1 /* 2 * ARM implementation of KVM hooks 3 * 4 * Copyright Christoffer Dall 2009-2010 5 * 6 * This work is licensed under the terms of the GNU GPL, version 2 or later. 7 * See the COPYING file in the top-level directory. 8 * 9 */ 10 11 #include "qemu/osdep.h" 12 #include <sys/ioctl.h> 13 14 #include <linux/kvm.h> 15 16 #include "qemu/timer.h" 17 #include "qemu/error-report.h" 18 #include "qemu/main-loop.h" 19 #include "qom/object.h" 20 #include "qapi/error.h" 21 #include "sysemu/sysemu.h" 22 #include "sysemu/kvm.h" 23 #include "sysemu/kvm_int.h" 24 #include "kvm_arm.h" 25 #include "cpu.h" 26 #include "trace.h" 27 #include "internals.h" 28 #include "hw/pci/pci.h" 29 #include "exec/memattrs.h" 30 #include "exec/address-spaces.h" 31 #include "hw/boards.h" 32 #include "hw/irq.h" 33 #include "qemu/log.h" 34 35 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 36 KVM_CAP_LAST_INFO 37 }; 38 39 static bool cap_has_mp_state; 40 static bool cap_has_inject_serror_esr; 41 static bool cap_has_inject_ext_dabt; 42 43 static ARMHostCPUFeatures arm_host_cpu_features; 44 45 int kvm_arm_vcpu_init(CPUState *cs) 46 { 47 ARMCPU *cpu = ARM_CPU(cs); 48 struct kvm_vcpu_init init; 49 50 init.target = cpu->kvm_target; 51 memcpy(init.features, cpu->kvm_init_features, sizeof(init.features)); 52 53 return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init); 54 } 55 56 int kvm_arm_vcpu_finalize(CPUState *cs, int feature) 57 { 58 return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_FINALIZE, &feature); 59 } 60 61 void kvm_arm_init_serror_injection(CPUState *cs) 62 { 63 cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state, 64 KVM_CAP_ARM_INJECT_SERROR_ESR); 65 } 66 67 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try, 68 int *fdarray, 69 struct kvm_vcpu_init *init) 70 { 71 int ret = 0, kvmfd = -1, vmfd = -1, cpufd = -1; 72 int max_vm_pa_size; 73 74 kvmfd = qemu_open_old("/dev/kvm", O_RDWR); 75 if (kvmfd < 0) { 76 goto err; 77 } 78 max_vm_pa_size = ioctl(kvmfd, KVM_CHECK_EXTENSION, KVM_CAP_ARM_VM_IPA_SIZE); 79 if (max_vm_pa_size < 0) { 80 max_vm_pa_size = 0; 81 } 82 do { 83 vmfd = ioctl(kvmfd, KVM_CREATE_VM, max_vm_pa_size); 84 } while (vmfd == -1 && errno == EINTR); 85 if (vmfd < 0) { 86 goto err; 87 } 88 cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0); 89 if (cpufd < 0) { 90 goto err; 91 } 92 93 if (!init) { 94 /* Caller doesn't want the VCPU to be initialized, so skip it */ 95 goto finish; 96 } 97 98 if (init->target == -1) { 99 struct kvm_vcpu_init preferred; 100 101 ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, &preferred); 102 if (!ret) { 103 init->target = preferred.target; 104 } 105 } 106 if (ret >= 0) { 107 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init); 108 if (ret < 0) { 109 goto err; 110 } 111 } else if (cpus_to_try) { 112 /* Old kernel which doesn't know about the 113 * PREFERRED_TARGET ioctl: we know it will only support 114 * creating one kind of guest CPU which is its preferred 115 * CPU type. 116 */ 117 struct kvm_vcpu_init try; 118 119 while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) { 120 try.target = *cpus_to_try++; 121 memcpy(try.features, init->features, sizeof(init->features)); 122 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, &try); 123 if (ret >= 0) { 124 break; 125 } 126 } 127 if (ret < 0) { 128 goto err; 129 } 130 init->target = try.target; 131 } else { 132 /* Treat a NULL cpus_to_try argument the same as an empty 133 * list, which means we will fail the call since this must 134 * be an old kernel which doesn't support PREFERRED_TARGET. 135 */ 136 goto err; 137 } 138 139 finish: 140 fdarray[0] = kvmfd; 141 fdarray[1] = vmfd; 142 fdarray[2] = cpufd; 143 144 return true; 145 146 err: 147 if (cpufd >= 0) { 148 close(cpufd); 149 } 150 if (vmfd >= 0) { 151 close(vmfd); 152 } 153 if (kvmfd >= 0) { 154 close(kvmfd); 155 } 156 157 return false; 158 } 159 160 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray) 161 { 162 int i; 163 164 for (i = 2; i >= 0; i--) { 165 close(fdarray[i]); 166 } 167 } 168 169 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu) 170 { 171 CPUARMState *env = &cpu->env; 172 173 if (!arm_host_cpu_features.dtb_compatible) { 174 if (!kvm_enabled() || 175 !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) { 176 /* We can't report this error yet, so flag that we need to 177 * in arm_cpu_realizefn(). 178 */ 179 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE; 180 cpu->host_cpu_probe_failed = true; 181 return; 182 } 183 } 184 185 cpu->kvm_target = arm_host_cpu_features.target; 186 cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible; 187 cpu->isar = arm_host_cpu_features.isar; 188 env->features = arm_host_cpu_features.features; 189 } 190 191 static bool kvm_no_adjvtime_get(Object *obj, Error **errp) 192 { 193 return !ARM_CPU(obj)->kvm_adjvtime; 194 } 195 196 static void kvm_no_adjvtime_set(Object *obj, bool value, Error **errp) 197 { 198 ARM_CPU(obj)->kvm_adjvtime = !value; 199 } 200 201 static bool kvm_steal_time_get(Object *obj, Error **errp) 202 { 203 return ARM_CPU(obj)->kvm_steal_time != ON_OFF_AUTO_OFF; 204 } 205 206 static void kvm_steal_time_set(Object *obj, bool value, Error **errp) 207 { 208 ARM_CPU(obj)->kvm_steal_time = value ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 209 } 210 211 /* KVM VCPU properties should be prefixed with "kvm-". */ 212 void kvm_arm_add_vcpu_properties(Object *obj) 213 { 214 ARMCPU *cpu = ARM_CPU(obj); 215 CPUARMState *env = &cpu->env; 216 217 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 218 cpu->kvm_adjvtime = true; 219 object_property_add_bool(obj, "kvm-no-adjvtime", kvm_no_adjvtime_get, 220 kvm_no_adjvtime_set); 221 object_property_set_description(obj, "kvm-no-adjvtime", 222 "Set on to disable the adjustment of " 223 "the virtual counter. VM stopped time " 224 "will be counted."); 225 } 226 227 cpu->kvm_steal_time = ON_OFF_AUTO_AUTO; 228 object_property_add_bool(obj, "kvm-steal-time", kvm_steal_time_get, 229 kvm_steal_time_set); 230 object_property_set_description(obj, "kvm-steal-time", 231 "Set off to disable KVM steal time."); 232 } 233 234 bool kvm_arm_pmu_supported(void) 235 { 236 return kvm_check_extension(kvm_state, KVM_CAP_ARM_PMU_V3); 237 } 238 239 int kvm_arm_get_max_vm_ipa_size(MachineState *ms, bool *fixed_ipa) 240 { 241 KVMState *s = KVM_STATE(ms->accelerator); 242 int ret; 243 244 ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE); 245 *fixed_ipa = ret <= 0; 246 247 return ret > 0 ? ret : 40; 248 } 249 250 int kvm_arch_init(MachineState *ms, KVMState *s) 251 { 252 int ret = 0; 253 /* For ARM interrupt delivery is always asynchronous, 254 * whether we are using an in-kernel VGIC or not. 255 */ 256 kvm_async_interrupts_allowed = true; 257 258 /* 259 * PSCI wakes up secondary cores, so we always need to 260 * have vCPUs waiting in kernel space 261 */ 262 kvm_halt_in_kernel_allowed = true; 263 264 cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE); 265 266 if (ms->smp.cpus > 256 && 267 !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) { 268 error_report("Using more than 256 vcpus requires a host kernel " 269 "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2"); 270 ret = -EINVAL; 271 } 272 273 if (kvm_check_extension(s, KVM_CAP_ARM_NISV_TO_USER)) { 274 if (kvm_vm_enable_cap(s, KVM_CAP_ARM_NISV_TO_USER, 0)) { 275 error_report("Failed to enable KVM_CAP_ARM_NISV_TO_USER cap"); 276 } else { 277 /* Set status for supporting the external dabt injection */ 278 cap_has_inject_ext_dabt = kvm_check_extension(s, 279 KVM_CAP_ARM_INJECT_EXT_DABT); 280 } 281 } 282 283 kvm_arm_init_debug(s); 284 285 return ret; 286 } 287 288 unsigned long kvm_arch_vcpu_id(CPUState *cpu) 289 { 290 return cpu->cpu_index; 291 } 292 293 /* We track all the KVM devices which need their memory addresses 294 * passing to the kernel in a list of these structures. 295 * When board init is complete we run through the list and 296 * tell the kernel the base addresses of the memory regions. 297 * We use a MemoryListener to track mapping and unmapping of 298 * the regions during board creation, so the board models don't 299 * need to do anything special for the KVM case. 300 * 301 * Sometimes the address must be OR'ed with some other fields 302 * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION). 303 * @kda_addr_ormask aims at storing the value of those fields. 304 */ 305 typedef struct KVMDevice { 306 struct kvm_arm_device_addr kda; 307 struct kvm_device_attr kdattr; 308 uint64_t kda_addr_ormask; 309 MemoryRegion *mr; 310 QSLIST_ENTRY(KVMDevice) entries; 311 int dev_fd; 312 } KVMDevice; 313 314 static QSLIST_HEAD(, KVMDevice) kvm_devices_head; 315 316 static void kvm_arm_devlistener_add(MemoryListener *listener, 317 MemoryRegionSection *section) 318 { 319 KVMDevice *kd; 320 321 QSLIST_FOREACH(kd, &kvm_devices_head, entries) { 322 if (section->mr == kd->mr) { 323 kd->kda.addr = section->offset_within_address_space; 324 } 325 } 326 } 327 328 static void kvm_arm_devlistener_del(MemoryListener *listener, 329 MemoryRegionSection *section) 330 { 331 KVMDevice *kd; 332 333 QSLIST_FOREACH(kd, &kvm_devices_head, entries) { 334 if (section->mr == kd->mr) { 335 kd->kda.addr = -1; 336 } 337 } 338 } 339 340 static MemoryListener devlistener = { 341 .name = "kvm-arm", 342 .region_add = kvm_arm_devlistener_add, 343 .region_del = kvm_arm_devlistener_del, 344 }; 345 346 static void kvm_arm_set_device_addr(KVMDevice *kd) 347 { 348 struct kvm_device_attr *attr = &kd->kdattr; 349 int ret; 350 351 /* If the device control API is available and we have a device fd on the 352 * KVMDevice struct, let's use the newer API 353 */ 354 if (kd->dev_fd >= 0) { 355 uint64_t addr = kd->kda.addr; 356 357 addr |= kd->kda_addr_ormask; 358 attr->addr = (uintptr_t)&addr; 359 ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr); 360 } else { 361 ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda); 362 } 363 364 if (ret < 0) { 365 fprintf(stderr, "Failed to set device address: %s\n", 366 strerror(-ret)); 367 abort(); 368 } 369 } 370 371 static void kvm_arm_machine_init_done(Notifier *notifier, void *data) 372 { 373 KVMDevice *kd, *tkd; 374 375 QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) { 376 if (kd->kda.addr != -1) { 377 kvm_arm_set_device_addr(kd); 378 } 379 memory_region_unref(kd->mr); 380 QSLIST_REMOVE_HEAD(&kvm_devices_head, entries); 381 g_free(kd); 382 } 383 memory_listener_unregister(&devlistener); 384 } 385 386 static Notifier notify = { 387 .notify = kvm_arm_machine_init_done, 388 }; 389 390 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group, 391 uint64_t attr, int dev_fd, uint64_t addr_ormask) 392 { 393 KVMDevice *kd; 394 395 if (!kvm_irqchip_in_kernel()) { 396 return; 397 } 398 399 if (QSLIST_EMPTY(&kvm_devices_head)) { 400 memory_listener_register(&devlistener, &address_space_memory); 401 qemu_add_machine_init_done_notifier(¬ify); 402 } 403 kd = g_new0(KVMDevice, 1); 404 kd->mr = mr; 405 kd->kda.id = devid; 406 kd->kda.addr = -1; 407 kd->kdattr.flags = 0; 408 kd->kdattr.group = group; 409 kd->kdattr.attr = attr; 410 kd->dev_fd = dev_fd; 411 kd->kda_addr_ormask = addr_ormask; 412 QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries); 413 memory_region_ref(kd->mr); 414 } 415 416 static int compare_u64(const void *a, const void *b) 417 { 418 if (*(uint64_t *)a > *(uint64_t *)b) { 419 return 1; 420 } 421 if (*(uint64_t *)a < *(uint64_t *)b) { 422 return -1; 423 } 424 return 0; 425 } 426 427 /* 428 * cpreg_values are sorted in ascending order by KVM register ID 429 * (see kvm_arm_init_cpreg_list). This allows us to cheaply find 430 * the storage for a KVM register by ID with a binary search. 431 */ 432 static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx) 433 { 434 uint64_t *res; 435 436 res = bsearch(®idx, cpu->cpreg_indexes, cpu->cpreg_array_len, 437 sizeof(uint64_t), compare_u64); 438 assert(res); 439 440 return &cpu->cpreg_values[res - cpu->cpreg_indexes]; 441 } 442 443 /* Initialize the ARMCPU cpreg list according to the kernel's 444 * definition of what CPU registers it knows about (and throw away 445 * the previous TCG-created cpreg list). 446 */ 447 int kvm_arm_init_cpreg_list(ARMCPU *cpu) 448 { 449 struct kvm_reg_list rl; 450 struct kvm_reg_list *rlp; 451 int i, ret, arraylen; 452 CPUState *cs = CPU(cpu); 453 454 rl.n = 0; 455 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl); 456 if (ret != -E2BIG) { 457 return ret; 458 } 459 rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t)); 460 rlp->n = rl.n; 461 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp); 462 if (ret) { 463 goto out; 464 } 465 /* Sort the list we get back from the kernel, since cpreg_tuples 466 * must be in strictly ascending order. 467 */ 468 qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64); 469 470 for (i = 0, arraylen = 0; i < rlp->n; i++) { 471 if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) { 472 continue; 473 } 474 switch (rlp->reg[i] & KVM_REG_SIZE_MASK) { 475 case KVM_REG_SIZE_U32: 476 case KVM_REG_SIZE_U64: 477 break; 478 default: 479 fprintf(stderr, "Can't handle size of register in kernel list\n"); 480 ret = -EINVAL; 481 goto out; 482 } 483 484 arraylen++; 485 } 486 487 cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen); 488 cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen); 489 cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes, 490 arraylen); 491 cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values, 492 arraylen); 493 cpu->cpreg_array_len = arraylen; 494 cpu->cpreg_vmstate_array_len = arraylen; 495 496 for (i = 0, arraylen = 0; i < rlp->n; i++) { 497 uint64_t regidx = rlp->reg[i]; 498 if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) { 499 continue; 500 } 501 cpu->cpreg_indexes[arraylen] = regidx; 502 arraylen++; 503 } 504 assert(cpu->cpreg_array_len == arraylen); 505 506 if (!write_kvmstate_to_list(cpu)) { 507 /* Shouldn't happen unless kernel is inconsistent about 508 * what registers exist. 509 */ 510 fprintf(stderr, "Initial read of kernel register state failed\n"); 511 ret = -EINVAL; 512 goto out; 513 } 514 515 out: 516 g_free(rlp); 517 return ret; 518 } 519 520 bool write_kvmstate_to_list(ARMCPU *cpu) 521 { 522 CPUState *cs = CPU(cpu); 523 int i; 524 bool ok = true; 525 526 for (i = 0; i < cpu->cpreg_array_len; i++) { 527 struct kvm_one_reg r; 528 uint64_t regidx = cpu->cpreg_indexes[i]; 529 uint32_t v32; 530 int ret; 531 532 r.id = regidx; 533 534 switch (regidx & KVM_REG_SIZE_MASK) { 535 case KVM_REG_SIZE_U32: 536 r.addr = (uintptr_t)&v32; 537 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); 538 if (!ret) { 539 cpu->cpreg_values[i] = v32; 540 } 541 break; 542 case KVM_REG_SIZE_U64: 543 r.addr = (uintptr_t)(cpu->cpreg_values + i); 544 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); 545 break; 546 default: 547 g_assert_not_reached(); 548 } 549 if (ret) { 550 ok = false; 551 } 552 } 553 return ok; 554 } 555 556 bool write_list_to_kvmstate(ARMCPU *cpu, int level) 557 { 558 CPUState *cs = CPU(cpu); 559 int i; 560 bool ok = true; 561 562 for (i = 0; i < cpu->cpreg_array_len; i++) { 563 struct kvm_one_reg r; 564 uint64_t regidx = cpu->cpreg_indexes[i]; 565 uint32_t v32; 566 int ret; 567 568 if (kvm_arm_cpreg_level(regidx) > level) { 569 continue; 570 } 571 572 r.id = regidx; 573 switch (regidx & KVM_REG_SIZE_MASK) { 574 case KVM_REG_SIZE_U32: 575 v32 = cpu->cpreg_values[i]; 576 r.addr = (uintptr_t)&v32; 577 break; 578 case KVM_REG_SIZE_U64: 579 r.addr = (uintptr_t)(cpu->cpreg_values + i); 580 break; 581 default: 582 g_assert_not_reached(); 583 } 584 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); 585 if (ret) { 586 /* We might fail for "unknown register" and also for 587 * "you tried to set a register which is constant with 588 * a different value from what it actually contains". 589 */ 590 ok = false; 591 } 592 } 593 return ok; 594 } 595 596 void kvm_arm_cpu_pre_save(ARMCPU *cpu) 597 { 598 /* KVM virtual time adjustment */ 599 if (cpu->kvm_vtime_dirty) { 600 *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT) = cpu->kvm_vtime; 601 } 602 } 603 604 void kvm_arm_cpu_post_load(ARMCPU *cpu) 605 { 606 /* KVM virtual time adjustment */ 607 if (cpu->kvm_adjvtime) { 608 cpu->kvm_vtime = *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT); 609 cpu->kvm_vtime_dirty = true; 610 } 611 } 612 613 void kvm_arm_reset_vcpu(ARMCPU *cpu) 614 { 615 int ret; 616 617 /* Re-init VCPU so that all registers are set to 618 * their respective reset values. 619 */ 620 ret = kvm_arm_vcpu_init(CPU(cpu)); 621 if (ret < 0) { 622 fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret)); 623 abort(); 624 } 625 if (!write_kvmstate_to_list(cpu)) { 626 fprintf(stderr, "write_kvmstate_to_list failed\n"); 627 abort(); 628 } 629 /* 630 * Sync the reset values also into the CPUState. This is necessary 631 * because the next thing we do will be a kvm_arch_put_registers() 632 * which will update the list values from the CPUState before copying 633 * the list values back to KVM. It's OK to ignore failure returns here 634 * for the same reason we do so in kvm_arch_get_registers(). 635 */ 636 write_list_to_cpustate(cpu); 637 } 638 639 /* 640 * Update KVM's MP_STATE based on what QEMU thinks it is 641 */ 642 int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu) 643 { 644 if (cap_has_mp_state) { 645 struct kvm_mp_state mp_state = { 646 .mp_state = (cpu->power_state == PSCI_OFF) ? 647 KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE 648 }; 649 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); 650 if (ret) { 651 fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n", 652 __func__, ret, strerror(-ret)); 653 return -1; 654 } 655 } 656 657 return 0; 658 } 659 660 /* 661 * Sync the KVM MP_STATE into QEMU 662 */ 663 int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu) 664 { 665 if (cap_has_mp_state) { 666 struct kvm_mp_state mp_state; 667 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state); 668 if (ret) { 669 fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n", 670 __func__, ret, strerror(-ret)); 671 abort(); 672 } 673 cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ? 674 PSCI_OFF : PSCI_ON; 675 } 676 677 return 0; 678 } 679 680 void kvm_arm_get_virtual_time(CPUState *cs) 681 { 682 ARMCPU *cpu = ARM_CPU(cs); 683 struct kvm_one_reg reg = { 684 .id = KVM_REG_ARM_TIMER_CNT, 685 .addr = (uintptr_t)&cpu->kvm_vtime, 686 }; 687 int ret; 688 689 if (cpu->kvm_vtime_dirty) { 690 return; 691 } 692 693 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 694 if (ret) { 695 error_report("Failed to get KVM_REG_ARM_TIMER_CNT"); 696 abort(); 697 } 698 699 cpu->kvm_vtime_dirty = true; 700 } 701 702 void kvm_arm_put_virtual_time(CPUState *cs) 703 { 704 ARMCPU *cpu = ARM_CPU(cs); 705 struct kvm_one_reg reg = { 706 .id = KVM_REG_ARM_TIMER_CNT, 707 .addr = (uintptr_t)&cpu->kvm_vtime, 708 }; 709 int ret; 710 711 if (!cpu->kvm_vtime_dirty) { 712 return; 713 } 714 715 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 716 if (ret) { 717 error_report("Failed to set KVM_REG_ARM_TIMER_CNT"); 718 abort(); 719 } 720 721 cpu->kvm_vtime_dirty = false; 722 } 723 724 int kvm_put_vcpu_events(ARMCPU *cpu) 725 { 726 CPUARMState *env = &cpu->env; 727 struct kvm_vcpu_events events; 728 int ret; 729 730 if (!kvm_has_vcpu_events()) { 731 return 0; 732 } 733 734 memset(&events, 0, sizeof(events)); 735 events.exception.serror_pending = env->serror.pending; 736 737 /* Inject SError to guest with specified syndrome if host kernel 738 * supports it, otherwise inject SError without syndrome. 739 */ 740 if (cap_has_inject_serror_esr) { 741 events.exception.serror_has_esr = env->serror.has_esr; 742 events.exception.serror_esr = env->serror.esr; 743 } 744 745 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); 746 if (ret) { 747 error_report("failed to put vcpu events"); 748 } 749 750 return ret; 751 } 752 753 int kvm_get_vcpu_events(ARMCPU *cpu) 754 { 755 CPUARMState *env = &cpu->env; 756 struct kvm_vcpu_events events; 757 int ret; 758 759 if (!kvm_has_vcpu_events()) { 760 return 0; 761 } 762 763 memset(&events, 0, sizeof(events)); 764 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); 765 if (ret) { 766 error_report("failed to get vcpu events"); 767 return ret; 768 } 769 770 env->serror.pending = events.exception.serror_pending; 771 env->serror.has_esr = events.exception.serror_has_esr; 772 env->serror.esr = events.exception.serror_esr; 773 774 return 0; 775 } 776 777 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run) 778 { 779 ARMCPU *cpu = ARM_CPU(cs); 780 CPUARMState *env = &cpu->env; 781 782 if (unlikely(env->ext_dabt_raised)) { 783 /* 784 * Verifying that the ext DABT has been properly injected, 785 * otherwise risking indefinitely re-running the faulting instruction 786 * Covering a very narrow case for kernels 5.5..5.5.4 787 * when injected abort was misconfigured to be 788 * an IMPLEMENTATION DEFINED exception (for 32-bit EL1) 789 */ 790 if (!arm_feature(env, ARM_FEATURE_AARCH64) && 791 unlikely(!kvm_arm_verify_ext_dabt_pending(cs))) { 792 793 error_report("Data abort exception with no valid ISS generated by " 794 "guest memory access. KVM unable to emulate faulting " 795 "instruction. Failed to inject an external data abort " 796 "into the guest."); 797 abort(); 798 } 799 /* Clear the status */ 800 env->ext_dabt_raised = 0; 801 } 802 } 803 804 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) 805 { 806 ARMCPU *cpu; 807 uint32_t switched_level; 808 809 if (kvm_irqchip_in_kernel()) { 810 /* 811 * We only need to sync timer states with user-space interrupt 812 * controllers, so return early and save cycles if we don't. 813 */ 814 return MEMTXATTRS_UNSPECIFIED; 815 } 816 817 cpu = ARM_CPU(cs); 818 819 /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */ 820 if (run->s.regs.device_irq_level != cpu->device_irq_level) { 821 switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level; 822 823 qemu_mutex_lock_iothread(); 824 825 if (switched_level & KVM_ARM_DEV_EL1_VTIMER) { 826 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT], 827 !!(run->s.regs.device_irq_level & 828 KVM_ARM_DEV_EL1_VTIMER)); 829 switched_level &= ~KVM_ARM_DEV_EL1_VTIMER; 830 } 831 832 if (switched_level & KVM_ARM_DEV_EL1_PTIMER) { 833 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS], 834 !!(run->s.regs.device_irq_level & 835 KVM_ARM_DEV_EL1_PTIMER)); 836 switched_level &= ~KVM_ARM_DEV_EL1_PTIMER; 837 } 838 839 if (switched_level & KVM_ARM_DEV_PMU) { 840 qemu_set_irq(cpu->pmu_interrupt, 841 !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU)); 842 switched_level &= ~KVM_ARM_DEV_PMU; 843 } 844 845 if (switched_level) { 846 qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n", 847 __func__, switched_level); 848 } 849 850 /* We also mark unknown levels as processed to not waste cycles */ 851 cpu->device_irq_level = run->s.regs.device_irq_level; 852 qemu_mutex_unlock_iothread(); 853 } 854 855 return MEMTXATTRS_UNSPECIFIED; 856 } 857 858 void kvm_arm_vm_state_change(void *opaque, bool running, RunState state) 859 { 860 CPUState *cs = opaque; 861 ARMCPU *cpu = ARM_CPU(cs); 862 863 if (running) { 864 if (cpu->kvm_adjvtime) { 865 kvm_arm_put_virtual_time(cs); 866 } 867 } else { 868 if (cpu->kvm_adjvtime) { 869 kvm_arm_get_virtual_time(cs); 870 } 871 } 872 } 873 874 /** 875 * kvm_arm_handle_dabt_nisv: 876 * @cs: CPUState 877 * @esr_iss: ISS encoding (limited) for the exception from Data Abort 878 * ISV bit set to '0b0' -> no valid instruction syndrome 879 * @fault_ipa: faulting address for the synchronous data abort 880 * 881 * Returns: 0 if the exception has been handled, < 0 otherwise 882 */ 883 static int kvm_arm_handle_dabt_nisv(CPUState *cs, uint64_t esr_iss, 884 uint64_t fault_ipa) 885 { 886 ARMCPU *cpu = ARM_CPU(cs); 887 CPUARMState *env = &cpu->env; 888 /* 889 * Request KVM to inject the external data abort into the guest 890 */ 891 if (cap_has_inject_ext_dabt) { 892 struct kvm_vcpu_events events = { }; 893 /* 894 * The external data abort event will be handled immediately by KVM 895 * using the address fault that triggered the exit on given VCPU. 896 * Requesting injection of the external data abort does not rely 897 * on any other VCPU state. Therefore, in this particular case, the VCPU 898 * synchronization can be exceptionally skipped. 899 */ 900 events.exception.ext_dabt_pending = 1; 901 /* KVM_CAP_ARM_INJECT_EXT_DABT implies KVM_CAP_VCPU_EVENTS */ 902 if (!kvm_vcpu_ioctl(cs, KVM_SET_VCPU_EVENTS, &events)) { 903 env->ext_dabt_raised = 1; 904 return 0; 905 } 906 } else { 907 error_report("Data abort exception triggered by guest memory access " 908 "at physical address: 0x" TARGET_FMT_lx, 909 (target_ulong)fault_ipa); 910 error_printf("KVM unable to emulate faulting instruction.\n"); 911 } 912 return -1; 913 } 914 915 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 916 { 917 int ret = 0; 918 919 switch (run->exit_reason) { 920 case KVM_EXIT_DEBUG: 921 if (kvm_arm_handle_debug(cs, &run->debug.arch)) { 922 ret = EXCP_DEBUG; 923 } /* otherwise return to guest */ 924 break; 925 case KVM_EXIT_ARM_NISV: 926 /* External DABT with no valid iss to decode */ 927 ret = kvm_arm_handle_dabt_nisv(cs, run->arm_nisv.esr_iss, 928 run->arm_nisv.fault_ipa); 929 break; 930 default: 931 qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n", 932 __func__, run->exit_reason); 933 break; 934 } 935 return ret; 936 } 937 938 bool kvm_arch_stop_on_emulation_error(CPUState *cs) 939 { 940 return true; 941 } 942 943 int kvm_arch_process_async_events(CPUState *cs) 944 { 945 return 0; 946 } 947 948 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg) 949 { 950 if (kvm_sw_breakpoints_active(cs)) { 951 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; 952 } 953 if (kvm_arm_hw_debug_active(cs)) { 954 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW; 955 kvm_arm_copy_hw_debug_data(&dbg->arch); 956 } 957 } 958 959 void kvm_arch_init_irq_routing(KVMState *s) 960 { 961 } 962 963 int kvm_arch_irqchip_create(KVMState *s) 964 { 965 if (kvm_kernel_irqchip_split()) { 966 error_report("-machine kernel_irqchip=split is not supported on ARM."); 967 exit(1); 968 } 969 970 /* If we can create the VGIC using the newer device control API, we 971 * let the device do this when it initializes itself, otherwise we 972 * fall back to the old API */ 973 return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL); 974 } 975 976 int kvm_arm_vgic_probe(void) 977 { 978 int val = 0; 979 980 if (kvm_create_device(kvm_state, 981 KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) { 982 val |= KVM_ARM_VGIC_V3; 983 } 984 if (kvm_create_device(kvm_state, 985 KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) { 986 val |= KVM_ARM_VGIC_V2; 987 } 988 return val; 989 } 990 991 int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level) 992 { 993 int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq; 994 int cpu_idx1 = cpu % 256; 995 int cpu_idx2 = cpu / 256; 996 997 kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) | 998 (cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT); 999 1000 return kvm_set_irq(kvm_state, kvm_irq, !!level); 1001 } 1002 1003 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 1004 uint64_t address, uint32_t data, PCIDevice *dev) 1005 { 1006 AddressSpace *as = pci_device_iommu_address_space(dev); 1007 hwaddr xlat, len, doorbell_gpa; 1008 MemoryRegionSection mrs; 1009 MemoryRegion *mr; 1010 1011 if (as == &address_space_memory) { 1012 return 0; 1013 } 1014 1015 /* MSI doorbell address is translated by an IOMMU */ 1016 1017 RCU_READ_LOCK_GUARD(); 1018 1019 mr = address_space_translate(as, address, &xlat, &len, true, 1020 MEMTXATTRS_UNSPECIFIED); 1021 1022 if (!mr) { 1023 return 1; 1024 } 1025 1026 mrs = memory_region_find(mr, xlat, 1); 1027 1028 if (!mrs.mr) { 1029 return 1; 1030 } 1031 1032 doorbell_gpa = mrs.offset_within_address_space; 1033 memory_region_unref(mrs.mr); 1034 1035 route->u.msi.address_lo = doorbell_gpa; 1036 route->u.msi.address_hi = doorbell_gpa >> 32; 1037 1038 trace_kvm_arm_fixup_msi_route(address, doorbell_gpa); 1039 1040 return 0; 1041 } 1042 1043 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 1044 int vector, PCIDevice *dev) 1045 { 1046 return 0; 1047 } 1048 1049 int kvm_arch_release_virq_post(int virq) 1050 { 1051 return 0; 1052 } 1053 1054 int kvm_arch_msi_data_to_gsi(uint32_t data) 1055 { 1056 return (data - 32) & 0xffff; 1057 } 1058 1059 bool kvm_arch_cpu_check_are_resettable(void) 1060 { 1061 return true; 1062 } 1063 1064 void kvm_arch_accel_class_init(ObjectClass *oc) 1065 { 1066 } 1067