1 /* 2 * ARM implementation of KVM hooks 3 * 4 * Copyright Christoffer Dall 2009-2010 5 * 6 * This work is licensed under the terms of the GNU GPL, version 2 or later. 7 * See the COPYING file in the top-level directory. 8 * 9 */ 10 11 #include "qemu/osdep.h" 12 #include <sys/ioctl.h> 13 14 #include <linux/kvm.h> 15 16 #include "qemu-common.h" 17 #include "qemu/timer.h" 18 #include "qemu/error-report.h" 19 #include "qemu/main-loop.h" 20 #include "qom/object.h" 21 #include "qapi/error.h" 22 #include "sysemu/sysemu.h" 23 #include "sysemu/kvm.h" 24 #include "sysemu/kvm_int.h" 25 #include "kvm_arm.h" 26 #include "cpu.h" 27 #include "trace.h" 28 #include "internals.h" 29 #include "hw/pci/pci.h" 30 #include "exec/memattrs.h" 31 #include "exec/address-spaces.h" 32 #include "hw/boards.h" 33 #include "hw/irq.h" 34 #include "qemu/log.h" 35 36 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 37 KVM_CAP_LAST_INFO 38 }; 39 40 static bool cap_has_mp_state; 41 static bool cap_has_inject_serror_esr; 42 static bool cap_has_inject_ext_dabt; 43 44 static ARMHostCPUFeatures arm_host_cpu_features; 45 46 int kvm_arm_vcpu_init(CPUState *cs) 47 { 48 ARMCPU *cpu = ARM_CPU(cs); 49 struct kvm_vcpu_init init; 50 51 init.target = cpu->kvm_target; 52 memcpy(init.features, cpu->kvm_init_features, sizeof(init.features)); 53 54 return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init); 55 } 56 57 int kvm_arm_vcpu_finalize(CPUState *cs, int feature) 58 { 59 return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_FINALIZE, &feature); 60 } 61 62 void kvm_arm_init_serror_injection(CPUState *cs) 63 { 64 cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state, 65 KVM_CAP_ARM_INJECT_SERROR_ESR); 66 } 67 68 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try, 69 int *fdarray, 70 struct kvm_vcpu_init *init) 71 { 72 int ret = 0, kvmfd = -1, vmfd = -1, cpufd = -1; 73 74 kvmfd = qemu_open_old("/dev/kvm", O_RDWR); 75 if (kvmfd < 0) { 76 goto err; 77 } 78 vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0); 79 if (vmfd < 0) { 80 goto err; 81 } 82 cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0); 83 if (cpufd < 0) { 84 goto err; 85 } 86 87 if (!init) { 88 /* Caller doesn't want the VCPU to be initialized, so skip it */ 89 goto finish; 90 } 91 92 if (init->target == -1) { 93 struct kvm_vcpu_init preferred; 94 95 ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, &preferred); 96 if (!ret) { 97 init->target = preferred.target; 98 } 99 } 100 if (ret >= 0) { 101 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init); 102 if (ret < 0) { 103 goto err; 104 } 105 } else if (cpus_to_try) { 106 /* Old kernel which doesn't know about the 107 * PREFERRED_TARGET ioctl: we know it will only support 108 * creating one kind of guest CPU which is its preferred 109 * CPU type. 110 */ 111 struct kvm_vcpu_init try; 112 113 while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) { 114 try.target = *cpus_to_try++; 115 memcpy(try.features, init->features, sizeof(init->features)); 116 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, &try); 117 if (ret >= 0) { 118 break; 119 } 120 } 121 if (ret < 0) { 122 goto err; 123 } 124 init->target = try.target; 125 } else { 126 /* Treat a NULL cpus_to_try argument the same as an empty 127 * list, which means we will fail the call since this must 128 * be an old kernel which doesn't support PREFERRED_TARGET. 129 */ 130 goto err; 131 } 132 133 finish: 134 fdarray[0] = kvmfd; 135 fdarray[1] = vmfd; 136 fdarray[2] = cpufd; 137 138 return true; 139 140 err: 141 if (cpufd >= 0) { 142 close(cpufd); 143 } 144 if (vmfd >= 0) { 145 close(vmfd); 146 } 147 if (kvmfd >= 0) { 148 close(kvmfd); 149 } 150 151 return false; 152 } 153 154 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray) 155 { 156 int i; 157 158 for (i = 2; i >= 0; i--) { 159 close(fdarray[i]); 160 } 161 } 162 163 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu) 164 { 165 CPUARMState *env = &cpu->env; 166 167 if (!arm_host_cpu_features.dtb_compatible) { 168 if (!kvm_enabled() || 169 !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) { 170 /* We can't report this error yet, so flag that we need to 171 * in arm_cpu_realizefn(). 172 */ 173 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE; 174 cpu->host_cpu_probe_failed = true; 175 return; 176 } 177 } 178 179 cpu->kvm_target = arm_host_cpu_features.target; 180 cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible; 181 cpu->isar = arm_host_cpu_features.isar; 182 env->features = arm_host_cpu_features.features; 183 } 184 185 static bool kvm_no_adjvtime_get(Object *obj, Error **errp) 186 { 187 return !ARM_CPU(obj)->kvm_adjvtime; 188 } 189 190 static void kvm_no_adjvtime_set(Object *obj, bool value, Error **errp) 191 { 192 ARM_CPU(obj)->kvm_adjvtime = !value; 193 } 194 195 static bool kvm_steal_time_get(Object *obj, Error **errp) 196 { 197 return ARM_CPU(obj)->kvm_steal_time != ON_OFF_AUTO_OFF; 198 } 199 200 static void kvm_steal_time_set(Object *obj, bool value, Error **errp) 201 { 202 ARM_CPU(obj)->kvm_steal_time = value ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 203 } 204 205 /* KVM VCPU properties should be prefixed with "kvm-". */ 206 void kvm_arm_add_vcpu_properties(Object *obj) 207 { 208 ARMCPU *cpu = ARM_CPU(obj); 209 CPUARMState *env = &cpu->env; 210 211 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 212 cpu->kvm_adjvtime = true; 213 object_property_add_bool(obj, "kvm-no-adjvtime", kvm_no_adjvtime_get, 214 kvm_no_adjvtime_set); 215 object_property_set_description(obj, "kvm-no-adjvtime", 216 "Set on to disable the adjustment of " 217 "the virtual counter. VM stopped time " 218 "will be counted."); 219 } 220 221 cpu->kvm_steal_time = ON_OFF_AUTO_AUTO; 222 object_property_add_bool(obj, "kvm-steal-time", kvm_steal_time_get, 223 kvm_steal_time_set); 224 object_property_set_description(obj, "kvm-steal-time", 225 "Set off to disable KVM steal time."); 226 } 227 228 bool kvm_arm_pmu_supported(void) 229 { 230 return kvm_check_extension(kvm_state, KVM_CAP_ARM_PMU_V3); 231 } 232 233 int kvm_arm_get_max_vm_ipa_size(MachineState *ms) 234 { 235 KVMState *s = KVM_STATE(ms->accelerator); 236 int ret; 237 238 ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE); 239 return ret > 0 ? ret : 40; 240 } 241 242 int kvm_arch_init(MachineState *ms, KVMState *s) 243 { 244 int ret = 0; 245 /* For ARM interrupt delivery is always asynchronous, 246 * whether we are using an in-kernel VGIC or not. 247 */ 248 kvm_async_interrupts_allowed = true; 249 250 /* 251 * PSCI wakes up secondary cores, so we always need to 252 * have vCPUs waiting in kernel space 253 */ 254 kvm_halt_in_kernel_allowed = true; 255 256 cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE); 257 258 if (ms->smp.cpus > 256 && 259 !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) { 260 error_report("Using more than 256 vcpus requires a host kernel " 261 "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2"); 262 ret = -EINVAL; 263 } 264 265 if (kvm_check_extension(s, KVM_CAP_ARM_NISV_TO_USER)) { 266 if (kvm_vm_enable_cap(s, KVM_CAP_ARM_NISV_TO_USER, 0)) { 267 error_report("Failed to enable KVM_CAP_ARM_NISV_TO_USER cap"); 268 } else { 269 /* Set status for supporting the external dabt injection */ 270 cap_has_inject_ext_dabt = kvm_check_extension(s, 271 KVM_CAP_ARM_INJECT_EXT_DABT); 272 } 273 } 274 275 return ret; 276 } 277 278 unsigned long kvm_arch_vcpu_id(CPUState *cpu) 279 { 280 return cpu->cpu_index; 281 } 282 283 /* We track all the KVM devices which need their memory addresses 284 * passing to the kernel in a list of these structures. 285 * When board init is complete we run through the list and 286 * tell the kernel the base addresses of the memory regions. 287 * We use a MemoryListener to track mapping and unmapping of 288 * the regions during board creation, so the board models don't 289 * need to do anything special for the KVM case. 290 * 291 * Sometimes the address must be OR'ed with some other fields 292 * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION). 293 * @kda_addr_ormask aims at storing the value of those fields. 294 */ 295 typedef struct KVMDevice { 296 struct kvm_arm_device_addr kda; 297 struct kvm_device_attr kdattr; 298 uint64_t kda_addr_ormask; 299 MemoryRegion *mr; 300 QSLIST_ENTRY(KVMDevice) entries; 301 int dev_fd; 302 } KVMDevice; 303 304 static QSLIST_HEAD(, KVMDevice) kvm_devices_head; 305 306 static void kvm_arm_devlistener_add(MemoryListener *listener, 307 MemoryRegionSection *section) 308 { 309 KVMDevice *kd; 310 311 QSLIST_FOREACH(kd, &kvm_devices_head, entries) { 312 if (section->mr == kd->mr) { 313 kd->kda.addr = section->offset_within_address_space; 314 } 315 } 316 } 317 318 static void kvm_arm_devlistener_del(MemoryListener *listener, 319 MemoryRegionSection *section) 320 { 321 KVMDevice *kd; 322 323 QSLIST_FOREACH(kd, &kvm_devices_head, entries) { 324 if (section->mr == kd->mr) { 325 kd->kda.addr = -1; 326 } 327 } 328 } 329 330 static MemoryListener devlistener = { 331 .region_add = kvm_arm_devlistener_add, 332 .region_del = kvm_arm_devlistener_del, 333 }; 334 335 static void kvm_arm_set_device_addr(KVMDevice *kd) 336 { 337 struct kvm_device_attr *attr = &kd->kdattr; 338 int ret; 339 340 /* If the device control API is available and we have a device fd on the 341 * KVMDevice struct, let's use the newer API 342 */ 343 if (kd->dev_fd >= 0) { 344 uint64_t addr = kd->kda.addr; 345 346 addr |= kd->kda_addr_ormask; 347 attr->addr = (uintptr_t)&addr; 348 ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr); 349 } else { 350 ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda); 351 } 352 353 if (ret < 0) { 354 fprintf(stderr, "Failed to set device address: %s\n", 355 strerror(-ret)); 356 abort(); 357 } 358 } 359 360 static void kvm_arm_machine_init_done(Notifier *notifier, void *data) 361 { 362 KVMDevice *kd, *tkd; 363 364 QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) { 365 if (kd->kda.addr != -1) { 366 kvm_arm_set_device_addr(kd); 367 } 368 memory_region_unref(kd->mr); 369 QSLIST_REMOVE_HEAD(&kvm_devices_head, entries); 370 g_free(kd); 371 } 372 memory_listener_unregister(&devlistener); 373 } 374 375 static Notifier notify = { 376 .notify = kvm_arm_machine_init_done, 377 }; 378 379 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group, 380 uint64_t attr, int dev_fd, uint64_t addr_ormask) 381 { 382 KVMDevice *kd; 383 384 if (!kvm_irqchip_in_kernel()) { 385 return; 386 } 387 388 if (QSLIST_EMPTY(&kvm_devices_head)) { 389 memory_listener_register(&devlistener, &address_space_memory); 390 qemu_add_machine_init_done_notifier(¬ify); 391 } 392 kd = g_new0(KVMDevice, 1); 393 kd->mr = mr; 394 kd->kda.id = devid; 395 kd->kda.addr = -1; 396 kd->kdattr.flags = 0; 397 kd->kdattr.group = group; 398 kd->kdattr.attr = attr; 399 kd->dev_fd = dev_fd; 400 kd->kda_addr_ormask = addr_ormask; 401 QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries); 402 memory_region_ref(kd->mr); 403 } 404 405 static int compare_u64(const void *a, const void *b) 406 { 407 if (*(uint64_t *)a > *(uint64_t *)b) { 408 return 1; 409 } 410 if (*(uint64_t *)a < *(uint64_t *)b) { 411 return -1; 412 } 413 return 0; 414 } 415 416 /* 417 * cpreg_values are sorted in ascending order by KVM register ID 418 * (see kvm_arm_init_cpreg_list). This allows us to cheaply find 419 * the storage for a KVM register by ID with a binary search. 420 */ 421 static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx) 422 { 423 uint64_t *res; 424 425 res = bsearch(®idx, cpu->cpreg_indexes, cpu->cpreg_array_len, 426 sizeof(uint64_t), compare_u64); 427 assert(res); 428 429 return &cpu->cpreg_values[res - cpu->cpreg_indexes]; 430 } 431 432 /* Initialize the ARMCPU cpreg list according to the kernel's 433 * definition of what CPU registers it knows about (and throw away 434 * the previous TCG-created cpreg list). 435 */ 436 int kvm_arm_init_cpreg_list(ARMCPU *cpu) 437 { 438 struct kvm_reg_list rl; 439 struct kvm_reg_list *rlp; 440 int i, ret, arraylen; 441 CPUState *cs = CPU(cpu); 442 443 rl.n = 0; 444 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl); 445 if (ret != -E2BIG) { 446 return ret; 447 } 448 rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t)); 449 rlp->n = rl.n; 450 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp); 451 if (ret) { 452 goto out; 453 } 454 /* Sort the list we get back from the kernel, since cpreg_tuples 455 * must be in strictly ascending order. 456 */ 457 qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64); 458 459 for (i = 0, arraylen = 0; i < rlp->n; i++) { 460 if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) { 461 continue; 462 } 463 switch (rlp->reg[i] & KVM_REG_SIZE_MASK) { 464 case KVM_REG_SIZE_U32: 465 case KVM_REG_SIZE_U64: 466 break; 467 default: 468 fprintf(stderr, "Can't handle size of register in kernel list\n"); 469 ret = -EINVAL; 470 goto out; 471 } 472 473 arraylen++; 474 } 475 476 cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen); 477 cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen); 478 cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes, 479 arraylen); 480 cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values, 481 arraylen); 482 cpu->cpreg_array_len = arraylen; 483 cpu->cpreg_vmstate_array_len = arraylen; 484 485 for (i = 0, arraylen = 0; i < rlp->n; i++) { 486 uint64_t regidx = rlp->reg[i]; 487 if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) { 488 continue; 489 } 490 cpu->cpreg_indexes[arraylen] = regidx; 491 arraylen++; 492 } 493 assert(cpu->cpreg_array_len == arraylen); 494 495 if (!write_kvmstate_to_list(cpu)) { 496 /* Shouldn't happen unless kernel is inconsistent about 497 * what registers exist. 498 */ 499 fprintf(stderr, "Initial read of kernel register state failed\n"); 500 ret = -EINVAL; 501 goto out; 502 } 503 504 out: 505 g_free(rlp); 506 return ret; 507 } 508 509 bool write_kvmstate_to_list(ARMCPU *cpu) 510 { 511 CPUState *cs = CPU(cpu); 512 int i; 513 bool ok = true; 514 515 for (i = 0; i < cpu->cpreg_array_len; i++) { 516 struct kvm_one_reg r; 517 uint64_t regidx = cpu->cpreg_indexes[i]; 518 uint32_t v32; 519 int ret; 520 521 r.id = regidx; 522 523 switch (regidx & KVM_REG_SIZE_MASK) { 524 case KVM_REG_SIZE_U32: 525 r.addr = (uintptr_t)&v32; 526 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); 527 if (!ret) { 528 cpu->cpreg_values[i] = v32; 529 } 530 break; 531 case KVM_REG_SIZE_U64: 532 r.addr = (uintptr_t)(cpu->cpreg_values + i); 533 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); 534 break; 535 default: 536 abort(); 537 } 538 if (ret) { 539 ok = false; 540 } 541 } 542 return ok; 543 } 544 545 bool write_list_to_kvmstate(ARMCPU *cpu, int level) 546 { 547 CPUState *cs = CPU(cpu); 548 int i; 549 bool ok = true; 550 551 for (i = 0; i < cpu->cpreg_array_len; i++) { 552 struct kvm_one_reg r; 553 uint64_t regidx = cpu->cpreg_indexes[i]; 554 uint32_t v32; 555 int ret; 556 557 if (kvm_arm_cpreg_level(regidx) > level) { 558 continue; 559 } 560 561 r.id = regidx; 562 switch (regidx & KVM_REG_SIZE_MASK) { 563 case KVM_REG_SIZE_U32: 564 v32 = cpu->cpreg_values[i]; 565 r.addr = (uintptr_t)&v32; 566 break; 567 case KVM_REG_SIZE_U64: 568 r.addr = (uintptr_t)(cpu->cpreg_values + i); 569 break; 570 default: 571 abort(); 572 } 573 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); 574 if (ret) { 575 /* We might fail for "unknown register" and also for 576 * "you tried to set a register which is constant with 577 * a different value from what it actually contains". 578 */ 579 ok = false; 580 } 581 } 582 return ok; 583 } 584 585 void kvm_arm_cpu_pre_save(ARMCPU *cpu) 586 { 587 /* KVM virtual time adjustment */ 588 if (cpu->kvm_vtime_dirty) { 589 *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT) = cpu->kvm_vtime; 590 } 591 } 592 593 void kvm_arm_cpu_post_load(ARMCPU *cpu) 594 { 595 /* KVM virtual time adjustment */ 596 if (cpu->kvm_adjvtime) { 597 cpu->kvm_vtime = *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT); 598 cpu->kvm_vtime_dirty = true; 599 } 600 } 601 602 void kvm_arm_reset_vcpu(ARMCPU *cpu) 603 { 604 int ret; 605 606 /* Re-init VCPU so that all registers are set to 607 * their respective reset values. 608 */ 609 ret = kvm_arm_vcpu_init(CPU(cpu)); 610 if (ret < 0) { 611 fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret)); 612 abort(); 613 } 614 if (!write_kvmstate_to_list(cpu)) { 615 fprintf(stderr, "write_kvmstate_to_list failed\n"); 616 abort(); 617 } 618 /* 619 * Sync the reset values also into the CPUState. This is necessary 620 * because the next thing we do will be a kvm_arch_put_registers() 621 * which will update the list values from the CPUState before copying 622 * the list values back to KVM. It's OK to ignore failure returns here 623 * for the same reason we do so in kvm_arch_get_registers(). 624 */ 625 write_list_to_cpustate(cpu); 626 } 627 628 /* 629 * Update KVM's MP_STATE based on what QEMU thinks it is 630 */ 631 int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu) 632 { 633 if (cap_has_mp_state) { 634 struct kvm_mp_state mp_state = { 635 .mp_state = (cpu->power_state == PSCI_OFF) ? 636 KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE 637 }; 638 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); 639 if (ret) { 640 fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n", 641 __func__, ret, strerror(-ret)); 642 return -1; 643 } 644 } 645 646 return 0; 647 } 648 649 /* 650 * Sync the KVM MP_STATE into QEMU 651 */ 652 int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu) 653 { 654 if (cap_has_mp_state) { 655 struct kvm_mp_state mp_state; 656 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state); 657 if (ret) { 658 fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n", 659 __func__, ret, strerror(-ret)); 660 abort(); 661 } 662 cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ? 663 PSCI_OFF : PSCI_ON; 664 } 665 666 return 0; 667 } 668 669 void kvm_arm_get_virtual_time(CPUState *cs) 670 { 671 ARMCPU *cpu = ARM_CPU(cs); 672 struct kvm_one_reg reg = { 673 .id = KVM_REG_ARM_TIMER_CNT, 674 .addr = (uintptr_t)&cpu->kvm_vtime, 675 }; 676 int ret; 677 678 if (cpu->kvm_vtime_dirty) { 679 return; 680 } 681 682 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 683 if (ret) { 684 error_report("Failed to get KVM_REG_ARM_TIMER_CNT"); 685 abort(); 686 } 687 688 cpu->kvm_vtime_dirty = true; 689 } 690 691 void kvm_arm_put_virtual_time(CPUState *cs) 692 { 693 ARMCPU *cpu = ARM_CPU(cs); 694 struct kvm_one_reg reg = { 695 .id = KVM_REG_ARM_TIMER_CNT, 696 .addr = (uintptr_t)&cpu->kvm_vtime, 697 }; 698 int ret; 699 700 if (!cpu->kvm_vtime_dirty) { 701 return; 702 } 703 704 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 705 if (ret) { 706 error_report("Failed to set KVM_REG_ARM_TIMER_CNT"); 707 abort(); 708 } 709 710 cpu->kvm_vtime_dirty = false; 711 } 712 713 int kvm_put_vcpu_events(ARMCPU *cpu) 714 { 715 CPUARMState *env = &cpu->env; 716 struct kvm_vcpu_events events; 717 int ret; 718 719 if (!kvm_has_vcpu_events()) { 720 return 0; 721 } 722 723 memset(&events, 0, sizeof(events)); 724 events.exception.serror_pending = env->serror.pending; 725 726 /* Inject SError to guest with specified syndrome if host kernel 727 * supports it, otherwise inject SError without syndrome. 728 */ 729 if (cap_has_inject_serror_esr) { 730 events.exception.serror_has_esr = env->serror.has_esr; 731 events.exception.serror_esr = env->serror.esr; 732 } 733 734 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); 735 if (ret) { 736 error_report("failed to put vcpu events"); 737 } 738 739 return ret; 740 } 741 742 int kvm_get_vcpu_events(ARMCPU *cpu) 743 { 744 CPUARMState *env = &cpu->env; 745 struct kvm_vcpu_events events; 746 int ret; 747 748 if (!kvm_has_vcpu_events()) { 749 return 0; 750 } 751 752 memset(&events, 0, sizeof(events)); 753 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); 754 if (ret) { 755 error_report("failed to get vcpu events"); 756 return ret; 757 } 758 759 env->serror.pending = events.exception.serror_pending; 760 env->serror.has_esr = events.exception.serror_has_esr; 761 env->serror.esr = events.exception.serror_esr; 762 763 return 0; 764 } 765 766 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run) 767 { 768 ARMCPU *cpu = ARM_CPU(cs); 769 CPUARMState *env = &cpu->env; 770 771 if (unlikely(env->ext_dabt_raised)) { 772 /* 773 * Verifying that the ext DABT has been properly injected, 774 * otherwise risking indefinitely re-running the faulting instruction 775 * Covering a very narrow case for kernels 5.5..5.5.4 776 * when injected abort was misconfigured to be 777 * an IMPLEMENTATION DEFINED exception (for 32-bit EL1) 778 */ 779 if (!arm_feature(env, ARM_FEATURE_AARCH64) && 780 unlikely(!kvm_arm_verify_ext_dabt_pending(cs))) { 781 782 error_report("Data abort exception with no valid ISS generated by " 783 "guest memory access. KVM unable to emulate faulting " 784 "instruction. Failed to inject an external data abort " 785 "into the guest."); 786 abort(); 787 } 788 /* Clear the status */ 789 env->ext_dabt_raised = 0; 790 } 791 } 792 793 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) 794 { 795 ARMCPU *cpu; 796 uint32_t switched_level; 797 798 if (kvm_irqchip_in_kernel()) { 799 /* 800 * We only need to sync timer states with user-space interrupt 801 * controllers, so return early and save cycles if we don't. 802 */ 803 return MEMTXATTRS_UNSPECIFIED; 804 } 805 806 cpu = ARM_CPU(cs); 807 808 /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */ 809 if (run->s.regs.device_irq_level != cpu->device_irq_level) { 810 switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level; 811 812 qemu_mutex_lock_iothread(); 813 814 if (switched_level & KVM_ARM_DEV_EL1_VTIMER) { 815 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT], 816 !!(run->s.regs.device_irq_level & 817 KVM_ARM_DEV_EL1_VTIMER)); 818 switched_level &= ~KVM_ARM_DEV_EL1_VTIMER; 819 } 820 821 if (switched_level & KVM_ARM_DEV_EL1_PTIMER) { 822 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS], 823 !!(run->s.regs.device_irq_level & 824 KVM_ARM_DEV_EL1_PTIMER)); 825 switched_level &= ~KVM_ARM_DEV_EL1_PTIMER; 826 } 827 828 if (switched_level & KVM_ARM_DEV_PMU) { 829 qemu_set_irq(cpu->pmu_interrupt, 830 !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU)); 831 switched_level &= ~KVM_ARM_DEV_PMU; 832 } 833 834 if (switched_level) { 835 qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n", 836 __func__, switched_level); 837 } 838 839 /* We also mark unknown levels as processed to not waste cycles */ 840 cpu->device_irq_level = run->s.regs.device_irq_level; 841 qemu_mutex_unlock_iothread(); 842 } 843 844 return MEMTXATTRS_UNSPECIFIED; 845 } 846 847 void kvm_arm_vm_state_change(void *opaque, int running, RunState state) 848 { 849 CPUState *cs = opaque; 850 ARMCPU *cpu = ARM_CPU(cs); 851 852 if (running) { 853 if (cpu->kvm_adjvtime) { 854 kvm_arm_put_virtual_time(cs); 855 } 856 } else { 857 if (cpu->kvm_adjvtime) { 858 kvm_arm_get_virtual_time(cs); 859 } 860 } 861 } 862 863 /** 864 * kvm_arm_handle_dabt_nisv: 865 * @cs: CPUState 866 * @esr_iss: ISS encoding (limited) for the exception from Data Abort 867 * ISV bit set to '0b0' -> no valid instruction syndrome 868 * @fault_ipa: faulting address for the synchronous data abort 869 * 870 * Returns: 0 if the exception has been handled, < 0 otherwise 871 */ 872 static int kvm_arm_handle_dabt_nisv(CPUState *cs, uint64_t esr_iss, 873 uint64_t fault_ipa) 874 { 875 ARMCPU *cpu = ARM_CPU(cs); 876 CPUARMState *env = &cpu->env; 877 /* 878 * Request KVM to inject the external data abort into the guest 879 */ 880 if (cap_has_inject_ext_dabt) { 881 struct kvm_vcpu_events events = { }; 882 /* 883 * The external data abort event will be handled immediately by KVM 884 * using the address fault that triggered the exit on given VCPU. 885 * Requesting injection of the external data abort does not rely 886 * on any other VCPU state. Therefore, in this particular case, the VCPU 887 * synchronization can be exceptionally skipped. 888 */ 889 events.exception.ext_dabt_pending = 1; 890 /* KVM_CAP_ARM_INJECT_EXT_DABT implies KVM_CAP_VCPU_EVENTS */ 891 if (!kvm_vcpu_ioctl(cs, KVM_SET_VCPU_EVENTS, &events)) { 892 env->ext_dabt_raised = 1; 893 return 0; 894 } 895 } else { 896 error_report("Data abort exception triggered by guest memory access " 897 "at physical address: 0x" TARGET_FMT_lx, 898 (target_ulong)fault_ipa); 899 error_printf("KVM unable to emulate faulting instruction.\n"); 900 } 901 return -1; 902 } 903 904 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 905 { 906 int ret = 0; 907 908 switch (run->exit_reason) { 909 case KVM_EXIT_DEBUG: 910 if (kvm_arm_handle_debug(cs, &run->debug.arch)) { 911 ret = EXCP_DEBUG; 912 } /* otherwise return to guest */ 913 break; 914 case KVM_EXIT_ARM_NISV: 915 /* External DABT with no valid iss to decode */ 916 ret = kvm_arm_handle_dabt_nisv(cs, run->arm_nisv.esr_iss, 917 run->arm_nisv.fault_ipa); 918 break; 919 default: 920 qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n", 921 __func__, run->exit_reason); 922 break; 923 } 924 return ret; 925 } 926 927 bool kvm_arch_stop_on_emulation_error(CPUState *cs) 928 { 929 return true; 930 } 931 932 int kvm_arch_process_async_events(CPUState *cs) 933 { 934 return 0; 935 } 936 937 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg) 938 { 939 if (kvm_sw_breakpoints_active(cs)) { 940 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; 941 } 942 if (kvm_arm_hw_debug_active(cs)) { 943 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW; 944 kvm_arm_copy_hw_debug_data(&dbg->arch); 945 } 946 } 947 948 void kvm_arch_init_irq_routing(KVMState *s) 949 { 950 } 951 952 int kvm_arch_irqchip_create(KVMState *s) 953 { 954 if (kvm_kernel_irqchip_split()) { 955 perror("-machine kernel_irqchip=split is not supported on ARM."); 956 exit(1); 957 } 958 959 /* If we can create the VGIC using the newer device control API, we 960 * let the device do this when it initializes itself, otherwise we 961 * fall back to the old API */ 962 return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL); 963 } 964 965 int kvm_arm_vgic_probe(void) 966 { 967 int val = 0; 968 969 if (kvm_create_device(kvm_state, 970 KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) { 971 val |= KVM_ARM_VGIC_V3; 972 } 973 if (kvm_create_device(kvm_state, 974 KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) { 975 val |= KVM_ARM_VGIC_V2; 976 } 977 return val; 978 } 979 980 int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level) 981 { 982 int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq; 983 int cpu_idx1 = cpu % 256; 984 int cpu_idx2 = cpu / 256; 985 986 kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) | 987 (cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT); 988 989 return kvm_set_irq(kvm_state, kvm_irq, !!level); 990 } 991 992 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 993 uint64_t address, uint32_t data, PCIDevice *dev) 994 { 995 AddressSpace *as = pci_device_iommu_address_space(dev); 996 hwaddr xlat, len, doorbell_gpa; 997 MemoryRegionSection mrs; 998 MemoryRegion *mr; 999 int ret = 1; 1000 1001 if (as == &address_space_memory) { 1002 return 0; 1003 } 1004 1005 /* MSI doorbell address is translated by an IOMMU */ 1006 1007 rcu_read_lock(); 1008 mr = address_space_translate(as, address, &xlat, &len, true, 1009 MEMTXATTRS_UNSPECIFIED); 1010 if (!mr) { 1011 goto unlock; 1012 } 1013 mrs = memory_region_find(mr, xlat, 1); 1014 if (!mrs.mr) { 1015 goto unlock; 1016 } 1017 1018 doorbell_gpa = mrs.offset_within_address_space; 1019 memory_region_unref(mrs.mr); 1020 1021 route->u.msi.address_lo = doorbell_gpa; 1022 route->u.msi.address_hi = doorbell_gpa >> 32; 1023 1024 trace_kvm_arm_fixup_msi_route(address, doorbell_gpa); 1025 1026 ret = 0; 1027 1028 unlock: 1029 rcu_read_unlock(); 1030 return ret; 1031 } 1032 1033 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 1034 int vector, PCIDevice *dev) 1035 { 1036 return 0; 1037 } 1038 1039 int kvm_arch_release_virq_post(int virq) 1040 { 1041 return 0; 1042 } 1043 1044 int kvm_arch_msi_data_to_gsi(uint32_t data) 1045 { 1046 return (data - 32) & 0xffff; 1047 } 1048