xref: /openbmc/qemu/target/arm/kvm.c (revision 64552b6b)
1 /*
2  * ARM implementation of KVM hooks
3  *
4  * Copyright Christoffer Dall 2009-2010
5  *
6  * This work is licensed under the terms of the GNU GPL, version 2 or later.
7  * See the COPYING file in the top-level directory.
8  *
9  */
10 
11 #include "qemu/osdep.h"
12 #include <sys/ioctl.h>
13 
14 #include <linux/kvm.h>
15 
16 #include "qemu-common.h"
17 #include "qemu/timer.h"
18 #include "qemu/error-report.h"
19 #include "sysemu/sysemu.h"
20 #include "sysemu/kvm.h"
21 #include "sysemu/kvm_int.h"
22 #include "kvm_arm.h"
23 #include "cpu.h"
24 #include "trace.h"
25 #include "internals.h"
26 #include "hw/pci/pci.h"
27 #include "exec/memattrs.h"
28 #include "exec/address-spaces.h"
29 #include "hw/boards.h"
30 #include "hw/irq.h"
31 #include "qemu/log.h"
32 
33 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
34     KVM_CAP_LAST_INFO
35 };
36 
37 static bool cap_has_mp_state;
38 static bool cap_has_inject_serror_esr;
39 
40 static ARMHostCPUFeatures arm_host_cpu_features;
41 
42 int kvm_arm_vcpu_init(CPUState *cs)
43 {
44     ARMCPU *cpu = ARM_CPU(cs);
45     struct kvm_vcpu_init init;
46 
47     init.target = cpu->kvm_target;
48     memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
49 
50     return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
51 }
52 
53 void kvm_arm_init_serror_injection(CPUState *cs)
54 {
55     cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state,
56                                     KVM_CAP_ARM_INJECT_SERROR_ESR);
57 }
58 
59 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
60                                       int *fdarray,
61                                       struct kvm_vcpu_init *init)
62 {
63     int ret, kvmfd = -1, vmfd = -1, cpufd = -1;
64 
65     kvmfd = qemu_open("/dev/kvm", O_RDWR);
66     if (kvmfd < 0) {
67         goto err;
68     }
69     vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0);
70     if (vmfd < 0) {
71         goto err;
72     }
73     cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
74     if (cpufd < 0) {
75         goto err;
76     }
77 
78     if (!init) {
79         /* Caller doesn't want the VCPU to be initialized, so skip it */
80         goto finish;
81     }
82 
83     ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, init);
84     if (ret >= 0) {
85         ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
86         if (ret < 0) {
87             goto err;
88         }
89     } else if (cpus_to_try) {
90         /* Old kernel which doesn't know about the
91          * PREFERRED_TARGET ioctl: we know it will only support
92          * creating one kind of guest CPU which is its preferred
93          * CPU type.
94          */
95         while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
96             init->target = *cpus_to_try++;
97             memset(init->features, 0, sizeof(init->features));
98             ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
99             if (ret >= 0) {
100                 break;
101             }
102         }
103         if (ret < 0) {
104             goto err;
105         }
106     } else {
107         /* Treat a NULL cpus_to_try argument the same as an empty
108          * list, which means we will fail the call since this must
109          * be an old kernel which doesn't support PREFERRED_TARGET.
110          */
111         goto err;
112     }
113 
114 finish:
115     fdarray[0] = kvmfd;
116     fdarray[1] = vmfd;
117     fdarray[2] = cpufd;
118 
119     return true;
120 
121 err:
122     if (cpufd >= 0) {
123         close(cpufd);
124     }
125     if (vmfd >= 0) {
126         close(vmfd);
127     }
128     if (kvmfd >= 0) {
129         close(kvmfd);
130     }
131 
132     return false;
133 }
134 
135 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
136 {
137     int i;
138 
139     for (i = 2; i >= 0; i--) {
140         close(fdarray[i]);
141     }
142 }
143 
144 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
145 {
146     CPUARMState *env = &cpu->env;
147 
148     if (!arm_host_cpu_features.dtb_compatible) {
149         if (!kvm_enabled() ||
150             !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) {
151             /* We can't report this error yet, so flag that we need to
152              * in arm_cpu_realizefn().
153              */
154             cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
155             cpu->host_cpu_probe_failed = true;
156             return;
157         }
158     }
159 
160     cpu->kvm_target = arm_host_cpu_features.target;
161     cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
162     cpu->isar = arm_host_cpu_features.isar;
163     env->features = arm_host_cpu_features.features;
164 }
165 
166 int kvm_arm_get_max_vm_ipa_size(MachineState *ms)
167 {
168     KVMState *s = KVM_STATE(ms->accelerator);
169     int ret;
170 
171     ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE);
172     return ret > 0 ? ret : 40;
173 }
174 
175 int kvm_arch_init(MachineState *ms, KVMState *s)
176 {
177     /* For ARM interrupt delivery is always asynchronous,
178      * whether we are using an in-kernel VGIC or not.
179      */
180     kvm_async_interrupts_allowed = true;
181 
182     /*
183      * PSCI wakes up secondary cores, so we always need to
184      * have vCPUs waiting in kernel space
185      */
186     kvm_halt_in_kernel_allowed = true;
187 
188     cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
189 
190     return 0;
191 }
192 
193 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
194 {
195     return cpu->cpu_index;
196 }
197 
198 /* We track all the KVM devices which need their memory addresses
199  * passing to the kernel in a list of these structures.
200  * When board init is complete we run through the list and
201  * tell the kernel the base addresses of the memory regions.
202  * We use a MemoryListener to track mapping and unmapping of
203  * the regions during board creation, so the board models don't
204  * need to do anything special for the KVM case.
205  *
206  * Sometimes the address must be OR'ed with some other fields
207  * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
208  * @kda_addr_ormask aims at storing the value of those fields.
209  */
210 typedef struct KVMDevice {
211     struct kvm_arm_device_addr kda;
212     struct kvm_device_attr kdattr;
213     uint64_t kda_addr_ormask;
214     MemoryRegion *mr;
215     QSLIST_ENTRY(KVMDevice) entries;
216     int dev_fd;
217 } KVMDevice;
218 
219 static QSLIST_HEAD(, KVMDevice) kvm_devices_head;
220 
221 static void kvm_arm_devlistener_add(MemoryListener *listener,
222                                     MemoryRegionSection *section)
223 {
224     KVMDevice *kd;
225 
226     QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
227         if (section->mr == kd->mr) {
228             kd->kda.addr = section->offset_within_address_space;
229         }
230     }
231 }
232 
233 static void kvm_arm_devlistener_del(MemoryListener *listener,
234                                     MemoryRegionSection *section)
235 {
236     KVMDevice *kd;
237 
238     QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
239         if (section->mr == kd->mr) {
240             kd->kda.addr = -1;
241         }
242     }
243 }
244 
245 static MemoryListener devlistener = {
246     .region_add = kvm_arm_devlistener_add,
247     .region_del = kvm_arm_devlistener_del,
248 };
249 
250 static void kvm_arm_set_device_addr(KVMDevice *kd)
251 {
252     struct kvm_device_attr *attr = &kd->kdattr;
253     int ret;
254 
255     /* If the device control API is available and we have a device fd on the
256      * KVMDevice struct, let's use the newer API
257      */
258     if (kd->dev_fd >= 0) {
259         uint64_t addr = kd->kda.addr;
260 
261         addr |= kd->kda_addr_ormask;
262         attr->addr = (uintptr_t)&addr;
263         ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
264     } else {
265         ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
266     }
267 
268     if (ret < 0) {
269         fprintf(stderr, "Failed to set device address: %s\n",
270                 strerror(-ret));
271         abort();
272     }
273 }
274 
275 static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
276 {
277     KVMDevice *kd, *tkd;
278 
279     QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
280         if (kd->kda.addr != -1) {
281             kvm_arm_set_device_addr(kd);
282         }
283         memory_region_unref(kd->mr);
284         QSLIST_REMOVE_HEAD(&kvm_devices_head, entries);
285         g_free(kd);
286     }
287     memory_listener_unregister(&devlistener);
288 }
289 
290 static Notifier notify = {
291     .notify = kvm_arm_machine_init_done,
292 };
293 
294 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
295                              uint64_t attr, int dev_fd, uint64_t addr_ormask)
296 {
297     KVMDevice *kd;
298 
299     if (!kvm_irqchip_in_kernel()) {
300         return;
301     }
302 
303     if (QSLIST_EMPTY(&kvm_devices_head)) {
304         memory_listener_register(&devlistener, &address_space_memory);
305         qemu_add_machine_init_done_notifier(&notify);
306     }
307     kd = g_new0(KVMDevice, 1);
308     kd->mr = mr;
309     kd->kda.id = devid;
310     kd->kda.addr = -1;
311     kd->kdattr.flags = 0;
312     kd->kdattr.group = group;
313     kd->kdattr.attr = attr;
314     kd->dev_fd = dev_fd;
315     kd->kda_addr_ormask = addr_ormask;
316     QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
317     memory_region_ref(kd->mr);
318 }
319 
320 static int compare_u64(const void *a, const void *b)
321 {
322     if (*(uint64_t *)a > *(uint64_t *)b) {
323         return 1;
324     }
325     if (*(uint64_t *)a < *(uint64_t *)b) {
326         return -1;
327     }
328     return 0;
329 }
330 
331 /* Initialize the ARMCPU cpreg list according to the kernel's
332  * definition of what CPU registers it knows about (and throw away
333  * the previous TCG-created cpreg list).
334  */
335 int kvm_arm_init_cpreg_list(ARMCPU *cpu)
336 {
337     struct kvm_reg_list rl;
338     struct kvm_reg_list *rlp;
339     int i, ret, arraylen;
340     CPUState *cs = CPU(cpu);
341 
342     rl.n = 0;
343     ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
344     if (ret != -E2BIG) {
345         return ret;
346     }
347     rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
348     rlp->n = rl.n;
349     ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
350     if (ret) {
351         goto out;
352     }
353     /* Sort the list we get back from the kernel, since cpreg_tuples
354      * must be in strictly ascending order.
355      */
356     qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
357 
358     for (i = 0, arraylen = 0; i < rlp->n; i++) {
359         if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
360             continue;
361         }
362         switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
363         case KVM_REG_SIZE_U32:
364         case KVM_REG_SIZE_U64:
365             break;
366         default:
367             fprintf(stderr, "Can't handle size of register in kernel list\n");
368             ret = -EINVAL;
369             goto out;
370         }
371 
372         arraylen++;
373     }
374 
375     cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
376     cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
377     cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
378                                          arraylen);
379     cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
380                                         arraylen);
381     cpu->cpreg_array_len = arraylen;
382     cpu->cpreg_vmstate_array_len = arraylen;
383 
384     for (i = 0, arraylen = 0; i < rlp->n; i++) {
385         uint64_t regidx = rlp->reg[i];
386         if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
387             continue;
388         }
389         cpu->cpreg_indexes[arraylen] = regidx;
390         arraylen++;
391     }
392     assert(cpu->cpreg_array_len == arraylen);
393 
394     if (!write_kvmstate_to_list(cpu)) {
395         /* Shouldn't happen unless kernel is inconsistent about
396          * what registers exist.
397          */
398         fprintf(stderr, "Initial read of kernel register state failed\n");
399         ret = -EINVAL;
400         goto out;
401     }
402 
403 out:
404     g_free(rlp);
405     return ret;
406 }
407 
408 bool write_kvmstate_to_list(ARMCPU *cpu)
409 {
410     CPUState *cs = CPU(cpu);
411     int i;
412     bool ok = true;
413 
414     for (i = 0; i < cpu->cpreg_array_len; i++) {
415         struct kvm_one_reg r;
416         uint64_t regidx = cpu->cpreg_indexes[i];
417         uint32_t v32;
418         int ret;
419 
420         r.id = regidx;
421 
422         switch (regidx & KVM_REG_SIZE_MASK) {
423         case KVM_REG_SIZE_U32:
424             r.addr = (uintptr_t)&v32;
425             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
426             if (!ret) {
427                 cpu->cpreg_values[i] = v32;
428             }
429             break;
430         case KVM_REG_SIZE_U64:
431             r.addr = (uintptr_t)(cpu->cpreg_values + i);
432             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
433             break;
434         default:
435             abort();
436         }
437         if (ret) {
438             ok = false;
439         }
440     }
441     return ok;
442 }
443 
444 bool write_list_to_kvmstate(ARMCPU *cpu, int level)
445 {
446     CPUState *cs = CPU(cpu);
447     int i;
448     bool ok = true;
449 
450     for (i = 0; i < cpu->cpreg_array_len; i++) {
451         struct kvm_one_reg r;
452         uint64_t regidx = cpu->cpreg_indexes[i];
453         uint32_t v32;
454         int ret;
455 
456         if (kvm_arm_cpreg_level(regidx) > level) {
457             continue;
458         }
459 
460         r.id = regidx;
461         switch (regidx & KVM_REG_SIZE_MASK) {
462         case KVM_REG_SIZE_U32:
463             v32 = cpu->cpreg_values[i];
464             r.addr = (uintptr_t)&v32;
465             break;
466         case KVM_REG_SIZE_U64:
467             r.addr = (uintptr_t)(cpu->cpreg_values + i);
468             break;
469         default:
470             abort();
471         }
472         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
473         if (ret) {
474             /* We might fail for "unknown register" and also for
475              * "you tried to set a register which is constant with
476              * a different value from what it actually contains".
477              */
478             ok = false;
479         }
480     }
481     return ok;
482 }
483 
484 void kvm_arm_reset_vcpu(ARMCPU *cpu)
485 {
486     int ret;
487 
488     /* Re-init VCPU so that all registers are set to
489      * their respective reset values.
490      */
491     ret = kvm_arm_vcpu_init(CPU(cpu));
492     if (ret < 0) {
493         fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
494         abort();
495     }
496     if (!write_kvmstate_to_list(cpu)) {
497         fprintf(stderr, "write_kvmstate_to_list failed\n");
498         abort();
499     }
500     /*
501      * Sync the reset values also into the CPUState. This is necessary
502      * because the next thing we do will be a kvm_arch_put_registers()
503      * which will update the list values from the CPUState before copying
504      * the list values back to KVM. It's OK to ignore failure returns here
505      * for the same reason we do so in kvm_arch_get_registers().
506      */
507     write_list_to_cpustate(cpu);
508 }
509 
510 /*
511  * Update KVM's MP_STATE based on what QEMU thinks it is
512  */
513 int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
514 {
515     if (cap_has_mp_state) {
516         struct kvm_mp_state mp_state = {
517             .mp_state = (cpu->power_state == PSCI_OFF) ?
518             KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
519         };
520         int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
521         if (ret) {
522             fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n",
523                     __func__, ret, strerror(-ret));
524             return -1;
525         }
526     }
527 
528     return 0;
529 }
530 
531 /*
532  * Sync the KVM MP_STATE into QEMU
533  */
534 int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
535 {
536     if (cap_has_mp_state) {
537         struct kvm_mp_state mp_state;
538         int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
539         if (ret) {
540             fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n",
541                     __func__, ret, strerror(-ret));
542             abort();
543         }
544         cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
545             PSCI_OFF : PSCI_ON;
546     }
547 
548     return 0;
549 }
550 
551 int kvm_put_vcpu_events(ARMCPU *cpu)
552 {
553     CPUARMState *env = &cpu->env;
554     struct kvm_vcpu_events events;
555     int ret;
556 
557     if (!kvm_has_vcpu_events()) {
558         return 0;
559     }
560 
561     memset(&events, 0, sizeof(events));
562     events.exception.serror_pending = env->serror.pending;
563 
564     /* Inject SError to guest with specified syndrome if host kernel
565      * supports it, otherwise inject SError without syndrome.
566      */
567     if (cap_has_inject_serror_esr) {
568         events.exception.serror_has_esr = env->serror.has_esr;
569         events.exception.serror_esr = env->serror.esr;
570     }
571 
572     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
573     if (ret) {
574         error_report("failed to put vcpu events");
575     }
576 
577     return ret;
578 }
579 
580 int kvm_get_vcpu_events(ARMCPU *cpu)
581 {
582     CPUARMState *env = &cpu->env;
583     struct kvm_vcpu_events events;
584     int ret;
585 
586     if (!kvm_has_vcpu_events()) {
587         return 0;
588     }
589 
590     memset(&events, 0, sizeof(events));
591     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
592     if (ret) {
593         error_report("failed to get vcpu events");
594         return ret;
595     }
596 
597     env->serror.pending = events.exception.serror_pending;
598     env->serror.has_esr = events.exception.serror_has_esr;
599     env->serror.esr = events.exception.serror_esr;
600 
601     return 0;
602 }
603 
604 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
605 {
606 }
607 
608 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
609 {
610     ARMCPU *cpu;
611     uint32_t switched_level;
612 
613     if (kvm_irqchip_in_kernel()) {
614         /*
615          * We only need to sync timer states with user-space interrupt
616          * controllers, so return early and save cycles if we don't.
617          */
618         return MEMTXATTRS_UNSPECIFIED;
619     }
620 
621     cpu = ARM_CPU(cs);
622 
623     /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
624     if (run->s.regs.device_irq_level != cpu->device_irq_level) {
625         switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
626 
627         qemu_mutex_lock_iothread();
628 
629         if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
630             qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
631                          !!(run->s.regs.device_irq_level &
632                             KVM_ARM_DEV_EL1_VTIMER));
633             switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
634         }
635 
636         if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
637             qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
638                          !!(run->s.regs.device_irq_level &
639                             KVM_ARM_DEV_EL1_PTIMER));
640             switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
641         }
642 
643         if (switched_level & KVM_ARM_DEV_PMU) {
644             qemu_set_irq(cpu->pmu_interrupt,
645                          !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
646             switched_level &= ~KVM_ARM_DEV_PMU;
647         }
648 
649         if (switched_level) {
650             qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
651                           __func__, switched_level);
652         }
653 
654         /* We also mark unknown levels as processed to not waste cycles */
655         cpu->device_irq_level = run->s.regs.device_irq_level;
656         qemu_mutex_unlock_iothread();
657     }
658 
659     return MEMTXATTRS_UNSPECIFIED;
660 }
661 
662 
663 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
664 {
665     int ret = 0;
666 
667     switch (run->exit_reason) {
668     case KVM_EXIT_DEBUG:
669         if (kvm_arm_handle_debug(cs, &run->debug.arch)) {
670             ret = EXCP_DEBUG;
671         } /* otherwise return to guest */
672         break;
673     default:
674         qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
675                       __func__, run->exit_reason);
676         break;
677     }
678     return ret;
679 }
680 
681 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
682 {
683     return true;
684 }
685 
686 int kvm_arch_process_async_events(CPUState *cs)
687 {
688     return 0;
689 }
690 
691 /* The #ifdef protections are until 32bit headers are imported and can
692  * be removed once both 32 and 64 bit reach feature parity.
693  */
694 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
695 {
696 #ifdef KVM_GUESTDBG_USE_SW_BP
697     if (kvm_sw_breakpoints_active(cs)) {
698         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
699     }
700 #endif
701 #ifdef KVM_GUESTDBG_USE_HW
702     if (kvm_arm_hw_debug_active(cs)) {
703         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
704         kvm_arm_copy_hw_debug_data(&dbg->arch);
705     }
706 #endif
707 }
708 
709 void kvm_arch_init_irq_routing(KVMState *s)
710 {
711 }
712 
713 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
714 {
715      if (machine_kernel_irqchip_split(ms)) {
716          perror("-machine kernel_irqchip=split is not supported on ARM.");
717          exit(1);
718     }
719 
720     /* If we can create the VGIC using the newer device control API, we
721      * let the device do this when it initializes itself, otherwise we
722      * fall back to the old API */
723     return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
724 }
725 
726 int kvm_arm_vgic_probe(void)
727 {
728     if (kvm_create_device(kvm_state,
729                           KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
730         return 3;
731     } else if (kvm_create_device(kvm_state,
732                                  KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
733         return 2;
734     } else {
735         return 0;
736     }
737 }
738 
739 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
740                              uint64_t address, uint32_t data, PCIDevice *dev)
741 {
742     AddressSpace *as = pci_device_iommu_address_space(dev);
743     hwaddr xlat, len, doorbell_gpa;
744     MemoryRegionSection mrs;
745     MemoryRegion *mr;
746     int ret = 1;
747 
748     if (as == &address_space_memory) {
749         return 0;
750     }
751 
752     /* MSI doorbell address is translated by an IOMMU */
753 
754     rcu_read_lock();
755     mr = address_space_translate(as, address, &xlat, &len, true,
756                                  MEMTXATTRS_UNSPECIFIED);
757     if (!mr) {
758         goto unlock;
759     }
760     mrs = memory_region_find(mr, xlat, 1);
761     if (!mrs.mr) {
762         goto unlock;
763     }
764 
765     doorbell_gpa = mrs.offset_within_address_space;
766     memory_region_unref(mrs.mr);
767 
768     route->u.msi.address_lo = doorbell_gpa;
769     route->u.msi.address_hi = doorbell_gpa >> 32;
770 
771     trace_kvm_arm_fixup_msi_route(address, doorbell_gpa);
772 
773     ret = 0;
774 
775 unlock:
776     rcu_read_unlock();
777     return ret;
778 }
779 
780 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
781                                 int vector, PCIDevice *dev)
782 {
783     return 0;
784 }
785 
786 int kvm_arch_release_virq_post(int virq)
787 {
788     return 0;
789 }
790 
791 int kvm_arch_msi_data_to_gsi(uint32_t data)
792 {
793     return (data - 32) & 0xffff;
794 }
795