1 /* 2 * ARM implementation of KVM hooks 3 * 4 * Copyright Christoffer Dall 2009-2010 5 * 6 * This work is licensed under the terms of the GNU GPL, version 2 or later. 7 * See the COPYING file in the top-level directory. 8 * 9 */ 10 11 #include "qemu/osdep.h" 12 #include <sys/ioctl.h> 13 14 #include <linux/kvm.h> 15 16 #include "qemu/timer.h" 17 #include "qemu/error-report.h" 18 #include "qemu/main-loop.h" 19 #include "qom/object.h" 20 #include "qapi/error.h" 21 #include "sysemu/sysemu.h" 22 #include "sysemu/kvm.h" 23 #include "sysemu/kvm_int.h" 24 #include "kvm_arm.h" 25 #include "cpu.h" 26 #include "trace.h" 27 #include "internals.h" 28 #include "hw/pci/pci.h" 29 #include "exec/memattrs.h" 30 #include "exec/address-spaces.h" 31 #include "hw/boards.h" 32 #include "hw/irq.h" 33 #include "qemu/log.h" 34 35 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 36 KVM_CAP_LAST_INFO 37 }; 38 39 static bool cap_has_mp_state; 40 static bool cap_has_inject_serror_esr; 41 static bool cap_has_inject_ext_dabt; 42 43 static ARMHostCPUFeatures arm_host_cpu_features; 44 45 int kvm_arm_vcpu_init(CPUState *cs) 46 { 47 ARMCPU *cpu = ARM_CPU(cs); 48 struct kvm_vcpu_init init; 49 50 init.target = cpu->kvm_target; 51 memcpy(init.features, cpu->kvm_init_features, sizeof(init.features)); 52 53 return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init); 54 } 55 56 int kvm_arm_vcpu_finalize(CPUState *cs, int feature) 57 { 58 return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_FINALIZE, &feature); 59 } 60 61 void kvm_arm_init_serror_injection(CPUState *cs) 62 { 63 cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state, 64 KVM_CAP_ARM_INJECT_SERROR_ESR); 65 } 66 67 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try, 68 int *fdarray, 69 struct kvm_vcpu_init *init) 70 { 71 int ret = 0, kvmfd = -1, vmfd = -1, cpufd = -1; 72 int max_vm_pa_size; 73 74 kvmfd = qemu_open_old("/dev/kvm", O_RDWR); 75 if (kvmfd < 0) { 76 goto err; 77 } 78 max_vm_pa_size = ioctl(kvmfd, KVM_CHECK_EXTENSION, KVM_CAP_ARM_VM_IPA_SIZE); 79 if (max_vm_pa_size < 0) { 80 max_vm_pa_size = 0; 81 } 82 do { 83 vmfd = ioctl(kvmfd, KVM_CREATE_VM, max_vm_pa_size); 84 } while (vmfd == -1 && errno == EINTR); 85 if (vmfd < 0) { 86 goto err; 87 } 88 cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0); 89 if (cpufd < 0) { 90 goto err; 91 } 92 93 if (!init) { 94 /* Caller doesn't want the VCPU to be initialized, so skip it */ 95 goto finish; 96 } 97 98 if (init->target == -1) { 99 struct kvm_vcpu_init preferred; 100 101 ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, &preferred); 102 if (!ret) { 103 init->target = preferred.target; 104 } 105 } 106 if (ret >= 0) { 107 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init); 108 if (ret < 0) { 109 goto err; 110 } 111 } else if (cpus_to_try) { 112 /* Old kernel which doesn't know about the 113 * PREFERRED_TARGET ioctl: we know it will only support 114 * creating one kind of guest CPU which is its preferred 115 * CPU type. 116 */ 117 struct kvm_vcpu_init try; 118 119 while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) { 120 try.target = *cpus_to_try++; 121 memcpy(try.features, init->features, sizeof(init->features)); 122 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, &try); 123 if (ret >= 0) { 124 break; 125 } 126 } 127 if (ret < 0) { 128 goto err; 129 } 130 init->target = try.target; 131 } else { 132 /* Treat a NULL cpus_to_try argument the same as an empty 133 * list, which means we will fail the call since this must 134 * be an old kernel which doesn't support PREFERRED_TARGET. 135 */ 136 goto err; 137 } 138 139 finish: 140 fdarray[0] = kvmfd; 141 fdarray[1] = vmfd; 142 fdarray[2] = cpufd; 143 144 return true; 145 146 err: 147 if (cpufd >= 0) { 148 close(cpufd); 149 } 150 if (vmfd >= 0) { 151 close(vmfd); 152 } 153 if (kvmfd >= 0) { 154 close(kvmfd); 155 } 156 157 return false; 158 } 159 160 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray) 161 { 162 int i; 163 164 for (i = 2; i >= 0; i--) { 165 close(fdarray[i]); 166 } 167 } 168 169 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu) 170 { 171 CPUARMState *env = &cpu->env; 172 173 if (!arm_host_cpu_features.dtb_compatible) { 174 if (!kvm_enabled() || 175 !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) { 176 /* We can't report this error yet, so flag that we need to 177 * in arm_cpu_realizefn(). 178 */ 179 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE; 180 cpu->host_cpu_probe_failed = true; 181 return; 182 } 183 } 184 185 cpu->kvm_target = arm_host_cpu_features.target; 186 cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible; 187 cpu->isar = arm_host_cpu_features.isar; 188 env->features = arm_host_cpu_features.features; 189 } 190 191 static bool kvm_no_adjvtime_get(Object *obj, Error **errp) 192 { 193 return !ARM_CPU(obj)->kvm_adjvtime; 194 } 195 196 static void kvm_no_adjvtime_set(Object *obj, bool value, Error **errp) 197 { 198 ARM_CPU(obj)->kvm_adjvtime = !value; 199 } 200 201 static bool kvm_steal_time_get(Object *obj, Error **errp) 202 { 203 return ARM_CPU(obj)->kvm_steal_time != ON_OFF_AUTO_OFF; 204 } 205 206 static void kvm_steal_time_set(Object *obj, bool value, Error **errp) 207 { 208 ARM_CPU(obj)->kvm_steal_time = value ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 209 } 210 211 /* KVM VCPU properties should be prefixed with "kvm-". */ 212 void kvm_arm_add_vcpu_properties(Object *obj) 213 { 214 ARMCPU *cpu = ARM_CPU(obj); 215 CPUARMState *env = &cpu->env; 216 217 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 218 cpu->kvm_adjvtime = true; 219 object_property_add_bool(obj, "kvm-no-adjvtime", kvm_no_adjvtime_get, 220 kvm_no_adjvtime_set); 221 object_property_set_description(obj, "kvm-no-adjvtime", 222 "Set on to disable the adjustment of " 223 "the virtual counter. VM stopped time " 224 "will be counted."); 225 } 226 227 cpu->kvm_steal_time = ON_OFF_AUTO_AUTO; 228 object_property_add_bool(obj, "kvm-steal-time", kvm_steal_time_get, 229 kvm_steal_time_set); 230 object_property_set_description(obj, "kvm-steal-time", 231 "Set off to disable KVM steal time."); 232 } 233 234 bool kvm_arm_pmu_supported(void) 235 { 236 return kvm_check_extension(kvm_state, KVM_CAP_ARM_PMU_V3); 237 } 238 239 int kvm_arm_get_max_vm_ipa_size(MachineState *ms, bool *fixed_ipa) 240 { 241 KVMState *s = KVM_STATE(ms->accelerator); 242 int ret; 243 244 ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE); 245 *fixed_ipa = ret <= 0; 246 247 return ret > 0 ? ret : 40; 248 } 249 250 int kvm_arch_get_default_type(MachineState *ms) 251 { 252 bool fixed_ipa; 253 int size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa); 254 return fixed_ipa ? 0 : size; 255 } 256 257 int kvm_arch_init(MachineState *ms, KVMState *s) 258 { 259 int ret = 0; 260 /* For ARM interrupt delivery is always asynchronous, 261 * whether we are using an in-kernel VGIC or not. 262 */ 263 kvm_async_interrupts_allowed = true; 264 265 /* 266 * PSCI wakes up secondary cores, so we always need to 267 * have vCPUs waiting in kernel space 268 */ 269 kvm_halt_in_kernel_allowed = true; 270 271 cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE); 272 273 if (ms->smp.cpus > 256 && 274 !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) { 275 error_report("Using more than 256 vcpus requires a host kernel " 276 "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2"); 277 ret = -EINVAL; 278 } 279 280 if (kvm_check_extension(s, KVM_CAP_ARM_NISV_TO_USER)) { 281 if (kvm_vm_enable_cap(s, KVM_CAP_ARM_NISV_TO_USER, 0)) { 282 error_report("Failed to enable KVM_CAP_ARM_NISV_TO_USER cap"); 283 } else { 284 /* Set status for supporting the external dabt injection */ 285 cap_has_inject_ext_dabt = kvm_check_extension(s, 286 KVM_CAP_ARM_INJECT_EXT_DABT); 287 } 288 } 289 290 kvm_arm_init_debug(s); 291 292 return ret; 293 } 294 295 unsigned long kvm_arch_vcpu_id(CPUState *cpu) 296 { 297 return cpu->cpu_index; 298 } 299 300 /* We track all the KVM devices which need their memory addresses 301 * passing to the kernel in a list of these structures. 302 * When board init is complete we run through the list and 303 * tell the kernel the base addresses of the memory regions. 304 * We use a MemoryListener to track mapping and unmapping of 305 * the regions during board creation, so the board models don't 306 * need to do anything special for the KVM case. 307 * 308 * Sometimes the address must be OR'ed with some other fields 309 * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION). 310 * @kda_addr_ormask aims at storing the value of those fields. 311 */ 312 typedef struct KVMDevice { 313 struct kvm_arm_device_addr kda; 314 struct kvm_device_attr kdattr; 315 uint64_t kda_addr_ormask; 316 MemoryRegion *mr; 317 QSLIST_ENTRY(KVMDevice) entries; 318 int dev_fd; 319 } KVMDevice; 320 321 static QSLIST_HEAD(, KVMDevice) kvm_devices_head; 322 323 static void kvm_arm_devlistener_add(MemoryListener *listener, 324 MemoryRegionSection *section) 325 { 326 KVMDevice *kd; 327 328 QSLIST_FOREACH(kd, &kvm_devices_head, entries) { 329 if (section->mr == kd->mr) { 330 kd->kda.addr = section->offset_within_address_space; 331 } 332 } 333 } 334 335 static void kvm_arm_devlistener_del(MemoryListener *listener, 336 MemoryRegionSection *section) 337 { 338 KVMDevice *kd; 339 340 QSLIST_FOREACH(kd, &kvm_devices_head, entries) { 341 if (section->mr == kd->mr) { 342 kd->kda.addr = -1; 343 } 344 } 345 } 346 347 static MemoryListener devlistener = { 348 .name = "kvm-arm", 349 .region_add = kvm_arm_devlistener_add, 350 .region_del = kvm_arm_devlistener_del, 351 .priority = MEMORY_LISTENER_PRIORITY_MIN, 352 }; 353 354 static void kvm_arm_set_device_addr(KVMDevice *kd) 355 { 356 struct kvm_device_attr *attr = &kd->kdattr; 357 int ret; 358 359 /* If the device control API is available and we have a device fd on the 360 * KVMDevice struct, let's use the newer API 361 */ 362 if (kd->dev_fd >= 0) { 363 uint64_t addr = kd->kda.addr; 364 365 addr |= kd->kda_addr_ormask; 366 attr->addr = (uintptr_t)&addr; 367 ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr); 368 } else { 369 ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda); 370 } 371 372 if (ret < 0) { 373 fprintf(stderr, "Failed to set device address: %s\n", 374 strerror(-ret)); 375 abort(); 376 } 377 } 378 379 static void kvm_arm_machine_init_done(Notifier *notifier, void *data) 380 { 381 KVMDevice *kd, *tkd; 382 383 QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) { 384 if (kd->kda.addr != -1) { 385 kvm_arm_set_device_addr(kd); 386 } 387 memory_region_unref(kd->mr); 388 QSLIST_REMOVE_HEAD(&kvm_devices_head, entries); 389 g_free(kd); 390 } 391 memory_listener_unregister(&devlistener); 392 } 393 394 static Notifier notify = { 395 .notify = kvm_arm_machine_init_done, 396 }; 397 398 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group, 399 uint64_t attr, int dev_fd, uint64_t addr_ormask) 400 { 401 KVMDevice *kd; 402 403 if (!kvm_irqchip_in_kernel()) { 404 return; 405 } 406 407 if (QSLIST_EMPTY(&kvm_devices_head)) { 408 memory_listener_register(&devlistener, &address_space_memory); 409 qemu_add_machine_init_done_notifier(¬ify); 410 } 411 kd = g_new0(KVMDevice, 1); 412 kd->mr = mr; 413 kd->kda.id = devid; 414 kd->kda.addr = -1; 415 kd->kdattr.flags = 0; 416 kd->kdattr.group = group; 417 kd->kdattr.attr = attr; 418 kd->dev_fd = dev_fd; 419 kd->kda_addr_ormask = addr_ormask; 420 QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries); 421 memory_region_ref(kd->mr); 422 } 423 424 static int compare_u64(const void *a, const void *b) 425 { 426 if (*(uint64_t *)a > *(uint64_t *)b) { 427 return 1; 428 } 429 if (*(uint64_t *)a < *(uint64_t *)b) { 430 return -1; 431 } 432 return 0; 433 } 434 435 /* 436 * cpreg_values are sorted in ascending order by KVM register ID 437 * (see kvm_arm_init_cpreg_list). This allows us to cheaply find 438 * the storage for a KVM register by ID with a binary search. 439 */ 440 static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx) 441 { 442 uint64_t *res; 443 444 res = bsearch(®idx, cpu->cpreg_indexes, cpu->cpreg_array_len, 445 sizeof(uint64_t), compare_u64); 446 assert(res); 447 448 return &cpu->cpreg_values[res - cpu->cpreg_indexes]; 449 } 450 451 /* Initialize the ARMCPU cpreg list according to the kernel's 452 * definition of what CPU registers it knows about (and throw away 453 * the previous TCG-created cpreg list). 454 */ 455 int kvm_arm_init_cpreg_list(ARMCPU *cpu) 456 { 457 struct kvm_reg_list rl; 458 struct kvm_reg_list *rlp; 459 int i, ret, arraylen; 460 CPUState *cs = CPU(cpu); 461 462 rl.n = 0; 463 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl); 464 if (ret != -E2BIG) { 465 return ret; 466 } 467 rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t)); 468 rlp->n = rl.n; 469 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp); 470 if (ret) { 471 goto out; 472 } 473 /* Sort the list we get back from the kernel, since cpreg_tuples 474 * must be in strictly ascending order. 475 */ 476 qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64); 477 478 for (i = 0, arraylen = 0; i < rlp->n; i++) { 479 if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) { 480 continue; 481 } 482 switch (rlp->reg[i] & KVM_REG_SIZE_MASK) { 483 case KVM_REG_SIZE_U32: 484 case KVM_REG_SIZE_U64: 485 break; 486 default: 487 fprintf(stderr, "Can't handle size of register in kernel list\n"); 488 ret = -EINVAL; 489 goto out; 490 } 491 492 arraylen++; 493 } 494 495 cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen); 496 cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen); 497 cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes, 498 arraylen); 499 cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values, 500 arraylen); 501 cpu->cpreg_array_len = arraylen; 502 cpu->cpreg_vmstate_array_len = arraylen; 503 504 for (i = 0, arraylen = 0; i < rlp->n; i++) { 505 uint64_t regidx = rlp->reg[i]; 506 if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) { 507 continue; 508 } 509 cpu->cpreg_indexes[arraylen] = regidx; 510 arraylen++; 511 } 512 assert(cpu->cpreg_array_len == arraylen); 513 514 if (!write_kvmstate_to_list(cpu)) { 515 /* Shouldn't happen unless kernel is inconsistent about 516 * what registers exist. 517 */ 518 fprintf(stderr, "Initial read of kernel register state failed\n"); 519 ret = -EINVAL; 520 goto out; 521 } 522 523 out: 524 g_free(rlp); 525 return ret; 526 } 527 528 bool write_kvmstate_to_list(ARMCPU *cpu) 529 { 530 CPUState *cs = CPU(cpu); 531 int i; 532 bool ok = true; 533 534 for (i = 0; i < cpu->cpreg_array_len; i++) { 535 struct kvm_one_reg r; 536 uint64_t regidx = cpu->cpreg_indexes[i]; 537 uint32_t v32; 538 int ret; 539 540 r.id = regidx; 541 542 switch (regidx & KVM_REG_SIZE_MASK) { 543 case KVM_REG_SIZE_U32: 544 r.addr = (uintptr_t)&v32; 545 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); 546 if (!ret) { 547 cpu->cpreg_values[i] = v32; 548 } 549 break; 550 case KVM_REG_SIZE_U64: 551 r.addr = (uintptr_t)(cpu->cpreg_values + i); 552 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); 553 break; 554 default: 555 g_assert_not_reached(); 556 } 557 if (ret) { 558 ok = false; 559 } 560 } 561 return ok; 562 } 563 564 bool write_list_to_kvmstate(ARMCPU *cpu, int level) 565 { 566 CPUState *cs = CPU(cpu); 567 int i; 568 bool ok = true; 569 570 for (i = 0; i < cpu->cpreg_array_len; i++) { 571 struct kvm_one_reg r; 572 uint64_t regidx = cpu->cpreg_indexes[i]; 573 uint32_t v32; 574 int ret; 575 576 if (kvm_arm_cpreg_level(regidx) > level) { 577 continue; 578 } 579 580 r.id = regidx; 581 switch (regidx & KVM_REG_SIZE_MASK) { 582 case KVM_REG_SIZE_U32: 583 v32 = cpu->cpreg_values[i]; 584 r.addr = (uintptr_t)&v32; 585 break; 586 case KVM_REG_SIZE_U64: 587 r.addr = (uintptr_t)(cpu->cpreg_values + i); 588 break; 589 default: 590 g_assert_not_reached(); 591 } 592 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); 593 if (ret) { 594 /* We might fail for "unknown register" and also for 595 * "you tried to set a register which is constant with 596 * a different value from what it actually contains". 597 */ 598 ok = false; 599 } 600 } 601 return ok; 602 } 603 604 void kvm_arm_cpu_pre_save(ARMCPU *cpu) 605 { 606 /* KVM virtual time adjustment */ 607 if (cpu->kvm_vtime_dirty) { 608 *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT) = cpu->kvm_vtime; 609 } 610 } 611 612 void kvm_arm_cpu_post_load(ARMCPU *cpu) 613 { 614 /* KVM virtual time adjustment */ 615 if (cpu->kvm_adjvtime) { 616 cpu->kvm_vtime = *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT); 617 cpu->kvm_vtime_dirty = true; 618 } 619 } 620 621 void kvm_arm_reset_vcpu(ARMCPU *cpu) 622 { 623 int ret; 624 625 /* Re-init VCPU so that all registers are set to 626 * their respective reset values. 627 */ 628 ret = kvm_arm_vcpu_init(CPU(cpu)); 629 if (ret < 0) { 630 fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret)); 631 abort(); 632 } 633 if (!write_kvmstate_to_list(cpu)) { 634 fprintf(stderr, "write_kvmstate_to_list failed\n"); 635 abort(); 636 } 637 /* 638 * Sync the reset values also into the CPUState. This is necessary 639 * because the next thing we do will be a kvm_arch_put_registers() 640 * which will update the list values from the CPUState before copying 641 * the list values back to KVM. It's OK to ignore failure returns here 642 * for the same reason we do so in kvm_arch_get_registers(). 643 */ 644 write_list_to_cpustate(cpu); 645 } 646 647 /* 648 * Update KVM's MP_STATE based on what QEMU thinks it is 649 */ 650 int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu) 651 { 652 if (cap_has_mp_state) { 653 struct kvm_mp_state mp_state = { 654 .mp_state = (cpu->power_state == PSCI_OFF) ? 655 KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE 656 }; 657 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); 658 if (ret) { 659 fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n", 660 __func__, ret, strerror(-ret)); 661 return -1; 662 } 663 } 664 665 return 0; 666 } 667 668 /* 669 * Sync the KVM MP_STATE into QEMU 670 */ 671 int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu) 672 { 673 if (cap_has_mp_state) { 674 struct kvm_mp_state mp_state; 675 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state); 676 if (ret) { 677 fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n", 678 __func__, ret, strerror(-ret)); 679 abort(); 680 } 681 cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ? 682 PSCI_OFF : PSCI_ON; 683 } 684 685 return 0; 686 } 687 688 void kvm_arm_get_virtual_time(CPUState *cs) 689 { 690 ARMCPU *cpu = ARM_CPU(cs); 691 struct kvm_one_reg reg = { 692 .id = KVM_REG_ARM_TIMER_CNT, 693 .addr = (uintptr_t)&cpu->kvm_vtime, 694 }; 695 int ret; 696 697 if (cpu->kvm_vtime_dirty) { 698 return; 699 } 700 701 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 702 if (ret) { 703 error_report("Failed to get KVM_REG_ARM_TIMER_CNT"); 704 abort(); 705 } 706 707 cpu->kvm_vtime_dirty = true; 708 } 709 710 void kvm_arm_put_virtual_time(CPUState *cs) 711 { 712 ARMCPU *cpu = ARM_CPU(cs); 713 struct kvm_one_reg reg = { 714 .id = KVM_REG_ARM_TIMER_CNT, 715 .addr = (uintptr_t)&cpu->kvm_vtime, 716 }; 717 int ret; 718 719 if (!cpu->kvm_vtime_dirty) { 720 return; 721 } 722 723 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 724 if (ret) { 725 error_report("Failed to set KVM_REG_ARM_TIMER_CNT"); 726 abort(); 727 } 728 729 cpu->kvm_vtime_dirty = false; 730 } 731 732 int kvm_put_vcpu_events(ARMCPU *cpu) 733 { 734 CPUARMState *env = &cpu->env; 735 struct kvm_vcpu_events events; 736 int ret; 737 738 if (!kvm_has_vcpu_events()) { 739 return 0; 740 } 741 742 memset(&events, 0, sizeof(events)); 743 events.exception.serror_pending = env->serror.pending; 744 745 /* Inject SError to guest with specified syndrome if host kernel 746 * supports it, otherwise inject SError without syndrome. 747 */ 748 if (cap_has_inject_serror_esr) { 749 events.exception.serror_has_esr = env->serror.has_esr; 750 events.exception.serror_esr = env->serror.esr; 751 } 752 753 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); 754 if (ret) { 755 error_report("failed to put vcpu events"); 756 } 757 758 return ret; 759 } 760 761 int kvm_get_vcpu_events(ARMCPU *cpu) 762 { 763 CPUARMState *env = &cpu->env; 764 struct kvm_vcpu_events events; 765 int ret; 766 767 if (!kvm_has_vcpu_events()) { 768 return 0; 769 } 770 771 memset(&events, 0, sizeof(events)); 772 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); 773 if (ret) { 774 error_report("failed to get vcpu events"); 775 return ret; 776 } 777 778 env->serror.pending = events.exception.serror_pending; 779 env->serror.has_esr = events.exception.serror_has_esr; 780 env->serror.esr = events.exception.serror_esr; 781 782 return 0; 783 } 784 785 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run) 786 { 787 ARMCPU *cpu = ARM_CPU(cs); 788 CPUARMState *env = &cpu->env; 789 790 if (unlikely(env->ext_dabt_raised)) { 791 /* 792 * Verifying that the ext DABT has been properly injected, 793 * otherwise risking indefinitely re-running the faulting instruction 794 * Covering a very narrow case for kernels 5.5..5.5.4 795 * when injected abort was misconfigured to be 796 * an IMPLEMENTATION DEFINED exception (for 32-bit EL1) 797 */ 798 if (!arm_feature(env, ARM_FEATURE_AARCH64) && 799 unlikely(!kvm_arm_verify_ext_dabt_pending(cs))) { 800 801 error_report("Data abort exception with no valid ISS generated by " 802 "guest memory access. KVM unable to emulate faulting " 803 "instruction. Failed to inject an external data abort " 804 "into the guest."); 805 abort(); 806 } 807 /* Clear the status */ 808 env->ext_dabt_raised = 0; 809 } 810 } 811 812 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) 813 { 814 ARMCPU *cpu; 815 uint32_t switched_level; 816 817 if (kvm_irqchip_in_kernel()) { 818 /* 819 * We only need to sync timer states with user-space interrupt 820 * controllers, so return early and save cycles if we don't. 821 */ 822 return MEMTXATTRS_UNSPECIFIED; 823 } 824 825 cpu = ARM_CPU(cs); 826 827 /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */ 828 if (run->s.regs.device_irq_level != cpu->device_irq_level) { 829 switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level; 830 831 qemu_mutex_lock_iothread(); 832 833 if (switched_level & KVM_ARM_DEV_EL1_VTIMER) { 834 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT], 835 !!(run->s.regs.device_irq_level & 836 KVM_ARM_DEV_EL1_VTIMER)); 837 switched_level &= ~KVM_ARM_DEV_EL1_VTIMER; 838 } 839 840 if (switched_level & KVM_ARM_DEV_EL1_PTIMER) { 841 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS], 842 !!(run->s.regs.device_irq_level & 843 KVM_ARM_DEV_EL1_PTIMER)); 844 switched_level &= ~KVM_ARM_DEV_EL1_PTIMER; 845 } 846 847 if (switched_level & KVM_ARM_DEV_PMU) { 848 qemu_set_irq(cpu->pmu_interrupt, 849 !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU)); 850 switched_level &= ~KVM_ARM_DEV_PMU; 851 } 852 853 if (switched_level) { 854 qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n", 855 __func__, switched_level); 856 } 857 858 /* We also mark unknown levels as processed to not waste cycles */ 859 cpu->device_irq_level = run->s.regs.device_irq_level; 860 qemu_mutex_unlock_iothread(); 861 } 862 863 return MEMTXATTRS_UNSPECIFIED; 864 } 865 866 void kvm_arm_vm_state_change(void *opaque, bool running, RunState state) 867 { 868 CPUState *cs = opaque; 869 ARMCPU *cpu = ARM_CPU(cs); 870 871 if (running) { 872 if (cpu->kvm_adjvtime) { 873 kvm_arm_put_virtual_time(cs); 874 } 875 } else { 876 if (cpu->kvm_adjvtime) { 877 kvm_arm_get_virtual_time(cs); 878 } 879 } 880 } 881 882 /** 883 * kvm_arm_handle_dabt_nisv: 884 * @cs: CPUState 885 * @esr_iss: ISS encoding (limited) for the exception from Data Abort 886 * ISV bit set to '0b0' -> no valid instruction syndrome 887 * @fault_ipa: faulting address for the synchronous data abort 888 * 889 * Returns: 0 if the exception has been handled, < 0 otherwise 890 */ 891 static int kvm_arm_handle_dabt_nisv(CPUState *cs, uint64_t esr_iss, 892 uint64_t fault_ipa) 893 { 894 ARMCPU *cpu = ARM_CPU(cs); 895 CPUARMState *env = &cpu->env; 896 /* 897 * Request KVM to inject the external data abort into the guest 898 */ 899 if (cap_has_inject_ext_dabt) { 900 struct kvm_vcpu_events events = { }; 901 /* 902 * The external data abort event will be handled immediately by KVM 903 * using the address fault that triggered the exit on given VCPU. 904 * Requesting injection of the external data abort does not rely 905 * on any other VCPU state. Therefore, in this particular case, the VCPU 906 * synchronization can be exceptionally skipped. 907 */ 908 events.exception.ext_dabt_pending = 1; 909 /* KVM_CAP_ARM_INJECT_EXT_DABT implies KVM_CAP_VCPU_EVENTS */ 910 if (!kvm_vcpu_ioctl(cs, KVM_SET_VCPU_EVENTS, &events)) { 911 env->ext_dabt_raised = 1; 912 return 0; 913 } 914 } else { 915 error_report("Data abort exception triggered by guest memory access " 916 "at physical address: 0x" TARGET_FMT_lx, 917 (target_ulong)fault_ipa); 918 error_printf("KVM unable to emulate faulting instruction.\n"); 919 } 920 return -1; 921 } 922 923 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 924 { 925 int ret = 0; 926 927 switch (run->exit_reason) { 928 case KVM_EXIT_DEBUG: 929 if (kvm_arm_handle_debug(cs, &run->debug.arch)) { 930 ret = EXCP_DEBUG; 931 } /* otherwise return to guest */ 932 break; 933 case KVM_EXIT_ARM_NISV: 934 /* External DABT with no valid iss to decode */ 935 ret = kvm_arm_handle_dabt_nisv(cs, run->arm_nisv.esr_iss, 936 run->arm_nisv.fault_ipa); 937 break; 938 default: 939 qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n", 940 __func__, run->exit_reason); 941 break; 942 } 943 return ret; 944 } 945 946 bool kvm_arch_stop_on_emulation_error(CPUState *cs) 947 { 948 return true; 949 } 950 951 int kvm_arch_process_async_events(CPUState *cs) 952 { 953 return 0; 954 } 955 956 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg) 957 { 958 if (kvm_sw_breakpoints_active(cs)) { 959 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; 960 } 961 if (kvm_arm_hw_debug_active(cs)) { 962 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW; 963 kvm_arm_copy_hw_debug_data(&dbg->arch); 964 } 965 } 966 967 void kvm_arch_init_irq_routing(KVMState *s) 968 { 969 } 970 971 int kvm_arch_irqchip_create(KVMState *s) 972 { 973 if (kvm_kernel_irqchip_split()) { 974 error_report("-machine kernel_irqchip=split is not supported on ARM."); 975 exit(1); 976 } 977 978 /* If we can create the VGIC using the newer device control API, we 979 * let the device do this when it initializes itself, otherwise we 980 * fall back to the old API */ 981 return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL); 982 } 983 984 int kvm_arm_vgic_probe(void) 985 { 986 int val = 0; 987 988 if (kvm_create_device(kvm_state, 989 KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) { 990 val |= KVM_ARM_VGIC_V3; 991 } 992 if (kvm_create_device(kvm_state, 993 KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) { 994 val |= KVM_ARM_VGIC_V2; 995 } 996 return val; 997 } 998 999 int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level) 1000 { 1001 int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq; 1002 int cpu_idx1 = cpu % 256; 1003 int cpu_idx2 = cpu / 256; 1004 1005 kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) | 1006 (cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT); 1007 1008 return kvm_set_irq(kvm_state, kvm_irq, !!level); 1009 } 1010 1011 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 1012 uint64_t address, uint32_t data, PCIDevice *dev) 1013 { 1014 AddressSpace *as = pci_device_iommu_address_space(dev); 1015 hwaddr xlat, len, doorbell_gpa; 1016 MemoryRegionSection mrs; 1017 MemoryRegion *mr; 1018 1019 if (as == &address_space_memory) { 1020 return 0; 1021 } 1022 1023 /* MSI doorbell address is translated by an IOMMU */ 1024 1025 RCU_READ_LOCK_GUARD(); 1026 1027 mr = address_space_translate(as, address, &xlat, &len, true, 1028 MEMTXATTRS_UNSPECIFIED); 1029 1030 if (!mr) { 1031 return 1; 1032 } 1033 1034 mrs = memory_region_find(mr, xlat, 1); 1035 1036 if (!mrs.mr) { 1037 return 1; 1038 } 1039 1040 doorbell_gpa = mrs.offset_within_address_space; 1041 memory_region_unref(mrs.mr); 1042 1043 route->u.msi.address_lo = doorbell_gpa; 1044 route->u.msi.address_hi = doorbell_gpa >> 32; 1045 1046 trace_kvm_arm_fixup_msi_route(address, doorbell_gpa); 1047 1048 return 0; 1049 } 1050 1051 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 1052 int vector, PCIDevice *dev) 1053 { 1054 return 0; 1055 } 1056 1057 int kvm_arch_release_virq_post(int virq) 1058 { 1059 return 0; 1060 } 1061 1062 int kvm_arch_msi_data_to_gsi(uint32_t data) 1063 { 1064 return (data - 32) & 0xffff; 1065 } 1066 1067 bool kvm_arch_cpu_check_are_resettable(void) 1068 { 1069 return true; 1070 } 1071 1072 void kvm_arch_accel_class_init(ObjectClass *oc) 1073 { 1074 } 1075