/object.h" 22 #include "qapi/error.h" 23 #include "sysemu/sysemu.h" 24 #include "sysemu/runstate.h" 25 #include "sysemu/kvm.h" 26 #include "sysemu/kvm_int.h" 27 #include "kvm_arm.h" 28 #include "cpu.h" 29 #include "trace.h" 30 #include "internals.h" 31 #include "hw/pci/pci.h" 32 #include "exec/memattrs.h" 33 #include "exec/address-spaces.h" 34 #include "gdbstub/enums.h" 35 #include "hw/boards.h" 36 #include "hw/irq.h" 37 #include "qapi/visitor.h" 38 #include "qemu/log.h" 39 #include "hw/acpi/acpi.h" 40 #include "hw/acpi/ghes.h" 41 #include "target/arm/gtimer.h" 42 43 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 44 KVM_CAP_LAST_INFO 45 }; 46 47 static bool cap_has_mp_state; 48 static bool cap_has_inject_serror_esr; 49 static bool cap_has_inject_ext_dabt; 50 51 /** 52 * ARMHostCPUFeatures: information about the host CPU (identified 53 * by asking the host kernel) 54 */ 55 typedef struct ARMHostCPUFeatures { 56 ARMISARegisters isar; 57 uint64_t features; 58 uint32_t target; 59 const char *dtb_compatible; 60 } ARMHostCPUFeatures; 61 62 static ARMHostCPUFeatures arm_host_cpu_features; 63 64 /** 65 * kvm_arm_vcpu_init: 66 * @cpu: ARMCPU 67 * 68 * Initialize (or reinitialize) the VCPU by invoking the 69 * KVM_ARM_VCPU_INIT ioctl with the CPU type and feature 70 * bitmask specified in the CPUState. 71 * 72 * Returns: 0 if success else < 0 error code 73 */ 74 static int kvm_arm_vcpu_init(ARMCPU *cpu) 75 { 76 struct kvm_vcpu_init init; 77 78 init.target = cpu->kvm_target; 79 memcpy(init.features, cpu->kvm_init_features, sizeof(init.features)); 80 81 return kvm_vcpu_ioctl(CPU(cpu), KVM_ARM_VCPU_INIT, &init); 82 } 83 84 /** 85 * kvm_arm_vcpu_finalize: 86 * @cpu: ARMCPU 87 * @feature: feature to finalize 88 * 89 * Finalizes the configuration of the specified VCPU feature by 90 * invoking the KVM_ARM_VCPU_FINALIZE ioctl. Features requiring 91 * this are documented in the "KVM_ARM_VCPU_FINALIZE" section of 92 * KVM's API documentation. 93 * 94 * Returns: 0 if success else < 0 error code 95 */ 96 static int kvm_arm_vcpu_finalize(ARMCPU *cpu, int feature) 97 { 98 return kvm_vcpu_ioctl(CPU(cpu), KVM_ARM_VCPU_FINALIZE, &feature); 99 } 100 101 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try, 102 int *fdarray, 103 struct kvm_vcpu_init *init) 104 { 105 int ret = 0, kvmfd = -1, vmfd = -1, cpufd = -1; 106 int max_vm_pa_size; 107 108 kvmfd = qemu_open_old("/dev/kvm", O_RDWR); 109 if (kvmfd < 0) { 110 goto err; 111 } 112 max_vm_pa_size = ioctl(kvmfd, KVM_CHECK_EXTENSION, KVM_CAP_ARM_VM_IPA_SIZE); 113 if (max_vm_pa_size < 0) { 114 max_vm_pa_size = 0; 115 } 116 do { 117 vmfd = ioctl(kvmfd, KVM_CREATE_VM, max_vm_pa_size); 118 } while (vmfd == -1 && errno == EINTR); 119 if (vmfd < 0) { 120 goto err; 121 } 122 cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0); 123 if (cpufd < 0) { 124 goto err; 125 } 126 127 if (!init) { 128 /* Caller doesn't want the VCPU to be initialized, so skip it */ 129 goto finish; 130 } 131 132 if (init->target == -1) { 133 struct kvm_vcpu_init preferred; 134 135 ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, &preferred); 136 if (!ret) { 137 init->target = preferred.target; 138 } 139 } 140 if (ret >= 0) { 141 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init); 142 if (ret < 0) { 143 goto err; 144 } 145 } else if (cpus_to_try) { 146 /* Old kernel which doesn't know about the 147 * PREFERRED_TARGET ioctl: we know it will only support 148 * creating one kind of guest CPU which is its preferred 149 * CPU type. 150 */ 151 struct kvm_vcpu_init try; 152 153 while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) { 154 try.target = *cpus_to_try++; 155 memcpy(try.features, init->features, sizeof(init->features)); 156 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, &try); 157 if (ret >= 0) { 158 break; 159 } 160 } 161 if (ret < 0) { 162 goto err; 163 } 164 init->target = try.target; 165 } else { 166 /* Treat a NULL cpus_to_try argument the same as an empty 167 * list, which means we will fail the call since this must 168 * be an old kernel which doesn't support PREFERRED_TARGET. 169 */ 170 goto err; 171 } 172 173 finish: 174 fdarray[0] = kvmfd; 175 fdarray[1] = vmfd; 176 fdarray[2] = cpufd; 177 178 return true; 179 180 err: 181 if (cpufd >= 0) { 182 close(cpufd); 183 } 184 if (vmfd >= 0) { 185 close(vmfd); 186 } 187 if (kvmfd >= 0) { 188 close(kvmfd); 189 } 190 191 return false; 192 } 193 194 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray) 195 { 196 int i; 197 198 for (i = 2; i >= 0; i--) { 199 close(fdarray[i]); 200 } 201 } 202 203 static int read_sys_reg32(int fd, uint32_t *pret, uint64_t id) 204 { 205 uint64_t ret; 206 struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)&ret }; 207 int err; 208 209 assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64); 210 err = ioctl(fd, KVM_GET_ONE_REG, &idreg); 211 if (err < 0) { 212 return -1; 213 } 214 *pret = ret; 215 return 0; 216 } 217 218 static int read_sys_reg64(int fd, uint64_t *pret, uint64_t id) 219 { 220 struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)pret }; 221 222 assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64); 223 return ioctl(fd, KVM_GET_ONE_REG, &idreg); 224 } 225 226 static bool kvm_arm_pauth_supported(void) 227 { 228 return (kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_ADDRESS) && 229 kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_GENERIC)); 230 } 231 232 static bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf) 233 { 234 /* Identify the feature bits corresponding to the host CPU, and 235 * fill out the ARMHostCPUClass fields accordingly. To do this 236 * we have to create a scratch VM, create a single CPU inside it, 237 * and then query that CPU for the relevant ID registers. 238 */ 239 int fdarray[3]; 240 bool sve_supported; 241 bool pmu_supported = false; 242 uint64_t features = 0; 243 int err; 244 245 /* Old kernels may not know about the PREFERRED_TARGET ioctl: however 246 * we know these will only support creating one kind of guest CPU, 247 * which is its preferred CPU type. Fortunately these old kernels 248 * support only a very limited number of CPUs. 249 */ 250 static const uint32_t cpus_to_try[] = { 251 KVM_ARM_TARGET_AEM_V8, 252 KVM_ARM_TARGET_FOUNDATION_V8, 253 KVM_ARM_TARGET_CORTEX_A57, 254 QEMU_KVM_ARM_TARGET_NONE 255 }; 256 /* 257 * target = -1 informs kvm_arm_create_scratch_host_vcpu() 258 * to use the preferred target 259 */ 260 struct kvm_vcpu_init init = { .target = -1, }; 261 262 /* 263 * Ask for SVE if supported, so that we can query ID_AA64ZFR0, 264 * which is otherwise RAZ. 265 */ 266 sve_supported = kvm_arm_sve_supported(); 267 if (sve_supported) { 268 init.features[0] |= 1 << KVM_ARM_VCPU_SVE; 269 } 270 271 /* 272 * Ask for Pointer Authentication if supported, so that we get 273 * the unsanitized field values for AA64ISAR1_EL1. 274 */ 275 if (kvm_arm_pauth_supported()) { 276 init.features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS | 277 1 << KVM_ARM_VCPU_PTRAUTH_GENERIC); 278 } 279 280 if (kvm_arm_pmu_supported()) { 281 init.features[0] |= 1 << KVM_ARM_VCPU_PMU_V3; 282 pmu_supported = true; 283 } 284 285 if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) { 286 return false; 287 } 288 289 ahcf->target = init.target; 290 ahcf->dtb_compatible = "arm,arm-v8"; 291 292 err = read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr0, 293 ARM64_SYS_REG(3, 0, 0, 4, 0)); 294 if (unlikely(err < 0)) { 295 /* 296 * Before v4.15, the kernel only exposed a limited number of system 297 * registers, not including any of the interesting AArch64 ID regs. 298 * For the most part we could leave these fields as zero with minimal 299 * effect, since this does not affect the values seen by the guest. 300 * 301 * However, it could cause problems down the line for QEMU, 302 * so provide a minimal v8.0 default. 303 * 304 * ??? Could read MIDR and use knowledge from cpu64.c. 305 * ??? Could map a page of memory into our temp guest and 306 * run the tiniest of hand-crafted kernels to extract 307 * the values seen by the guest. 308 * ??? Either of these sounds like too much effort just 309 * to work around running a modern host kernel. 310 */ 311 ahcf->isar.id_aa64pfr0 = 0x00000011; /* EL1&0, AArch64 only */ 312 err = 0; 313 } else { 314 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr1, 315 ARM64_SYS_REG(3, 0, 0, 4, 1)); 316 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64smfr0, 317 ARM64_SYS_REG(3, 0, 0, 4, 5)); 318 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr0, 319 ARM64_SYS_REG(3, 0, 0, 5, 0)); 320 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr1, 321 ARM64_SYS_REG(3, 0, 0, 5, 1)); 322 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar0, 323 ARM64_SYS_REG(3, 0, 0, 6, 0)); 324 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar1, 325 ARM64_SYS_REG(3, 0, 0, 6, 1)); 326 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar2, 327 ARM64_SYS_REG(3, 0, 0, 6, 2)); 328 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr0, 329 ARM64_SYS_REG(3, 0, 0, 7, 0)); 330 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr1, 331 ARM64_SYS_REG(3, 0, 0, 7, 1)); 332 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr2, 333 ARM64_SYS_REG(3, 0, 0, 7, 2)); 334 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr3, 335 ARM64_SYS_REG(3, 0, 0, 7, 3)); 336 337 /* 338 * Note that if AArch32 support is not present in the host, 339 * the AArch32 sysregs are present to be read, but will 340 * return UNKNOWN values. This is neither better nor worse 341 * than skipping the reads and leaving 0, as we must avoid 342 * considering the values in every case. 343 */ 344 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr0, 345 ARM64_SYS_REG(3, 0, 0, 1, 0)); 346 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr1, 347 ARM64_SYS_REG(3, 0, 0, 1, 1)); 348 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr0, 349 ARM64_SYS_REG(3, 0, 0, 1, 2)); 350 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr0, 351 ARM64_SYS_REG(3, 0, 0, 1, 4)); 352 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr1, 353 ARM64_SYS_REG(3, 0, 0, 1, 5)); 354 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr2, 355 ARM64_SYS_REG(3, 0, 0, 1, 6)); 356 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr3, 357 ARM64_SYS_REG(3, 0, 0, 1, 7)); 358 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar0, 359 ARM64_SYS_REG(3, 0, 0, 2, 0)); 360 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar1, 361 ARM64_SYS_REG(3, 0, 0, 2, 1)); 362 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar2, 363 ARM64_SYS_REG(3, 0, 0, 2, 2)); 364 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar3, 365 ARM64_SYS_REG(3, 0, 0, 2, 3)); 366 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar4, 367 ARM64_SYS_REG(3, 0, 0, 2, 4)); 368 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar5, 369 ARM64_SYS_REG(3, 0, 0, 2, 5)); 370 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr4, 371 ARM64_SYS_REG(3, 0, 0, 2, 6)); 372 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar6, 373 ARM64_SYS_REG(3, 0, 0, 2, 7)); 374 375 err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr0, 376 ARM64_SYS_REG(3, 0, 0, 3, 0)); 377 err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr1, 378 ARM64_SYS_REG(3, 0, 0, 3, 1)); 379 err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr2, 380 ARM64_SYS_REG(3, 0, 0, 3, 2)); 381 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr2, 382 ARM64_SYS_REG(3, 0, 0, 3, 4)); 383 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr1, 384 ARM64_SYS_REG(3, 0, 0, 3, 5)); 385 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr5, 386 ARM64_SYS_REG(3, 0, 0, 3, 6)); 387 388 /* 389 * DBGDIDR is a bit complicated because the kernel doesn't 390 * provide an accessor for it in 64-bit mode, which is what this 391 * scratch VM is in, and there's no architected "64-bit sysreg 392 * which reads the same as the 32-bit register" the way there is 393 * for other ID registers. Instead we synthesize a value from the 394 * AArch64 ID_AA64DFR0, the same way the kernel code in 395 * arch/arm64/kvm/sys_regs.c:trap_dbgidr() does. 396 * We only do this if the CPU supports AArch32 at EL1. 397 */ 398 if (FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL1) >= 2) { 399 int wrps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, WRPS); 400 int brps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, BRPS); 401 int ctx_cmps = 402 FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS); 403 int version = 6; /* ARMv8 debug architecture */ 404 bool has_el3 = 405 !!FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL3); 406 uint32_t dbgdidr = 0; 407 408 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, WRPS, wrps); 409 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, BRPS, brps); 410 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, CTX_CMPS, ctx_cmps); 411 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, VERSION, version); 412 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, NSUHD_IMP, has_el3); 413 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, SE_IMP, has_el3); 414 dbgdidr |= (1 << 15); /* RES1 bit */ 415 ahcf->isar.dbgdidr = dbgdidr; 416 } 417 418 if (pmu_supported) { 419 /* PMCR_EL0 is only accessible if the vCPU has feature PMU_V3 */ 420 err |= read_sys_reg64(fdarray[2], &ahcf->isar.reset_pmcr_el0, 421 ARM64_SYS_REG(3, 3, 9, 12, 0)); 422 } 423 424 if (sve_supported) { 425 /* 426 * There is a range of kernels between kernel commit 73433762fcae 427 * and f81cb2c3ad41 which have a bug where the kernel doesn't 428 * expose SYS_ID_AA64ZFR0_EL1 via the ONE_REG API unless the VM has 429 * enabled SVE support, which resulted in an error rather than RAZ. 430 * So only read the register if we set KVM_ARM_VCPU_SVE above. 431 */ 432 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64zfr0, 433 ARM64_SYS_REG(3, 0, 0, 4, 4)); 434 } 435 } 436 437 kvm_arm_destroy_scratch_host_vcpu(fdarray); 438 439 if (err < 0) { 440 return false; 441 } 442 443 /* 444 * We can assume any KVM supporting CPU is at least a v8 445 * with VFPv4+Neon; this in turn implies most of the other 446 * feature bits. 447 */ 448 features |= 1ULL << ARM_FEATURE_V8; 449 features |= 1ULL << ARM_FEATURE_NEON; 450 features |= 1ULL << ARM_FEATURE_AARCH64; 451 features |= 1ULL << ARM_FEATURE_PMU; 452 features |= 1ULL << ARM_FEATURE_GENERIC_TIMER; 453 454 ahcf->features = features; 455 456 return true; 457 } 458 459 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu) 460 { 461 CPUARMState *env = &cpu->env; 462 463 if (!arm_host_cpu_features.dtb_compatible) { 464 if (!kvm_enabled() || 465 !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) { 466 /* We can't report this error yet, so flag that we need to 467 * in arm_cpu_realizefn(). 468 */ 469 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE; 470 cpu->host_cpu_probe_failed = true; 471 return; 472 } 473 } 474 475 cpu->kvm_target = arm_host_cpu_features.target; 476 cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible; 477 cpu->isar = arm_host_cpu_features.isar; 478 env->features = arm_host_cpu_features.features; 479 } 480 481 static bool kvm_no_adjvtime_get(Object *obj, Error **errp) 482 { 483 return !ARM_CPU(obj)->kvm_adjvtime; 484 } 485 486 static void kvm_no_adjvtime_set(Object *obj, bool value, Error **errp) 487 { 488 ARM_CPU(obj)->kvm_adjvtime = !value; 489 } 490 491 static bool kvm_steal_time_get(Object *obj, Error **errp) 492 { 493 return ARM_CPU(obj)->kvm_steal_time != ON_OFF_AUTO_OFF; 494 } 495 496 static void kvm_steal_time_set(Object *obj, bool value, Error **errp) 497 { 498 ARM_CPU(obj)->kvm_steal_time = value ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 499 } 500 501 /* KVM VCPU properties should be prefixed with "kvm-". */ 502 void kvm_arm_add_vcpu_properties(ARMCPU *cpu) 503 { 504 CPUARMState *env = &cpu->env; 505 Object *obj = OBJECT(cpu); 506 507 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 508 cpu->kvm_adjvtime = true; 509 object_property_add_bool(obj, "kvm-no-adjvtime", kvm_no_adjvtime_get, 510 kvm_no_adjvtime_set); 511 object_property_set_description(obj, "kvm-no-adjvtime", 512 "Set on to disable the adjustment of " 513 "the virtual counter. VM stopped time " 514 "will be counted."); 515 } 516 517 cpu->kvm_steal_time = ON_OFF_AUTO_AUTO; 518 object_property_add_bool(obj, "kvm-steal-time", kvm_steal_time_get, 519 kvm_steal_time_set); 520 object_property_set_description(obj, "kvm-steal-time", 521 "Set off to disable KVM steal time."); 522 } 523 524 bool kvm_arm_pmu_supported(void) 525 { 526 return kvm_check_extension(kvm_state, KVM_CAP_ARM_PMU_V3); 527 } 528 529 int kvm_arm_get_max_vm_ipa_size(MachineState *ms, bool *fixed_ipa) 530 { 531 KVMState *s = KVM_STATE(ms->accelerator); 532 int ret; 533 534 ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE); 535 *fixed_ipa = ret <= 0; 536 537 return ret > 0 ? ret : 40; 538 } 539 540 int kvm_arch_get_default_type(MachineState *ms) 541 { 542 bool fixed_ipa; 543 int size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa); 544 return fixed_ipa ? 0 : size; 545 } 546 547 int kvm_arch_init(MachineState *ms, KVMState *s) 548 { 549 int ret = 0; 550 /* For ARM interrupt delivery is always asynchronous, 551 * whether we are using an in-kernel VGIC or not. 552 */ 553 kvm_async_interrupts_allowed = true; 554 555 /* 556 * PSCI wakes up secondary cores, so we always need to 557 * have vCPUs waiting in kernel space 558 */ 559 kvm_halt_in_kernel_allowed = true; 560 561 cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE); 562 563 /* Check whether user space can specify guest syndrome value */ 564 cap_has_inject_serror_esr = 565 kvm_check_extension(s, KVM_CAP_ARM_INJECT_SERROR_ESR); 566 567 if (ms->smp.cpus > 256 && 568 !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) { 569 error_report("Using more than 256 vcpus requires a host kernel " 570 "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2"); 571 ret = -EINVAL; 572 } 573 574 if (kvm_check_extension(s, KVM_CAP_ARM_NISV_TO_USER)) { 575 if (kvm_vm_enable_cap(s, KVM_CAP_ARM_NISV_TO_USER, 0)) { 576 error_report("Failed to enable KVM_CAP_ARM_NISV_TO_USER cap"); 577 } else { 578 /* Set status for supporting the external dabt injection */ 579 cap_has_inject_ext_dabt = kvm_check_extension(s, 580 KVM_CAP_ARM_INJECT_EXT_DABT); 581 } 582 } 583 584 if (s->kvm_eager_split_size) { 585 uint32_t sizes; 586 587 sizes = kvm_vm_check_extension(s, KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES); 588 if (!sizes) { 589 s->kvm_eager_split_size = 0; 590 warn_report("Eager Page Split support not available"); 591 } else if (!(s->kvm_eager_split_size & sizes)) { 592 error_report("Eager Page Split requested chunk size not valid"); 593 ret = -EINVAL; 594 } else { 595 ret = kvm_vm_enable_cap(s, KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE, 0, 596 s->kvm_eager_split_size); 597 if (ret < 0) { 598 error_report("Enabling of Eager Page Split failed: %s", 599 strerror(-ret)); 600 } 601 } 602 } 603 604 max_hw_wps = kvm_check_extension(s, KVM_CAP_GUEST_DEBUG_HW_WPS); 605 hw_watchpoints = g_array_sized_new(true, true, 606 sizeof(HWWatchpoint), max_hw_wps); 607 608 max_hw_bps = kvm_check_extension(s, KVM_CAP_GUEST_DEBUG_HW_BPS); 609 hw_breakpoints = g_array_sized_new(true, true, 610 sizeof(HWBreakpoint), max_hw_bps); 611 612 return ret; 613 } 614 615 unsigned long kvm_arch_vcpu_id(CPUState *cpu) 616 { 617 return cpu->cpu_index; 618 } 619 620 /* We track all the KVM devices which need their memory addresses 621 * passing to the kernel in a list of these structures. 622 * When board init is complete we run through the list and 623 * tell the kernel the base addresses of the memory regions. 624 * We use a MemoryListener to track mapping and unmapping of 625 * the regions during board creation, so the board models don't 626 * need to do anything special for the KVM case. 627 * 628 * Sometimes the address must be OR'ed with some other fields 629 * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION). 630 * @kda_addr_ormask aims at storing the value of those fields. 631 */ 632 typedef struct KVMDevice { 633 struct kvm_arm_device_addr kda; 634 struct kvm_device_attr kdattr; 635 uint64_t kda_addr_ormask; 636 MemoryRegion *mr; 637 QSLIST_ENTRY(KVMDevice) entries; 638 int dev_fd; 639 } KVMDevice; 640 641 static QSLIST_HEAD(, KVMDevice) kvm_devices_head; 642 643 static void kvm_arm_devlistener_add(MemoryListener *listener, 644 MemoryRegionSection *section) 645 { 646 KVMDevice *kd; 647 648 QSLIST_FOREACH(kd, &kvm_devices_head, entries) { 649 if (section->mr == kd->mr) { 650 kd->kda.addr = section->offset_within_address_space; 651 } 652 } 653 } 654 655 static void kvm_arm_devlistener_del(MemoryListener *listener, 656 MemoryRegionSection *section) 657 { 658 KVMDevice *kd; 659 660 QSLIST_FOREACH(kd, &kvm_devices_head, entries) { 661 if (section->mr == kd->mr) { 662 kd->kda.addr = -1; 663 } 664 } 665 } 666 667 static MemoryListener devlistener = { 668 .name = "kvm-arm", 669 .region_add = kvm_arm_devlistener_add, 670 .region_del = kvm_arm_devlistener_del, 671 .priority = MEMORY_LISTENER_PRIORITY_MIN, 672 }; 673 674 static void kvm_arm_set_device_addr(KVMDevice *kd) 675 { 676 struct kvm_device_attr *attr = &kd->kdattr; 677 int ret; 678 679 /* If the device control API is available and we have a device fd on the 680 * KVMDevice struct, let's use the newer API 681 */ 682 if (kd->dev_fd >= 0) { 683 uint64_t addr = kd->kda.addr; 684 685 addr |= kd->kda_addr_ormask; 686 attr->addr = (uintptr_t)&addr; 687 ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr); 688 } else { 689 ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda); 690 } 691 692 if (ret < 0) { 693 fprintf(stderr, "Failed to set device address: %s\n", 694 strerror(-ret)); 695 abort(); 696 } 697 } 698 699 static void kvm_arm_machine_init_done(Notifier *notifier, void *data) 700 { 701 KVMDevice *kd, *tkd; 702 703 QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) { 704 if (kd->kda.addr != -1) { 705 kvm_arm_set_device_addr(kd); 706 } 707 memory_region_unref(kd->mr); 708 QSLIST_REMOVE_HEAD(&kvm_devices_head, entries); 709 g_free(kd); 710 } 711 memory_listener_unregister(&devlistener); 712 } 713 714 static Notifier notify = { 715 .notify = kvm_arm_machine_init_done, 716 }; 717 718 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group, 719 uint64_t attr, int dev_fd, uint64_t addr_ormask) 720 { 721 KVMDevice *kd; 722 723 if (!kvm_irqchip_in_kernel()) { 724 return; 725 } 726 727 if (QSLIST_EMPTY(&kvm_devices_head)) { 728 memory_listener_register(&devlistener, &address_space_memory); 729 qemu_add_machine_init_done_notifier(¬ify); 730 } 731 kd = g_new0(KVMDevice, 1); 732 kd->mr = mr; 733 kd->kda.id = devid; 734 kd->kda.addr = -1; 735 kd->kdattr.flags = 0; 736 kd->kdattr.group = group; 737 kd->kdattr.attr = attr; 738 kd->dev_fd = dev_fd; 739 kd->kda_addr_ormask = addr_ormask; 740 QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries); 741 memory_region_ref(kd->mr); 742 } 743 744 static int compare_u64(const void *a, const void *b) 745 { 746 if (*(uint64_t *)a > *(uint64_t *)b) { 747 return 1; 748 } 749 if (*(uint64_t *)a < *(uint64_t *)b) { 750 return -1; 751 } 752 return 0; 753 } 754 755 /* 756 * cpreg_values are sorted in ascending order by KVM register ID 757 * (see kvm_arm_init_cpreg_list). This allows us to cheaply find 758 * the storage for a KVM register by ID with a binary search. 759 */ 760 static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx) 761 { 762 uint64_t *res; 763 764 res = bsearch(®idx, cpu->cpreg_indexes, cpu->cpreg_array_len, 765 sizeof(uint64_t), compare_u64); 766 assert(res); 767 768 return &cpu->cpreg_values[res - cpu->cpreg_indexes]; 769 } 770 771 /** 772 * kvm_arm_reg_syncs_via_cpreg_list: 773 * @regidx: KVM register index 774 * 775 * Return true if this KVM register should be synchronized via the 776 * cpreg list of arbitrary system registers, false if it is synchronized 777 * by hand using code in kvm_arch_get/put_registers(). 778 */ 779 static bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx) 780 { 781 switch (regidx & KVM_REG_ARM_COPROC_MASK) { 782 case KVM_REG_ARM_CORE: 783 case KVM_REG_ARM64_SVE: 784 return false; 785 default: 786 return true; 787 } 788 } 789 790 /** 791 * kvm_arm_init_cpreg_list: 792 * @cpu: ARMCPU 793 * 794 * Initialize the ARMCPU cpreg list according to the kernel's 795 * definition of what CPU registers it knows about (and throw away 796 * the previous TCG-created cpreg list). 797 * 798 * Returns: 0 if success, else < 0 error code 799 */ 800 static int kvm_arm_init_cpreg_list(ARMCPU *cpu) 801 { 802 struct kvm_reg_list rl; 803 struct kvm_reg_list *rlp; 804 int i, ret, arraylen; 805 CPUState *cs = CPU(cpu); 806 807 rl.n = 0; 808 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl); 809 if (ret != -E2BIG) { 810 return ret; 811 } 812 rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t)); 813 rlp->n = rl.n; 814 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp); 815 if (ret) { 816 goto out; 817 } 818 /* Sort the list we get back from the kernel, since cpreg_tuples 819 * must be in strictly ascending order. 820 */ 821 qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64); 822 823 for (i = 0, arraylen = 0; i < rlp->n; i++) { 824 if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) { 825 continue; 826 } 827 switch (rlp->reg[i] & KVM_REG_SIZE_MASK) { 828 case KVM_REG_SIZE_U32: 829 case KVM_REG_SIZE_U64: 830 break; 831 default: 832 fprintf(stderr, "Can't handle size of register in kernel list\n"); 833 ret = -EINVAL; 834 goto out; 835 } 836 837 arraylen++; 838 } 839 840 cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen); 841 cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen); 842 cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes, 843 arraylen); 844 cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values, 845 arraylen); 846 cpu->cpreg_array_len = arraylen; 847 cpu->cpreg_vmstate_array_len = arraylen; 848 849 for (i = 0, arraylen = 0; i < rlp->n; i++) { 850 uint64_t regidx = rlp->reg[i]; 851 if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) { 852 continue; 853 } 854 cpu->cpreg_indexes[arraylen] = regidx; 855 arraylen++; 856 } 857 assert(cpu->cpreg_array_len == arraylen); 858 859 if (!write_kvmstate_to_list(cpu)) { 860 /* Shouldn't happen unless kernel is inconsistent about 861 * what registers exist. 862 */ 863 fprintf(stderr, "Initial read of kernel register state failed\n"); 864 ret = -EINVAL; 865 goto out; 866 } 867 868 out: 869 g_free(rlp); 870 return ret; 871 } 872 873 /** 874 * kvm_arm_cpreg_level: 875 * @regidx: KVM register index 876 * 877 * Return the level of this coprocessor/system register. Return value is 878 * either KVM_PUT_RUNTIME_STATE, KVM_PUT_RESET_STATE, or KVM_PUT_FULL_STATE. 879 */ 880 static int kvm_arm_cpreg_level(uint64_t regidx) 881 { 882 /* 883 * All system registers are assumed to be level KVM_PUT_RUNTIME_STATE. 884 * If a register should be written less often, you must add it here 885 * with a state of either KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE. 886 */ 887 switch (regidx) { 888 case KVM_REG_ARM_TIMER_CNT: 889 case KVM_REG_ARM_PTIMER_CNT: 890 return KVM_PUT_FULL_STATE; 891 } 892 return KVM_PUT_RUNTIME_STATE; 893 } 894 895 bool write_kvmstate_to_list(ARMCPU *cpu) 896 { 897 CPUState *cs = CPU(cpu); 898 int i; 899 bool ok = true; 900 901 for (i = 0; i < cpu->cpreg_array_len; i++) { 902 uint64_t regidx = cpu->cpreg_indexes[i]; 903 uint32_t v32; 904 int ret; 905 906 switch (regidx & KVM_REG_SIZE_MASK) { 907 case KVM_REG_SIZE_U32: 908 ret = kvm_get_one_reg(cs, regidx, &v32); 909 if (!ret) { 910 cpu->cpreg_values[i] = v32; 911 } 912 break; 913 case KVM_REG_SIZE_U64: 914 ret = kvm_get_one_reg(cs, regidx, cpu->cpreg_values + i); 915 break; 916 default: 917 g_assert_not_reached(); 918 } 919 if (ret) { 920 ok = false; 921 } 922 } 923 return ok; 924 } 925 926 bool write_list_to_kvmstate(ARMCPU *cpu, int level) 927 { 928 CPUState *cs = CPU(cpu); 929 int i; 930 bool ok = true; 931 932 for (i = 0; i < cpu->cpreg_array_len; i++) { 933 uint64_t regidx = cpu->cpreg_indexes[i]; 934 uint32_t v32; 935 int ret; 936 937 if (kvm_arm_cpreg_level(regidx) > level) { 938 continue; 939 } 940 941 switch (regidx & KVM_REG_SIZE_MASK) { 942 case KVM_REG_SIZE_U32: 943 v32 = cpu->cpreg_values[i]; 944 ret = kvm_set_one_reg(cs, regidx, &v32); 945 break; 946 case KVM_REG_SIZE_U64: 947 ret = kvm_set_one_reg(cs, regidx, cpu->cpreg_values + i); 948 break; 949 default: 950 g_assert_not_reached(); 951 } 952 if (ret) { 953 /* We might fail for "unknown register" and also for 954 * "you tried to set a register which is constant with 955 * a different value from what it actually contains". 956 */ 957 ok = false; 958 } 959 } 960 return ok; 961 } 962 963 void kvm_arm_cpu_pre_save(ARMCPU *cpu) 964 { 965 /* KVM virtual time adjustment */ 966 if (cpu->kvm_vtime_dirty) { 967 *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT) = cpu->kvm_vtime; 968 } 969 } 970 971 void kvm_arm_cpu_post_load(ARMCPU *cpu) 972 { 973 /* KVM virtual time adjustment */ 974 if (cpu->kvm_adjvtime) { 975 cpu->kvm_vtime = *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT); 976 cpu->kvm_vtime_dirty = true; 977 } 978 } 979 980 void kvm_arm_reset_vcpu(ARMCPU *cpu) 981 { 982 int ret; 983 984 /* Re-init VCPU so that all registers are set to 985 * their respective reset values. 986 */ 987 ret = kvm_arm_vcpu_init(cpu); 988 if (ret < 0) { 989 fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret)); 990 abort(); 991 } 992 if (!write_kvmstate_to_list(cpu)) { 993 fprintf(stderr, "write_kvmstate_to_list failed\n"); 994 abort(); 995 } 996 /* 997 * Sync the reset values also into the CPUState. This is necessary 998 * because the next thing we do will be a kvm_arch_put_registers() 999 * which will update the list values from the CPUState before copying 1000 * the list values back to KVM. It's OK to ignore failure returns here 1001 * for the same reason we do so in kvm_arch_get_registers(). 1002 */ 1003 write_list_to_cpustate(cpu); 1004 } 1005 1006 /* 1007 * Update KVM's MP_STATE based on what QEMU thinks it is 1008 */ 1009 static int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu) 1010 { 1011 if (cap_has_mp_state) { 1012 struct kvm_mp_state mp_state = { 1013 .mp_state = (cpu->power_state == PSCI_OFF) ? 1014 KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE 1015 }; 1016 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); 1017 } 1018 return 0; 1019 } 1020 1021 /* 1022 * Sync the KVM MP_STATE into QEMU 1023 */ 1024 static int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu) 1025 { 1026 if (cap_has_mp_state) { 1027 struct kvm_mp_state mp_state; 1028 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state); 1029 if (ret) { 1030 return ret; 1031 } 1032 cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ? 1033 PSCI_OFF : PSCI_ON; 1034 } 1035 return 0; 1036 } 1037 1038 /** 1039 * kvm_arm_get_virtual_time: 1040 * @cpu: ARMCPU 1041 * 1042 * Gets the VCPU's virtual counter and stores it in the KVM CPU state. 1043 */ 1044 static void kvm_arm_get_virtual_time(ARMCPU *cpu) 1045 { 1046 int ret; 1047 1048 if (cpu->kvm_vtime_dirty) { 1049 return; 1050 } 1051 1052 ret = kvm_get_one_reg(CPU(cpu), KVM_REG_ARM_TIMER_CNT, &cpu->kvm_vtime); 1053 if (ret) { 1054 error_report("Failed to get KVM_REG_ARM_TIMER_CNT"); 1055 abort(); 1056 } 1057 1058 cpu->kvm_vtime_dirty = true; 1059 } 1060 1061 /** 1062 * kvm_arm_put_virtual_time: 1063 * @cpu: ARMCPU 1064 * 1065 * Sets the VCPU's virtual counter to the value stored in the KVM CPU state. 1066 */ 1067 static void kvm_arm_put_virtual_time(ARMCPU *cpu) 1068 { 1069 int ret; 1070 1071 if (!cpu->kvm_vtime_dirty) { 1072 return; 1073 } 1074 1075 ret = kvm_set_one_reg(CPU(cpu), KVM_REG_ARM_TIMER_CNT, &cpu->kvm_vtime); 1076 if (ret) { 1077 error_report("Failed to set KVM_REG_ARM_TIMER_CNT"); 1078 abort(); 1079 } 1080 1081 cpu->kvm_vtime_dirty = false; 1082 } 1083 1084 /** 1085 * kvm_put_vcpu_events: 1086 * @cpu: ARMCPU 1087 * 1088 * Put VCPU related state to kvm. 1089 * 1090 * Returns: 0 if success else < 0 error code 1091 */ 1092 static int kvm_put_vcpu_events(ARMCPU *cpu) 1093 { 1094 CPUARMState *env = &cpu->env; 1095 struct kvm_vcpu_events events; 1096 int ret; 1097 1098 if (!kvm_has_vcpu_events()) { 1099 return 0; 1100 } 1101 1102 memset(&events, 0, sizeof(events)); 1103 events.exception.serror_pending = env->serror.pending; 1104 1105 /* Inject SError to guest with specified syndrome if host kernel 1106 * supports it, otherwise inject SError without syndrome. 1107 */ 1108 if (cap_has_inject_serror_esr) { 1109 events.exception.serror_has_esr = env->serror.has_esr; 1110 events.exception.serror_esr = env->serror.esr; 1111 } 1112 1113 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); 1114 if (ret) { 1115 error_report("failed to put vcpu events"); 1116 } 1117 1118 return ret; 1119 } 1120 1121 /** 1122 * kvm_get_vcpu_events: 1123 * @cpu: ARMCPU 1124 * 1125 * Get VCPU related state from kvm. 1126 * 1127 * Returns: 0 if success else < 0 error code 1128 */ 1129 static int kvm_get_vcpu_events(ARMCPU *cpu) 1130 { 1131 CPUARMState *env = &cpu->env; 1132 struct kvm_vcpu_events events; 1133 int ret; 1134 1135 if (!kvm_has_vcpu_events()) { 1136 return 0; 1137 } 1138 1139 memset(&events, 0, sizeof(events)); 1140 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); 1141 if (ret) { 1142 error_report("failed to get vcpu events"); 1143 return ret; 1144 } 1145 1146 env->serror.pending = events.exception.serror_pending; 1147 env->serror.has_esr = events.exception.serror_has_esr; 1148 env->serror.esr = events.exception.serror_esr; 1149 1150 return 0; 1151 } 1152 1153 #define ARM64_REG_ESR_EL1 ARM64_SYS_REG(3, 0, 5, 2, 0) 1154 #define ARM64_REG_TCR_EL1 ARM64_SYS_REG(3, 0, 2, 0, 2) 1155 1156 /* 1157 * ESR_EL1 1158 * ISS encoding 1159 * AARCH64: DFSC, bits [5:0] 1160 * AARCH32: 1161 * TTBCR.EAE == 0 1162 * FS[4] - DFSR[10] 1163 * FS[3:0] - DFSR[3:0] 1164 * TTBCR.EAE == 1 1165 * FS, bits [5:0] 1166 */ 1167 #define ESR_DFSC(aarch64, lpae, v) \ 1168 ((aarch64 || (lpae)) ? ((v) & 0x3F) \ 1169 : (((v) >> 6) | ((v) & 0x1F))) 1170 1171 #define ESR_DFSC_EXTABT(aarch64, lpae) \ 1172 ((aarch64) ? 0x10 : (lpae) ? 0x10 : 0x8) 1173 1174 /** 1175 * kvm_arm_verify_ext_dabt_pending: 1176 * @cpu: ARMCPU 1177 * 1178 * Verify the fault status code wrt the Ext DABT injection 1179 * 1180 * Returns: true if the fault status code is as expected, false otherwise 1181 */ 1182 static bool kvm_arm_verify_ext_dabt_pending(ARMCPU *cpu) 1183 { 1184 CPUState *cs = CPU(cpu); 1185 uint64_t dfsr_val; 1186 1187 if (!kvm_get_one_reg(cs, ARM64_REG_ESR_EL1, &dfsr_val)) { 1188 CPUARMState *env = &cpu->env; 1189 int aarch64_mode = arm_feature(env, ARM_FEATURE_AARCH64); 1190 int lpae = 0; 1191 1192 if (!aarch64_mode) { 1193 uint64_t ttbcr; 1194 1195 if (!kvm_get_one_reg(cs, ARM64_REG_TCR_EL1, &ttbcr)) { 1196 lpae = arm_feature(env, ARM_FEATURE_LPAE) 1197 && (ttbcr & TTBCR_EAE); 1198 } 1199 } 1200 /* 1201 * The verification here is based on the DFSC bits 1202 * of the ESR_EL1 reg only 1203 */ 1204 return (ESR_DFSC(aarch64_mode, lpae, dfsr_val) == 1205 ESR_DFSC_EXTABT(aarch64_mode, lpae)); 1206 } 1207 return false; 1208 } 1209 1210 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run) 1211 { 1212 ARMCPU *cpu = ARM_CPU(cs); 1213 CPUARMState *env = &cpu->env; 1214 1215 if (unlikely(env->ext_dabt_raised)) { 1216 /* 1217 * Verifying that the ext DABT has been properly injected, 1218 * otherwise risking indefinitely re-running the faulting instruction 1219 * Covering a very narrow case for kernels 5.5..5.5.4 1220 * when injected abort was misconfigured to be 1221 * an IMPLEMENTATION DEFINED exception (for 32-bit EL1) 1222 */ 1223 if (!arm_feature(env, ARM_FEATURE_AARCH64) && 1224 unlikely(!kvm_arm_verify_ext_dabt_pending(cpu))) { 1225 1226 error_report("Data abort exception with no valid ISS generated by " 1227 "guest memory access. KVM unable to emulate faulting " 1228 "instruction. Failed to inject an external data abort " 1229 "into the guest."); 1230 abort(); 1231 } 1232 /* Clear the status */ 1233 env->ext_dabt_raised = 0; 1234 } 1235 } 1236 1237 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) 1238 { 1239 ARMCPU *cpu; 1240 uint32_t switched_level; 1241 1242 if (kvm_irqchip_in_kernel()) { 1243 /* 1244 * We only need to sync timer states with user-space interrupt 1245 * controllers, so return early and save cycles if we don't. 1246 */ 1247 return MEMTXATTRS_UNSPECIFIED; 1248 } 1249 1250 cpu = ARM_CPU(cs); 1251 1252 /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */ 1253 if (run->s.regs.device_irq_level != cpu->device_irq_level) { 1254 switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level; 1255 1256 bql_lock(); 1257 1258 if (switched_level & KVM_ARM_DEV_EL1_VTIMER) { 1259 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT], 1260 !!(run->s.regs.device_irq_level & 1261 KVM_ARM_DEV_EL1_VTIMER)); 1262 switched_level &= ~KVM_ARM_DEV_EL1_VTIMER; 1263 } 1264 1265 if (switched_level & KVM_ARM_DEV_EL1_PTIMER) { 1266 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS], 1267 !!(run->s.regs.device_irq_level & 1268 KVM_ARM_DEV_EL1_PTIMER)); 1269 switched_level &= ~KVM_ARM_DEV_EL1_PTIMER; 1270 } 1271 1272 if (switched_level & KVM_ARM_DEV_PMU) { 1273 qemu_set_irq(cpu->pmu_interrupt, 1274 !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU)); 1275 switched_level &= ~KVM_ARM_DEV_PMU; 1276 } 1277 1278 if (switched_level) { 1279 qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n", 1280 __func__, switched_level); 1281 } 1282 1283 /* We also mark unknown levels as processed to not waste cycles */ 1284 cpu->device_irq_level = run->s.regs.device_irq_level; 1285 bql_unlock(); 1286 } 1287 1288 return MEMTXATTRS_UNSPECIFIED; 1289 } 1290 1291 static void kvm_arm_vm_state_change(void *opaque, bool running, RunState state) 1292 { 1293 ARMCPU *cpu = opaque; 1294 1295 if (running) { 1296 if (cpu->kvm_adjvtime) { 1297 kvm_arm_put_virtual_time(cpu); 1298 } 1299 } else { 1300 if (cpu->kvm_adjvtime) { 1301 kvm_arm_get_virtual_time(cpu); 1302 } 1303 } 1304 } 1305 1306 /** 1307 * kvm_arm_handle_dabt_nisv: 1308 * @cpu: ARMCPU 1309 * @esr_iss: ISS encoding (limited) for the exception from Data Abort 1310 * ISV bit set to '0b0' -> no valid instruction syndrome 1311 * @fault_ipa: faulting address for the synchronous data abort 1312 * 1313 * Returns: 0 if the exception has been handled, < 0 otherwise 1314 */ 1315 static int kvm_arm_handle_dabt_nisv(ARMCPU *cpu, uint64_t esr_iss, 1316 uint64_t fault_ipa) 1317 { 1318 CPUARMState *env = &cpu->env; 1319 /* 1320 * Request KVM to inject the external data abort into the guest 1321 */ 1322 if (cap_has_inject_ext_dabt) { 1323 struct kvm_vcpu_events events = { }; 1324 /* 1325 * The external data abort event will be handled immediately by KVM 1326 * using the address fault that triggered the exit on given VCPU. 1327 * Requesting injection of the external data abort does not rely 1328 * on any other VCPU state. Therefore, in this particular case, the VCPU 1329 * synchronization can be exceptionally skipped. 1330 */ 1331 events.exception.ext_dabt_pending = 1; 1332 /* KVM_CAP_ARM_INJECT_EXT_DABT implies KVM_CAP_VCPU_EVENTS */ 1333 if (!kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events)) { 1334 env->ext_dabt_raised = 1; 1335 return 0; 1336 } 1337 } else { 1338 error_report("Data abort exception triggered by guest memory access " 1339 "at physical address: 0x" TARGET_FMT_lx, 1340 (target_ulong)fault_ipa); 1341 error_printf("KVM unable to emulate faulting instruction.\n"); 1342 } 1343 return -1; 1344 } 1345 1346 /** 1347 * kvm_arm_handle_debug: 1348 * @cpu: ARMCPU 1349 * @debug_exit: debug part of the KVM exit structure 1350 * 1351 * Returns: TRUE if the debug exception was handled. 1352 * 1353 * See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register 1354 * 1355 * To minimise translating between kernel and user-space the kernel 1356 * ABI just provides user-space with the full exception syndrome 1357 * register value to be decoded in QEMU. 1358 */ 1359 static bool kvm_arm_handle_debug(ARMCPU *cpu, 1360 struct kvm_debug_exit_arch *debug_exit) 1361 { 1362 int hsr_ec = syn_get_ec(debug_exit->hsr); 1363 CPUState *cs = CPU(cpu); 1364 CPUARMState *env = &cpu->env; 1365 1366 /* Ensure PC is synchronised */ 1367 kvm_cpu_synchronize_state(cs); 1368 1369 switch (hsr_ec) { 1370 case EC_SOFTWARESTEP: 1371 if (cs->singlestep_enabled) { 1372 return true; 1373 } else { 1374 /* 1375 * The kernel should have suppressed the guest's ability to 1376 * single step at this point so something has gone wrong. 1377 */ 1378 error_report("%s: guest single-step while debugging unsupported" 1379 " (%"PRIx64", %"PRIx32")", 1380 __func__, env->pc, debug_exit->hsr); 1381 return false; 1382 } 1383 break; 1384 case EC_AA64_BKPT: 1385 if (kvm_find_sw_breakpoint(cs, env->pc)) { 1386 return true; 1387 } 1388 break; 1389 case EC_BREAKPOINT: 1390 if (find_hw_breakpoint(cs, env->pc)) { 1391 return true; 1392 } 1393 break; 1394 case EC_WATCHPOINT: 1395 { 1396 CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far); 1397 if (wp) { 1398 cs->watchpoint_hit = wp; 1399 return true; 1400 } 1401 break; 1402 } 1403 default: 1404 error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")", 1405 __func__, debug_exit->hsr, env->pc); 1406 } 1407 1408 /* If we are not handling the debug exception it must belong to 1409 * the guest. Let's re-use the existing TCG interrupt code to set 1410 * everything up properly. 1411 */ 1412 cs->exception_index = EXCP_BKPT; 1413 env->exception.syndrome = debug_exit->hsr; 1414 env->exception.vaddress = debug_exit->far; 1415 env->exception.target_el = 1; 1416 bql_lock(); 1417 arm_cpu_do_interrupt(cs); 1418 bql_unlock(); 1419 1420 return false; 1421 } 1422 1423 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 1424 { 1425 ARMCPU *cpu = ARM_CPU(cs); 1426 int ret = 0; 1427 1428 switch (run->exit_reason) { 1429 case KVM_EXIT_DEBUG: 1430 if (kvm_arm_handle_debug(cpu, &run->debug.arch)) { 1431 ret = EXCP_DEBUG; 1432 } /* otherwise return to guest */ 1433 break; 1434 case KVM_EXIT_ARM_NISV: 1435 /* External DABT with no valid iss to decode */ 1436 ret = kvm_arm_handle_dabt_nisv(cpu, run->arm_nisv.esr_iss, 1437 run->arm_nisv.fault_ipa); 1438 break; 1439 default: 1440 qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n", 1441 __func__, run->exit_reason); 1442 break; 1443 } 1444 return ret; 1445 } 1446 1447 bool kvm_arch_stop_on_emulation_error(CPUState *cs) 1448 { 1449 return true; 1450 } 1451 1452 int kvm_arch_process_async_events(CPUState *cs) 1453 { 1454 return 0; 1455 } 1456 1457 /** 1458 * kvm_arm_hw_debug_active: 1459 * @cpu: ARMCPU 1460 * 1461 * Return: TRUE if any hardware breakpoints in use. 1462 */ 1463 static bool kvm_arm_hw_debug_active(ARMCPU *cpu) 1464 { 1465 return ((cur_hw_wps > 0) || (cur_hw_bps > 0)); 1466 } 1467 1468 /** 1469 * kvm_arm_copy_hw_debug_data: 1470 * @ptr: kvm_guest_debug_arch structure 1471 * 1472 * Copy the architecture specific debug registers into the 1473 * kvm_guest_debug ioctl structure. 1474 */ 1475 static void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr) 1476 { 1477 int i; 1478 memset(ptr, 0, sizeof(struct kvm_guest_debug_arch)); 1479 1480 for (i = 0; i < max_hw_wps; i++) { 1481 HWWatchpoint *wp = get_hw_wp(i); 1482 ptr->dbg_wcr[i] = wp->wcr; 1483 ptr->dbg_wvr[i] = wp->wvr; 1484 } 1485 for (i = 0; i < max_hw_bps; i++) { 1486 HWBreakpoint *bp = get_hw_bp(i); 1487 ptr->dbg_bcr[i] = bp->bcr; 1488 ptr->dbg_bvr[i] = bp->bvr; 1489 } 1490 } 1491 1492 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg) 1493 { 1494 if (kvm_sw_breakpoints_active(cs)) { 1495 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; 1496 } 1497 if (kvm_arm_hw_debug_active(ARM_CPU(cs))) { 1498 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW; 1499 kvm_arm_copy_hw_debug_data(&dbg->arch); 1500 } 1501 } 1502 1503 void kvm_arch_init_irq_routing(KVMState *s) 1504 { 1505 } 1506 1507 int kvm_arch_irqchip_create(KVMState *s) 1508 { 1509 if (kvm_kernel_irqchip_split()) { 1510 error_report("-machine kernel_irqchip=split is not supported on ARM."); 1511 exit(1); 1512 } 1513 1514 /* If we can create the VGIC using the newer device control API, we 1515 * let the device do this when it initializes itself, otherwise we 1516 * fall back to the old API */ 1517 return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL); 1518 } 1519 1520 int kvm_arm_vgic_probe(void) 1521 { 1522 int val = 0; 1523 1524 if (kvm_create_device(kvm_state, 1525 KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) { 1526 val |= KVM_ARM_VGIC_V3; 1527 } 1528 if (kvm_create_device(kvm_state, 1529 KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) { 1530 val |= KVM_ARM_VGIC_V2; 1531 } 1532 return val; 1533 } 1534 1535 int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level) 1536 { 1537 int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq; 1538 int cpu_idx1 = cpu % 256; 1539 int cpu_idx2 = cpu / 256; 1540 1541 kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) | 1542 (cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT); 1543 1544 return kvm_set_irq(kvm_state, kvm_irq, !!level); 1545 } 1546 1547 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 1548 uint64_t address, uint32_t data, PCIDevice *dev) 1549 { 1550 AddressSpace *as = pci_device_iommu_address_space(dev); 1551 hwaddr xlat, len, doorbell_gpa; 1552 MemoryRegionSection mrs; 1553 MemoryRegion *mr; 1554 1555 if (as == &address_space_memory) { 1556 return 0; 1557 } 1558 1559 /* MSI doorbell address is translated by an IOMMU */ 1560 1561 RCU_READ_LOCK_GUARD(); 1562 1563 mr = address_space_translate(as, address, &xlat, &len, true, 1564 MEMTXATTRS_UNSPECIFIED); 1565 1566 if (!mr) { 1567 return 1; 1568 } 1569 1570 mrs = memory_region_find(mr, xlat, 1); 1571 1572 if (!mrs.mr) { 1573 return 1; 1574 } 1575 1576 doorbell_gpa = mrs.offset_within_address_space; 1577 memory_region_unref(mrs.mr); 1578 1579 route->u.msi.address_lo = doorbell_gpa; 1580 route->u.msi.address_hi = doorbell_gpa >> 32; 1581 1582 trace_kvm_arm_fixup_msi_route(address, doorbell_gpa); 1583 1584 return 0; 1585 } 1586 1587 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 1588 int vector, PCIDevice *dev) 1589 { 1590 return 0; 1591 } 1592 1593 int kvm_arch_release_virq_post(int virq) 1594 { 1595 return 0; 1596 } 1597 1598 int kvm_arch_msi_data_to_gsi(uint32_t data) 1599 { 1600 return (data - 32) & 0xffff; 1601 } 1602 1603 static void kvm_arch_get_eager_split_size(Object *obj, Visitor *v, 1604 const char *name, void *opaque, 1605 Error **errp) 1606 { 1607 KVMState *s = KVM_STATE(obj); 1608 uint64_t value = s->kvm_eager_split_size; 1609 1610 visit_type_size(v, name, &value, errp); 1611 } 1612 1613 static void kvm_arch_set_eager_split_size(Object *obj, Visitor *v, 1614 const char *name, void *opaque, 1615 Error **errp) 1616 { 1617 KVMState *s = KVM_STATE(obj); 1618 uint64_t value; 1619 1620 if (s->fd != -1) { 1621 error_setg(errp, "Unable to set early-split-size after KVM has been initialized"); 1622 return; 1623 } 1624 1625 if (!visit_type_size(v, name, &value, errp)) { 1626 return; 1627 } 1628 1629 if (value && !is_power_of_2(value)) { 1630 error_setg(errp, "early-split-size must be a power of two"); 1631 return; 1632 } 1633 1634 s->kvm_eager_split_size = value; 1635 } 1636 1637 void kvm_arch_accel_class_init(ObjectClass *oc) 1638 { 1639 object_class_property_add(oc, "eager-split-size", "size", 1640 kvm_arch_get_eager_split_size, 1641 kvm_arch_set_eager_split_size, NULL, NULL); 1642 1643 object_class_property_set_description(oc, "eager-split-size", 1644 "Eager Page Split chunk size for hugepages. (default: 0, disabled)"); 1645 } 1646 1647 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type) 1648 { 1649 switch (type) { 1650 case GDB_BREAKPOINT_HW: 1651 return insert_hw_breakpoint(addr); 1652 break; 1653 case GDB_WATCHPOINT_READ: 1654 case GDB_WATCHPOINT_WRITE: 1655 case GDB_WATCHPOINT_ACCESS: 1656 return insert_hw_watchpoint(addr, len, type); 1657 default: 1658 return -ENOSYS; 1659 } 1660 } 1661 1662 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type) 1663 { 1664 switch (type) { 1665 case GDB_BREAKPOINT_HW: 1666 return delete_hw_breakpoint(addr); 1667 case GDB_WATCHPOINT_READ: 1668 case GDB_WATCHPOINT_WRITE: 1669 case GDB_WATCHPOINT_ACCESS: 1670 return delete_hw_watchpoint(addr, len, type); 1671 default: 1672 return -ENOSYS; 1673 } 1674 } 1675 1676 void kvm_arch_remove_all_hw_breakpoints(void) 1677 { 1678 if (cur_hw_wps > 0) { 1679 g_array_remove_range(hw_watchpoints, 0, cur_hw_wps); 1680 } 1681 if (cur_hw_bps > 0) { 1682 g_array_remove_range(hw_breakpoints, 0, cur_hw_bps); 1683 } 1684 } 1685 1686 static bool kvm_arm_set_device_attr(ARMCPU *cpu, struct kvm_device_attr *attr, 1687 const char *name) 1688 { 1689 int err; 1690 1691 err = kvm_vcpu_ioctl(CPU(cpu), KVM_HAS_DEVICE_ATTR, attr); 1692 if (err != 0) { 1693 error_report("%s: KVM_HAS_DEVICE_ATTR: %s", name, strerror(-err)); 1694 return false; 1695 } 1696 1697 err = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEVICE_ATTR, attr); 1698 if (err != 0) { 1699 error_report("%s: KVM_SET_DEVICE_ATTR: %s", name, strerror(-err)); 1700 return false; 1701 } 1702 1703 return true; 1704 } 1705 1706 void kvm_arm_pmu_init(ARMCPU *cpu) 1707 { 1708 struct kvm_device_attr attr = { 1709 .group = KVM_ARM_VCPU_PMU_V3_CTRL, 1710 .attr = KVM_ARM_VCPU_PMU_V3_INIT, 1711 }; 1712 1713 if (!cpu->has_pmu) { 1714 return; 1715 } 1716 if (!kvm_arm_set_device_attr(cpu, &attr, "PMU")) { 1717 error_report("failed to init PMU"); 1718 abort(); 1719 } 1720 } 1721 1722 void kvm_arm_pmu_set_irq(ARMCPU *cpu, int irq) 1723 { 1724 struct kvm_device_attr attr = { 1725 .group = KVM_ARM_VCPU_PMU_V3_CTRL, 1726 .addr = (intptr_t)&irq, 1727 .attr = KVM_ARM_VCPU_PMU_V3_IRQ, 1728 }; 1729 1730 if (!cpu->has_pmu) { 1731 return; 1732 } 1733 if (!kvm_arm_set_device_attr(cpu, &attr, "PMU")) { 1734 error_report("failed to set irq for PMU"); 1735 abort(); 1736 } 1737 } 1738 1739 void kvm_arm_pvtime_init(ARMCPU *cpu, uint64_t ipa) 1740 { 1741 struct kvm_device_attr attr = { 1742 .group = KVM_ARM_VCPU_PVTIME_CTRL, 1743 .attr = KVM_ARM_VCPU_PVTIME_IPA, 1744 .addr = (uint64_t)&ipa, 1745 }; 1746 1747 if (cpu->kvm_steal_time == ON_OFF_AUTO_OFF) { 1748 return; 1749 } 1750 if (!kvm_arm_set_device_attr(cpu, &attr, "PVTIME IPA")) { 1751 error_report("failed to init PVTIME IPA"); 1752 abort(); 1753 } 1754 } 1755 1756 void kvm_arm_steal_time_finalize(ARMCPU *cpu, Error **errp) 1757 { 1758 bool has_steal_time = kvm_check_extension(kvm_state, KVM_CAP_STEAL_TIME); 1759 1760 if (cpu->kvm_steal_time == ON_OFF_AUTO_AUTO) { 1761 if (!has_steal_time || !arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 1762 cpu->kvm_steal_time = ON_OFF_AUTO_OFF; 1763 } else { 1764 cpu->kvm_steal_time = ON_OFF_AUTO_ON; 1765 } 1766 } else if (cpu->kvm_steal_time == ON_OFF_AUTO_ON) { 1767 if (!has_steal_time) { 1768 error_setg(errp, "'kvm-steal-time' cannot be enabled " 1769 "on this host"); 1770 return; 1771 } else if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 1772 /* 1773 * DEN0057A chapter 2 says "This specification only covers 1774 * systems in which the Execution state of the hypervisor 1775 * as well as EL1 of virtual machines is AArch64.". And, 1776 * to ensure that, the smc/hvc calls are only specified as 1777 * smc64/hvc64. 1778 */ 1779 error_setg(errp, "'kvm-steal-time' cannot be enabled " 1780 "for AArch32 guests"); 1781 return; 1782 } 1783 } 1784 } 1785 1786 bool kvm_arm_aarch32_supported(void) 1787 { 1788 return kvm_check_extension(kvm_state, KVM_CAP_ARM_EL1_32BIT); 1789 } 1790 1791 bool kvm_arm_sve_supported(void) 1792 { 1793 return kvm_check_extension(kvm_state, KVM_CAP_ARM_SVE); 1794 } 1795 1796 QEMU_BUILD_BUG_ON(KVM_ARM64_SVE_VQ_MIN != 1); 1797 1798 uint32_t kvm_arm_sve_get_vls(ARMCPU *cpu) 1799 { 1800 /* Only call this function if kvm_arm_sve_supported() returns true. */ 1801 static uint64_t vls[KVM_ARM64_SVE_VLS_WORDS]; 1802 static bool probed; 1803 uint32_t vq = 0; 1804 int i; 1805 1806 /* 1807 * KVM ensures all host CPUs support the same set of vector lengths. 1808 * So we only need to create the scratch VCPUs once and then cache 1809 * the results. 1810 */ 1811 if (!probed) { 1812 struct kvm_vcpu_init init = { 1813 .target = -1, 1814 .features[0] = (1 << KVM_ARM_VCPU_SVE), 1815 }; 1816 struct kvm_one_reg reg = { 1817 .id = KVM_REG_ARM64_SVE_VLS, 1818 .addr = (uint64_t)&vls[0], 1819 }; 1820 int fdarray[3], ret; 1821 1822 probed = true; 1823 1824 if (!kvm_arm_create_scratch_host_vcpu(NULL, fdarray, &init)) { 1825 error_report("failed to create scratch VCPU with SVE enabled"); 1826 abort(); 1827 } 1828 ret = ioctl(fdarray[2], KVM_GET_ONE_REG, ®); 1829 kvm_arm_destroy_scratch_host_vcpu(fdarray); 1830 if (ret) { 1831 error_report("failed to get KVM_REG_ARM64_SVE_VLS: %s", 1832 strerror(errno)); 1833 abort(); 1834 } 1835 1836 for (i = KVM_ARM64_SVE_VLS_WORDS - 1; i >= 0; --i) { 1837 if (vls[i]) { 1838 vq = 64 - clz64(vls[i]) + i * 64; 1839 break; 1840 } 1841 } 1842 if (vq > ARM_MAX_VQ) { 1843 warn_report("KVM supports vector lengths larger than " 1844 "QEMU can enable"); 1845 vls[0] &= MAKE_64BIT_MASK(0, ARM_MAX_VQ); 1846 } 1847 } 1848 1849 return vls[0]; 1850 } 1851 1852 static int kvm_arm_sve_set_vls(ARMCPU *cpu) 1853 { 1854 uint64_t vls[KVM_ARM64_SVE_VLS_WORDS] = { cpu->sve_vq.map }; 1855 1856 assert(cpu->sve_max_vq <= KVM_ARM64_SVE_VQ_MAX); 1857 1858 return kvm_set_one_reg(CPU(cpu), KVM_REG_ARM64_SVE_VLS, &vls[0]); 1859 } 1860 1861 #define ARM_CPU_ID_MPIDR 3, 0, 0, 0, 5 1862 1863 int kvm_arch_init_vcpu(CPUState *cs) 1864 { 1865 int ret; 1866 uint64_t mpidr; 1867 ARMCPU *cpu = ARM_CPU(cs); 1868 CPUARMState *env = &cpu->env; 1869 uint64_t psciver; 1870 1871 if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE || 1872 !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) { 1873 error_report("KVM is not supported for this guest CPU type"); 1874 return -EINVAL; 1875 } 1876 1877 qemu_add_vm_change_state_handler(kvm_arm_vm_state_change, cpu); 1878 1879 /* Determine init features for this CPU */ 1880 memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features)); 1881 if (cs->start_powered_off) { 1882 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF; 1883 } 1884 if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) { 1885 cpu->psci_version = QEMU_PSCI_VERSION_0_2; 1886 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2; 1887 } 1888 if (!arm_feature(env, ARM_FEATURE_AARCH64)) { 1889 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT; 1890 } 1891 if (!kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PMU_V3)) { 1892 cpu->has_pmu = false; 1893 } 1894 if (cpu->has_pmu) { 1895 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3; 1896 } else { 1897 env->features &= ~(1ULL << ARM_FEATURE_PMU); 1898 } 1899 if (cpu_isar_feature(aa64_sve, cpu)) { 1900 assert(kvm_arm_sve_supported()); 1901 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_SVE; 1902 } 1903 if (cpu_isar_feature(aa64_pauth, cpu)) { 1904 cpu->kvm_init_features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS | 1905 1 << KVM_ARM_VCPU_PTRAUTH_GENERIC); 1906 } 1907 1908 /* Do KVM_ARM_VCPU_INIT ioctl */ 1909 ret = kvm_arm_vcpu_init(cpu); 1910 if (ret) { 1911 return ret; 1912 } 1913 1914 if (cpu_isar_feature(aa64_sve, cpu)) { 1915 ret = kvm_arm_sve_set_vls(cpu); 1916 if (ret) { 1917 return ret; 1918 } 1919 ret = kvm_arm_vcpu_finalize(cpu, KVM_ARM_VCPU_SVE); 1920 if (ret) { 1921 return ret; 1922 } 1923 } 1924 1925 /* 1926 * KVM reports the exact PSCI version it is implementing via a 1927 * special sysreg. If it is present, use its contents to determine 1928 * what to report to the guest in the dtb (it is the PSCI version, 1929 * in the same 15-bits major 16-bits minor format that PSCI_VERSION 1930 * returns). 1931 */ 1932 if (!kvm_get_one_reg(cs, KVM_REG_ARM_PSCI_VERSION, &psciver)) { 1933 cpu->psci_version = psciver; 1934 } 1935 1936 /* 1937 * When KVM is in use, PSCI is emulated in-kernel and not by qemu. 1938 * Currently KVM has its own idea about MPIDR assignment, so we 1939 * override our defaults with what we get from KVM. 1940 */ 1941 ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr); 1942 if (ret) { 1943 return ret; 1944 } 1945 cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK; 1946 1947 return kvm_arm_init_cpreg_list(cpu); 1948 } 1949 1950 int kvm_arch_destroy_vcpu(CPUState *cs) 1951 { 1952 return 0; 1953 } 1954 1955 /* Callers must hold the iothread mutex lock */ 1956 static void kvm_inject_arm_sea(CPUState *c) 1957 { 1958 ARMCPU *cpu = ARM_CPU(c); 1959 CPUARMState *env = &cpu->env; 1960 uint32_t esr; 1961 bool same_el; 1962 1963 c->exception_index = EXCP_DATA_ABORT; 1964 env->exception.target_el = 1; 1965 1966 /* 1967 * Set the DFSC to synchronous external abort and set FnV to not valid, 1968 * this will tell guest the FAR_ELx is UNKNOWN for this abort. 1969 */ 1970 same_el = arm_current_el(env) == env->exception.target_el; 1971 esr = syn_data_abort_no_iss(same_el, 1, 0, 0, 0, 0, 0x10); 1972 1973 env->exception.syndrome = esr; 1974 1975 arm_cpu_do_interrupt(c); 1976 } 1977 1978 #define AARCH64_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \ 1979 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x)) 1980 1981 #define AARCH64_SIMD_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \ 1982 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x)) 1983 1984 #define AARCH64_SIMD_CTRL_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \ 1985 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x)) 1986 1987 static int kvm_arch_put_fpsimd(CPUState *cs) 1988 { 1989 CPUARMState *env = &ARM_CPU(cs)->env; 1990 int i, ret; 1991 1992 for (i = 0; i < 32; i++) { 1993 uint64_t *q = aa64_vfp_qreg(env, i); 1994 #if HOST_BIG_ENDIAN 1995 uint64_t fp_val[2] = { q[1], q[0] }; 1996 ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), 1997 fp_val); 1998 #else 1999 ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q); 2000 #endif 2001 if (ret) { 2002 return ret; 2003 } 2004 } 2005 2006 return 0; 2007 } 2008 2009 /* 2010 * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits 2011 * and PREGS and the FFR have a slice size of 256 bits. However we simply hard 2012 * code the slice index to zero for now as it's unlikely we'll need more than 2013 * one slice for quite some time. 2014 */ 2015 static int kvm_arch_put_sve(CPUState *cs) 2016 { 2017 ARMCPU *cpu = ARM_CPU(cs); 2018 CPUARMState *env = &cpu->env; 2019 uint64_t tmp[ARM_MAX_VQ * 2]; 2020 uint64_t *r; 2021 int n, ret; 2022 2023 for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) { 2024 r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2); 2025 ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r); 2026 if (ret) { 2027 return ret; 2028 } 2029 } 2030 2031 for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) { 2032 r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0], 2033 DIV_ROUND_UP(cpu->sve_max_vq * 2, 8)); 2034 ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r); 2035 if (ret) { 2036 return ret; 2037 } 2038 } 2039 2040 r = sve_bswap64(tmp, &env->vfp.pregs[FFR_PRED_NUM].p[0], 2041 DIV_ROUND_UP(cpu->sve_max_vq * 2, 8)); 2042 ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r); 2043 if (ret) { 2044 return ret; 2045 } 2046 2047 return 0; 2048 } 2049 2050 int kvm_arch_put_registers(CPUState *cs, int level) 2051 { 2052 uint64_t val; 2053 uint32_t fpr; 2054 int i, ret; 2055 unsigned int el; 2056 2057 ARMCPU *cpu = ARM_CPU(cs); 2058 CPUARMState *env = &cpu->env; 2059 2060 /* If we are in AArch32 mode then we need to copy the AArch32 regs to the 2061 * AArch64 registers before pushing them out to 64-bit KVM. 2062 */ 2063 if (!is_a64(env)) { 2064 aarch64_sync_32_to_64(env); 2065 } 2066 2067 for (i = 0; i < 31; i++) { 2068 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]), 2069 &env->xregs[i]); 2070 if (ret) { 2071 return ret; 2072 } 2073 } 2074 2075 /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the 2076 * QEMU side we keep the current SP in xregs[31] as well. 2077 */ 2078 aarch64_save_sp(env, 1); 2079 2080 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]); 2081 if (ret) { 2082 return ret; 2083 } 2084 2085 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]); 2086 if (ret) { 2087 return ret; 2088 } 2089 2090 /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */ 2091 if (is_a64(env)) { 2092 val = pstate_read(env); 2093 } else { 2094 val = cpsr_read(env); 2095 } 2096 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val); 2097 if (ret) { 2098 return ret; 2099 } 2100 2101 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc); 2102 if (ret) { 2103 return ret; 2104 } 2105 2106 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]); 2107 if (ret) { 2108 return ret; 2109 } 2110 2111 /* Saved Program State Registers 2112 * 2113 * Before we restore from the banked_spsr[] array we need to 2114 * ensure that any modifications to env->spsr are correctly 2115 * reflected in the banks. 2116 */ 2117 el = arm_current_el(env); 2118 if (el > 0 && !is_a64(env)) { 2119 i = bank_number(env->uncached_cpsr & CPSR_M); 2120 env->banked_spsr[i] = env->spsr; 2121 } 2122 2123 /* KVM 0-4 map to QEMU banks 1-5 */ 2124 for (i = 0; i < KVM_NR_SPSR; i++) { 2125 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(spsr[i]), 2126 &env->banked_spsr[i + 1]); 2127 if (ret) { 2128 return ret; 2129 } 2130 } 2131 2132 if (cpu_isar_feature(aa64_sve, cpu)) { 2133 ret = kvm_arch_put_sve(cs); 2134 } else { 2135 ret = kvm_arch_put_fpsimd(cs); 2136 } 2137 if (ret) { 2138 return ret; 2139 } 2140 2141 fpr = vfp_get_fpsr(env); 2142 ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr); 2143 if (ret) { 2144 return ret; 2145 } 2146 2147 fpr = vfp_get_fpcr(env); 2148 ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr); 2149 if (ret) { 2150 return ret; 2151 } 2152 2153 write_cpustate_to_list(cpu, true); 2154 2155 if (!write_list_to_kvmstate(cpu, level)) { 2156 return -EINVAL; 2157 } 2158 2159 /* 2160 * Setting VCPU events should be triggered after syncing the registers 2161 * to avoid overwriting potential changes made by KVM upon calling 2162 * KVM_SET_VCPU_EVENTS ioctl 2163 */ 2164 ret = kvm_put_vcpu_events(cpu); 2165 if (ret) { 2166 return ret; 2167 } 2168 2169 return kvm_arm_sync_mpstate_to_kvm(cpu); 2170 } 2171 2172 static int kvm_arch_get_fpsimd(CPUState *cs) 2173 { 2174 CPUARMState *env = &ARM_CPU(cs)->env; 2175 int i, ret; 2176 2177 for (i = 0; i < 32; i++) { 2178 uint64_t *q = aa64_vfp_qreg(env, i); 2179 ret = kvm_get_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q); 2180 if (ret) { 2181 return ret; 2182 } else { 2183 #if HOST_BIG_ENDIAN 2184 uint64_t t; 2185 t = q[0], q[0] = q[1], q[1] = t; 2186 #endif 2187 } 2188 } 2189 2190 return 0; 2191 } 2192 2193 /* 2194 * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits 2195 * and PREGS and the FFR have a slice size of 256 bits. However we simply hard 2196 * code the slice index to zero for now as it's unlikely we'll need more than 2197 * one slice for quite some time. 2198 */ 2199 static int kvm_arch_get_sve(CPUState *cs) 2200 { 2201 ARMCPU *cpu = ARM_CPU(cs); 2202 CPUARMState *env = &cpu->env; 2203 uint64_t *r; 2204 int n, ret; 2205 2206 for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) { 2207 r = &env->vfp.zregs[n].d[0]; 2208 ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r); 2209 if (ret) { 2210 return ret; 2211 } 2212 sve_bswap64(r, r, cpu->sve_max_vq * 2); 2213 } 2214 2215 for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) { 2216 r = &env->vfp.pregs[n].p[0]; 2217 ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r); 2218 if (ret) { 2219 return ret; 2220 } 2221 sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8)); 2222 } 2223 2224 r = &env->vfp.pregs[FFR_PRED_NUM].p[0]; 2225 ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r); 2226 if (ret) { 2227 return ret; 2228 } 2229 sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8)); 2230 2231 return 0; 2232 } 2233 2234 int kvm_arch_get_registers(CPUState *cs) 2235 { 2236 uint64_t val; 2237 unsigned int el; 2238 uint32_t fpr; 2239 int i, ret; 2240 2241 ARMCPU *cpu = ARM_CPU(cs); 2242 CPUARMState *env = &cpu->env; 2243 2244 for (i = 0; i < 31; i++) { 2245 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]), 2246 &env->xregs[i]); 2247 if (ret) { 2248 return ret; 2249 } 2250 } 2251 2252 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]); 2253 if (ret) { 2254 return ret; 2255 } 2256 2257 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]); 2258 if (ret) { 2259 return ret; 2260 } 2261 2262 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val); 2263 if (ret) { 2264 return ret; 2265 } 2266 2267 env->aarch64 = ((val & PSTATE_nRW) == 0); 2268 if (is_a64(env)) { 2269 pstate_write(env, val); 2270 } else { 2271 cpsr_write(env, val, 0xffffffff, CPSRWriteRaw); 2272 } 2273 2274 /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the 2275 * QEMU side we keep the current SP in xregs[31] as well. 2276 */ 2277 aarch64_restore_sp(env, 1); 2278 2279 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc); 2280 if (ret) { 2281 return ret; 2282 } 2283 2284 /* If we are in AArch32 mode then we need to sync the AArch32 regs with the 2285 * incoming AArch64 regs received from 64-bit KVM. 2286 * We must perform this after all of the registers have been acquired from 2287 * the kernel. 2288 */ 2289 if (!is_a64(env)) { 2290 aarch64_sync_64_to_32(env); 2291 } 2292 2293 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]); 2294 if (ret) { 2295 return ret; 2296 } 2297 2298 /* Fetch the SPSR registers 2299 * 2300 * KVM SPSRs 0-4 map to QEMU banks 1-5 2301 */ 2302 for (i = 0; i < KVM_NR_SPSR; i++) { 2303 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(spsr[i]), 2304 &env->banked_spsr[i + 1]); 2305 if (ret) { 2306 return ret; 2307 } 2308 } 2309 2310 el = arm_current_el(env); 2311 if (el > 0 && !is_a64(env)) { 2312 i = bank_number(env->uncached_cpsr & CPSR_M); 2313 env->spsr = env->banked_spsr[i]; 2314 } 2315 2316 if (cpu_isar_feature(aa64_sve, cpu)) { 2317 ret = kvm_arch_get_sve(cs); 2318 } else { 2319 ret = kvm_arch_get_fpsimd(cs); 2320 } 2321 if (ret) { 2322 return ret; 2323 } 2324 2325 ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr); 2326 if (ret) { 2327 return ret; 2328 } 2329 vfp_set_fpsr(env, fpr); 2330 2331 ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr); 2332 if (ret) { 2333 return ret; 2334 } 2335 vfp_set_fpcr(env, fpr); 2336 2337 ret = kvm_get_vcpu_events(cpu); 2338 if (ret) { 2339 return ret; 2340 } 2341 2342 if (!write_kvmstate_to_list(cpu)) { 2343 return -EINVAL; 2344 } 2345 /* Note that it's OK to have registers which aren't in CPUState, 2346 * so we can ignore a failure return here. 2347 */ 2348 write_list_to_cpustate(cpu); 2349 2350 ret = kvm_arm_sync_mpstate_to_qemu(cpu); 2351 2352 /* TODO: other registers */ 2353 return ret; 2354 } 2355 2356 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr) 2357 { 2358 ram_addr_t ram_addr; 2359 hwaddr paddr; 2360 2361 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO); 2362 2363 if (acpi_ghes_present() && addr) { 2364 ram_addr = qemu_ram_addr_from_host(addr); 2365 if (ram_addr != RAM_ADDR_INVALID && 2366 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) { 2367 kvm_hwpoison_page_add(ram_addr); 2368 /* 2369 * If this is a BUS_MCEERR_AR, we know we have been called 2370 * synchronously from the vCPU thread, so we can easily 2371 * synchronize the state and inject an error. 2372 * 2373 * TODO: we currently don't tell the guest at all about 2374 * BUS_MCEERR_AO. In that case we might either be being 2375 * called synchronously from the vCPU thread, or a bit 2376 * later from the main thread, so doing the injection of 2377 * the error would be more complicated. 2378 */ 2379 if (code == BUS_MCEERR_AR) { 2380 kvm_cpu_synchronize_state(c); 2381 if (!acpi_ghes_record_errors(ACPI_HEST_SRC_ID_SEA, paddr)) { 2382 kvm_inject_arm_sea(c); 2383 } else { 2384 error_report("failed to record the error"); 2385 abort(); 2386 } 2387 } 2388 return; 2389 } 2390 if (code == BUS_MCEERR_AO) { 2391 error_report("Hardware memory error at addr %p for memory used by " 2392 "QEMU itself instead of guest system!", addr); 2393 } 2394 } 2395 2396 if (code == BUS_MCEERR_AR) { 2397 error_report("Hardware memory error!"); 2398 exit(1); 2399 } 2400 } 2401 2402 /* C6.6.29 BRK instruction */ 2403 static const uint32_t brk_insn = 0xd4200000; 2404 2405 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 2406 { 2407 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) || 2408 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) { 2409 return -EINVAL; 2410 } 2411 return 0; 2412 } 2413 2414 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 2415 { 2416 static uint32_t brk; 2417 2418 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) || 2419 brk != brk_insn || 2420 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) { 2421 return -EINVAL; 2422 } 2423 return 0; 2424 } 2425