xref: /openbmc/qemu/target/arm/kvm.c (revision 5f88dd43)
1 /*
2  * ARM implementation of KVM hooks
3  *
4  * Copyright Christoffer Dall 2009-2010
5  *
6  * This work is licensed under the terms of the GNU GPL, version 2 or later.
7  * See the COPYING file in the top-level directory.
8  *
9  */
10 
11 #include "qemu/osdep.h"
12 #include <sys/ioctl.h>
13 
14 #include <linux/kvm.h>
15 
16 #include "qemu/timer.h"
17 #include "qemu/error-report.h"
18 #include "qemu/main-loop.h"
19 #include "qom/object.h"
20 #include "qapi/error.h"
21 #include "sysemu/sysemu.h"
22 #include "sysemu/kvm.h"
23 #include "sysemu/kvm_int.h"
24 #include "kvm_arm.h"
25 #include "cpu.h"
26 #include "trace.h"
27 #include "internals.h"
28 #include "hw/pci/pci.h"
29 #include "exec/memattrs.h"
30 #include "exec/address-spaces.h"
31 #include "hw/boards.h"
32 #include "hw/irq.h"
33 #include "qemu/log.h"
34 
35 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
36     KVM_CAP_LAST_INFO
37 };
38 
39 static bool cap_has_mp_state;
40 static bool cap_has_inject_serror_esr;
41 static bool cap_has_inject_ext_dabt;
42 
43 static ARMHostCPUFeatures arm_host_cpu_features;
44 
45 int kvm_arm_vcpu_init(CPUState *cs)
46 {
47     ARMCPU *cpu = ARM_CPU(cs);
48     struct kvm_vcpu_init init;
49 
50     init.target = cpu->kvm_target;
51     memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
52 
53     return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
54 }
55 
56 int kvm_arm_vcpu_finalize(CPUState *cs, int feature)
57 {
58     return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_FINALIZE, &feature);
59 }
60 
61 void kvm_arm_init_serror_injection(CPUState *cs)
62 {
63     cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state,
64                                     KVM_CAP_ARM_INJECT_SERROR_ESR);
65 }
66 
67 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
68                                       int *fdarray,
69                                       struct kvm_vcpu_init *init)
70 {
71     int ret = 0, kvmfd = -1, vmfd = -1, cpufd = -1;
72     int max_vm_pa_size;
73 
74     kvmfd = qemu_open_old("/dev/kvm", O_RDWR);
75     if (kvmfd < 0) {
76         goto err;
77     }
78     max_vm_pa_size = ioctl(kvmfd, KVM_CHECK_EXTENSION, KVM_CAP_ARM_VM_IPA_SIZE);
79     if (max_vm_pa_size < 0) {
80         max_vm_pa_size = 0;
81     }
82     do {
83         vmfd = ioctl(kvmfd, KVM_CREATE_VM, max_vm_pa_size);
84     } while (vmfd == -1 && errno == EINTR);
85     if (vmfd < 0) {
86         goto err;
87     }
88     cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
89     if (cpufd < 0) {
90         goto err;
91     }
92 
93     if (!init) {
94         /* Caller doesn't want the VCPU to be initialized, so skip it */
95         goto finish;
96     }
97 
98     if (init->target == -1) {
99         struct kvm_vcpu_init preferred;
100 
101         ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, &preferred);
102         if (!ret) {
103             init->target = preferred.target;
104         }
105     }
106     if (ret >= 0) {
107         ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
108         if (ret < 0) {
109             goto err;
110         }
111     } else if (cpus_to_try) {
112         /* Old kernel which doesn't know about the
113          * PREFERRED_TARGET ioctl: we know it will only support
114          * creating one kind of guest CPU which is its preferred
115          * CPU type.
116          */
117         struct kvm_vcpu_init try;
118 
119         while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
120             try.target = *cpus_to_try++;
121             memcpy(try.features, init->features, sizeof(init->features));
122             ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, &try);
123             if (ret >= 0) {
124                 break;
125             }
126         }
127         if (ret < 0) {
128             goto err;
129         }
130         init->target = try.target;
131     } else {
132         /* Treat a NULL cpus_to_try argument the same as an empty
133          * list, which means we will fail the call since this must
134          * be an old kernel which doesn't support PREFERRED_TARGET.
135          */
136         goto err;
137     }
138 
139 finish:
140     fdarray[0] = kvmfd;
141     fdarray[1] = vmfd;
142     fdarray[2] = cpufd;
143 
144     return true;
145 
146 err:
147     if (cpufd >= 0) {
148         close(cpufd);
149     }
150     if (vmfd >= 0) {
151         close(vmfd);
152     }
153     if (kvmfd >= 0) {
154         close(kvmfd);
155     }
156 
157     return false;
158 }
159 
160 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
161 {
162     int i;
163 
164     for (i = 2; i >= 0; i--) {
165         close(fdarray[i]);
166     }
167 }
168 
169 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
170 {
171     CPUARMState *env = &cpu->env;
172 
173     if (!arm_host_cpu_features.dtb_compatible) {
174         if (!kvm_enabled() ||
175             !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) {
176             /* We can't report this error yet, so flag that we need to
177              * in arm_cpu_realizefn().
178              */
179             cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
180             cpu->host_cpu_probe_failed = true;
181             return;
182         }
183     }
184 
185     cpu->kvm_target = arm_host_cpu_features.target;
186     cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
187     cpu->isar = arm_host_cpu_features.isar;
188     env->features = arm_host_cpu_features.features;
189 }
190 
191 static bool kvm_no_adjvtime_get(Object *obj, Error **errp)
192 {
193     return !ARM_CPU(obj)->kvm_adjvtime;
194 }
195 
196 static void kvm_no_adjvtime_set(Object *obj, bool value, Error **errp)
197 {
198     ARM_CPU(obj)->kvm_adjvtime = !value;
199 }
200 
201 static bool kvm_steal_time_get(Object *obj, Error **errp)
202 {
203     return ARM_CPU(obj)->kvm_steal_time != ON_OFF_AUTO_OFF;
204 }
205 
206 static void kvm_steal_time_set(Object *obj, bool value, Error **errp)
207 {
208     ARM_CPU(obj)->kvm_steal_time = value ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
209 }
210 
211 /* KVM VCPU properties should be prefixed with "kvm-". */
212 void kvm_arm_add_vcpu_properties(Object *obj)
213 {
214     ARMCPU *cpu = ARM_CPU(obj);
215     CPUARMState *env = &cpu->env;
216 
217     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
218         cpu->kvm_adjvtime = true;
219         object_property_add_bool(obj, "kvm-no-adjvtime", kvm_no_adjvtime_get,
220                                  kvm_no_adjvtime_set);
221         object_property_set_description(obj, "kvm-no-adjvtime",
222                                         "Set on to disable the adjustment of "
223                                         "the virtual counter. VM stopped time "
224                                         "will be counted.");
225     }
226 
227     cpu->kvm_steal_time = ON_OFF_AUTO_AUTO;
228     object_property_add_bool(obj, "kvm-steal-time", kvm_steal_time_get,
229                              kvm_steal_time_set);
230     object_property_set_description(obj, "kvm-steal-time",
231                                     "Set off to disable KVM steal time.");
232 }
233 
234 bool kvm_arm_pmu_supported(void)
235 {
236     return kvm_check_extension(kvm_state, KVM_CAP_ARM_PMU_V3);
237 }
238 
239 int kvm_arm_get_max_vm_ipa_size(MachineState *ms, bool *fixed_ipa)
240 {
241     KVMState *s = KVM_STATE(ms->accelerator);
242     int ret;
243 
244     ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE);
245     *fixed_ipa = ret <= 0;
246 
247     return ret > 0 ? ret : 40;
248 }
249 
250 int kvm_arch_get_default_type(MachineState *ms)
251 {
252     bool fixed_ipa;
253     int size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
254     return fixed_ipa ? 0 : size;
255 }
256 
257 int kvm_arch_init(MachineState *ms, KVMState *s)
258 {
259     int ret = 0;
260     /* For ARM interrupt delivery is always asynchronous,
261      * whether we are using an in-kernel VGIC or not.
262      */
263     kvm_async_interrupts_allowed = true;
264 
265     /*
266      * PSCI wakes up secondary cores, so we always need to
267      * have vCPUs waiting in kernel space
268      */
269     kvm_halt_in_kernel_allowed = true;
270 
271     cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
272 
273     if (ms->smp.cpus > 256 &&
274         !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) {
275         error_report("Using more than 256 vcpus requires a host kernel "
276                      "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2");
277         ret = -EINVAL;
278     }
279 
280     if (kvm_check_extension(s, KVM_CAP_ARM_NISV_TO_USER)) {
281         if (kvm_vm_enable_cap(s, KVM_CAP_ARM_NISV_TO_USER, 0)) {
282             error_report("Failed to enable KVM_CAP_ARM_NISV_TO_USER cap");
283         } else {
284             /* Set status for supporting the external dabt injection */
285             cap_has_inject_ext_dabt = kvm_check_extension(s,
286                                     KVM_CAP_ARM_INJECT_EXT_DABT);
287         }
288     }
289 
290     kvm_arm_init_debug(s);
291 
292     return ret;
293 }
294 
295 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
296 {
297     return cpu->cpu_index;
298 }
299 
300 /* We track all the KVM devices which need their memory addresses
301  * passing to the kernel in a list of these structures.
302  * When board init is complete we run through the list and
303  * tell the kernel the base addresses of the memory regions.
304  * We use a MemoryListener to track mapping and unmapping of
305  * the regions during board creation, so the board models don't
306  * need to do anything special for the KVM case.
307  *
308  * Sometimes the address must be OR'ed with some other fields
309  * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
310  * @kda_addr_ormask aims at storing the value of those fields.
311  */
312 typedef struct KVMDevice {
313     struct kvm_arm_device_addr kda;
314     struct kvm_device_attr kdattr;
315     uint64_t kda_addr_ormask;
316     MemoryRegion *mr;
317     QSLIST_ENTRY(KVMDevice) entries;
318     int dev_fd;
319 } KVMDevice;
320 
321 static QSLIST_HEAD(, KVMDevice) kvm_devices_head;
322 
323 static void kvm_arm_devlistener_add(MemoryListener *listener,
324                                     MemoryRegionSection *section)
325 {
326     KVMDevice *kd;
327 
328     QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
329         if (section->mr == kd->mr) {
330             kd->kda.addr = section->offset_within_address_space;
331         }
332     }
333 }
334 
335 static void kvm_arm_devlistener_del(MemoryListener *listener,
336                                     MemoryRegionSection *section)
337 {
338     KVMDevice *kd;
339 
340     QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
341         if (section->mr == kd->mr) {
342             kd->kda.addr = -1;
343         }
344     }
345 }
346 
347 static MemoryListener devlistener = {
348     .name = "kvm-arm",
349     .region_add = kvm_arm_devlistener_add,
350     .region_del = kvm_arm_devlistener_del,
351     .priority = MEMORY_LISTENER_PRIORITY_MIN,
352 };
353 
354 static void kvm_arm_set_device_addr(KVMDevice *kd)
355 {
356     struct kvm_device_attr *attr = &kd->kdattr;
357     int ret;
358 
359     /* If the device control API is available and we have a device fd on the
360      * KVMDevice struct, let's use the newer API
361      */
362     if (kd->dev_fd >= 0) {
363         uint64_t addr = kd->kda.addr;
364 
365         addr |= kd->kda_addr_ormask;
366         attr->addr = (uintptr_t)&addr;
367         ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
368     } else {
369         ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
370     }
371 
372     if (ret < 0) {
373         fprintf(stderr, "Failed to set device address: %s\n",
374                 strerror(-ret));
375         abort();
376     }
377 }
378 
379 static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
380 {
381     KVMDevice *kd, *tkd;
382 
383     QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
384         if (kd->kda.addr != -1) {
385             kvm_arm_set_device_addr(kd);
386         }
387         memory_region_unref(kd->mr);
388         QSLIST_REMOVE_HEAD(&kvm_devices_head, entries);
389         g_free(kd);
390     }
391     memory_listener_unregister(&devlistener);
392 }
393 
394 static Notifier notify = {
395     .notify = kvm_arm_machine_init_done,
396 };
397 
398 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
399                              uint64_t attr, int dev_fd, uint64_t addr_ormask)
400 {
401     KVMDevice *kd;
402 
403     if (!kvm_irqchip_in_kernel()) {
404         return;
405     }
406 
407     if (QSLIST_EMPTY(&kvm_devices_head)) {
408         memory_listener_register(&devlistener, &address_space_memory);
409         qemu_add_machine_init_done_notifier(&notify);
410     }
411     kd = g_new0(KVMDevice, 1);
412     kd->mr = mr;
413     kd->kda.id = devid;
414     kd->kda.addr = -1;
415     kd->kdattr.flags = 0;
416     kd->kdattr.group = group;
417     kd->kdattr.attr = attr;
418     kd->dev_fd = dev_fd;
419     kd->kda_addr_ormask = addr_ormask;
420     QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
421     memory_region_ref(kd->mr);
422 }
423 
424 static int compare_u64(const void *a, const void *b)
425 {
426     if (*(uint64_t *)a > *(uint64_t *)b) {
427         return 1;
428     }
429     if (*(uint64_t *)a < *(uint64_t *)b) {
430         return -1;
431     }
432     return 0;
433 }
434 
435 /*
436  * cpreg_values are sorted in ascending order by KVM register ID
437  * (see kvm_arm_init_cpreg_list). This allows us to cheaply find
438  * the storage for a KVM register by ID with a binary search.
439  */
440 static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx)
441 {
442     uint64_t *res;
443 
444     res = bsearch(&regidx, cpu->cpreg_indexes, cpu->cpreg_array_len,
445                   sizeof(uint64_t), compare_u64);
446     assert(res);
447 
448     return &cpu->cpreg_values[res - cpu->cpreg_indexes];
449 }
450 
451 /* Initialize the ARMCPU cpreg list according to the kernel's
452  * definition of what CPU registers it knows about (and throw away
453  * the previous TCG-created cpreg list).
454  */
455 int kvm_arm_init_cpreg_list(ARMCPU *cpu)
456 {
457     struct kvm_reg_list rl;
458     struct kvm_reg_list *rlp;
459     int i, ret, arraylen;
460     CPUState *cs = CPU(cpu);
461 
462     rl.n = 0;
463     ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
464     if (ret != -E2BIG) {
465         return ret;
466     }
467     rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
468     rlp->n = rl.n;
469     ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
470     if (ret) {
471         goto out;
472     }
473     /* Sort the list we get back from the kernel, since cpreg_tuples
474      * must be in strictly ascending order.
475      */
476     qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
477 
478     for (i = 0, arraylen = 0; i < rlp->n; i++) {
479         if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
480             continue;
481         }
482         switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
483         case KVM_REG_SIZE_U32:
484         case KVM_REG_SIZE_U64:
485             break;
486         default:
487             fprintf(stderr, "Can't handle size of register in kernel list\n");
488             ret = -EINVAL;
489             goto out;
490         }
491 
492         arraylen++;
493     }
494 
495     cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
496     cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
497     cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
498                                          arraylen);
499     cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
500                                         arraylen);
501     cpu->cpreg_array_len = arraylen;
502     cpu->cpreg_vmstate_array_len = arraylen;
503 
504     for (i = 0, arraylen = 0; i < rlp->n; i++) {
505         uint64_t regidx = rlp->reg[i];
506         if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
507             continue;
508         }
509         cpu->cpreg_indexes[arraylen] = regidx;
510         arraylen++;
511     }
512     assert(cpu->cpreg_array_len == arraylen);
513 
514     if (!write_kvmstate_to_list(cpu)) {
515         /* Shouldn't happen unless kernel is inconsistent about
516          * what registers exist.
517          */
518         fprintf(stderr, "Initial read of kernel register state failed\n");
519         ret = -EINVAL;
520         goto out;
521     }
522 
523 out:
524     g_free(rlp);
525     return ret;
526 }
527 
528 bool write_kvmstate_to_list(ARMCPU *cpu)
529 {
530     CPUState *cs = CPU(cpu);
531     int i;
532     bool ok = true;
533 
534     for (i = 0; i < cpu->cpreg_array_len; i++) {
535         struct kvm_one_reg r;
536         uint64_t regidx = cpu->cpreg_indexes[i];
537         uint32_t v32;
538         int ret;
539 
540         r.id = regidx;
541 
542         switch (regidx & KVM_REG_SIZE_MASK) {
543         case KVM_REG_SIZE_U32:
544             r.addr = (uintptr_t)&v32;
545             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
546             if (!ret) {
547                 cpu->cpreg_values[i] = v32;
548             }
549             break;
550         case KVM_REG_SIZE_U64:
551             r.addr = (uintptr_t)(cpu->cpreg_values + i);
552             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
553             break;
554         default:
555             g_assert_not_reached();
556         }
557         if (ret) {
558             ok = false;
559         }
560     }
561     return ok;
562 }
563 
564 bool write_list_to_kvmstate(ARMCPU *cpu, int level)
565 {
566     CPUState *cs = CPU(cpu);
567     int i;
568     bool ok = true;
569 
570     for (i = 0; i < cpu->cpreg_array_len; i++) {
571         struct kvm_one_reg r;
572         uint64_t regidx = cpu->cpreg_indexes[i];
573         uint32_t v32;
574         int ret;
575 
576         if (kvm_arm_cpreg_level(regidx) > level) {
577             continue;
578         }
579 
580         r.id = regidx;
581         switch (regidx & KVM_REG_SIZE_MASK) {
582         case KVM_REG_SIZE_U32:
583             v32 = cpu->cpreg_values[i];
584             r.addr = (uintptr_t)&v32;
585             break;
586         case KVM_REG_SIZE_U64:
587             r.addr = (uintptr_t)(cpu->cpreg_values + i);
588             break;
589         default:
590             g_assert_not_reached();
591         }
592         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
593         if (ret) {
594             /* We might fail for "unknown register" and also for
595              * "you tried to set a register which is constant with
596              * a different value from what it actually contains".
597              */
598             ok = false;
599         }
600     }
601     return ok;
602 }
603 
604 void kvm_arm_cpu_pre_save(ARMCPU *cpu)
605 {
606     /* KVM virtual time adjustment */
607     if (cpu->kvm_vtime_dirty) {
608         *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT) = cpu->kvm_vtime;
609     }
610 }
611 
612 void kvm_arm_cpu_post_load(ARMCPU *cpu)
613 {
614     /* KVM virtual time adjustment */
615     if (cpu->kvm_adjvtime) {
616         cpu->kvm_vtime = *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT);
617         cpu->kvm_vtime_dirty = true;
618     }
619 }
620 
621 void kvm_arm_reset_vcpu(ARMCPU *cpu)
622 {
623     int ret;
624 
625     /* Re-init VCPU so that all registers are set to
626      * their respective reset values.
627      */
628     ret = kvm_arm_vcpu_init(CPU(cpu));
629     if (ret < 0) {
630         fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
631         abort();
632     }
633     if (!write_kvmstate_to_list(cpu)) {
634         fprintf(stderr, "write_kvmstate_to_list failed\n");
635         abort();
636     }
637     /*
638      * Sync the reset values also into the CPUState. This is necessary
639      * because the next thing we do will be a kvm_arch_put_registers()
640      * which will update the list values from the CPUState before copying
641      * the list values back to KVM. It's OK to ignore failure returns here
642      * for the same reason we do so in kvm_arch_get_registers().
643      */
644     write_list_to_cpustate(cpu);
645 }
646 
647 /*
648  * Update KVM's MP_STATE based on what QEMU thinks it is
649  */
650 int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
651 {
652     if (cap_has_mp_state) {
653         struct kvm_mp_state mp_state = {
654             .mp_state = (cpu->power_state == PSCI_OFF) ?
655             KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
656         };
657         int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
658         if (ret) {
659             fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n",
660                     __func__, ret, strerror(-ret));
661             return -1;
662         }
663     }
664 
665     return 0;
666 }
667 
668 /*
669  * Sync the KVM MP_STATE into QEMU
670  */
671 int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
672 {
673     if (cap_has_mp_state) {
674         struct kvm_mp_state mp_state;
675         int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
676         if (ret) {
677             fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n",
678                     __func__, ret, strerror(-ret));
679             abort();
680         }
681         cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
682             PSCI_OFF : PSCI_ON;
683     }
684 
685     return 0;
686 }
687 
688 void kvm_arm_get_virtual_time(CPUState *cs)
689 {
690     ARMCPU *cpu = ARM_CPU(cs);
691     struct kvm_one_reg reg = {
692         .id = KVM_REG_ARM_TIMER_CNT,
693         .addr = (uintptr_t)&cpu->kvm_vtime,
694     };
695     int ret;
696 
697     if (cpu->kvm_vtime_dirty) {
698         return;
699     }
700 
701     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
702     if (ret) {
703         error_report("Failed to get KVM_REG_ARM_TIMER_CNT");
704         abort();
705     }
706 
707     cpu->kvm_vtime_dirty = true;
708 }
709 
710 void kvm_arm_put_virtual_time(CPUState *cs)
711 {
712     ARMCPU *cpu = ARM_CPU(cs);
713     struct kvm_one_reg reg = {
714         .id = KVM_REG_ARM_TIMER_CNT,
715         .addr = (uintptr_t)&cpu->kvm_vtime,
716     };
717     int ret;
718 
719     if (!cpu->kvm_vtime_dirty) {
720         return;
721     }
722 
723     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
724     if (ret) {
725         error_report("Failed to set KVM_REG_ARM_TIMER_CNT");
726         abort();
727     }
728 
729     cpu->kvm_vtime_dirty = false;
730 }
731 
732 int kvm_put_vcpu_events(ARMCPU *cpu)
733 {
734     CPUARMState *env = &cpu->env;
735     struct kvm_vcpu_events events;
736     int ret;
737 
738     if (!kvm_has_vcpu_events()) {
739         return 0;
740     }
741 
742     memset(&events, 0, sizeof(events));
743     events.exception.serror_pending = env->serror.pending;
744 
745     /* Inject SError to guest with specified syndrome if host kernel
746      * supports it, otherwise inject SError without syndrome.
747      */
748     if (cap_has_inject_serror_esr) {
749         events.exception.serror_has_esr = env->serror.has_esr;
750         events.exception.serror_esr = env->serror.esr;
751     }
752 
753     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
754     if (ret) {
755         error_report("failed to put vcpu events");
756     }
757 
758     return ret;
759 }
760 
761 int kvm_get_vcpu_events(ARMCPU *cpu)
762 {
763     CPUARMState *env = &cpu->env;
764     struct kvm_vcpu_events events;
765     int ret;
766 
767     if (!kvm_has_vcpu_events()) {
768         return 0;
769     }
770 
771     memset(&events, 0, sizeof(events));
772     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
773     if (ret) {
774         error_report("failed to get vcpu events");
775         return ret;
776     }
777 
778     env->serror.pending = events.exception.serror_pending;
779     env->serror.has_esr = events.exception.serror_has_esr;
780     env->serror.esr = events.exception.serror_esr;
781 
782     return 0;
783 }
784 
785 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
786 {
787     ARMCPU *cpu = ARM_CPU(cs);
788     CPUARMState *env = &cpu->env;
789 
790     if (unlikely(env->ext_dabt_raised)) {
791         /*
792          * Verifying that the ext DABT has been properly injected,
793          * otherwise risking indefinitely re-running the faulting instruction
794          * Covering a very narrow case for kernels 5.5..5.5.4
795          * when injected abort was misconfigured to be
796          * an IMPLEMENTATION DEFINED exception (for 32-bit EL1)
797          */
798         if (!arm_feature(env, ARM_FEATURE_AARCH64) &&
799             unlikely(!kvm_arm_verify_ext_dabt_pending(cs))) {
800 
801             error_report("Data abort exception with no valid ISS generated by "
802                    "guest memory access. KVM unable to emulate faulting "
803                    "instruction. Failed to inject an external data abort "
804                    "into the guest.");
805             abort();
806        }
807        /* Clear the status */
808        env->ext_dabt_raised = 0;
809     }
810 }
811 
812 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
813 {
814     ARMCPU *cpu;
815     uint32_t switched_level;
816 
817     if (kvm_irqchip_in_kernel()) {
818         /*
819          * We only need to sync timer states with user-space interrupt
820          * controllers, so return early and save cycles if we don't.
821          */
822         return MEMTXATTRS_UNSPECIFIED;
823     }
824 
825     cpu = ARM_CPU(cs);
826 
827     /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
828     if (run->s.regs.device_irq_level != cpu->device_irq_level) {
829         switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
830 
831         qemu_mutex_lock_iothread();
832 
833         if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
834             qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
835                          !!(run->s.regs.device_irq_level &
836                             KVM_ARM_DEV_EL1_VTIMER));
837             switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
838         }
839 
840         if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
841             qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
842                          !!(run->s.regs.device_irq_level &
843                             KVM_ARM_DEV_EL1_PTIMER));
844             switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
845         }
846 
847         if (switched_level & KVM_ARM_DEV_PMU) {
848             qemu_set_irq(cpu->pmu_interrupt,
849                          !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
850             switched_level &= ~KVM_ARM_DEV_PMU;
851         }
852 
853         if (switched_level) {
854             qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
855                           __func__, switched_level);
856         }
857 
858         /* We also mark unknown levels as processed to not waste cycles */
859         cpu->device_irq_level = run->s.regs.device_irq_level;
860         qemu_mutex_unlock_iothread();
861     }
862 
863     return MEMTXATTRS_UNSPECIFIED;
864 }
865 
866 void kvm_arm_vm_state_change(void *opaque, bool running, RunState state)
867 {
868     CPUState *cs = opaque;
869     ARMCPU *cpu = ARM_CPU(cs);
870 
871     if (running) {
872         if (cpu->kvm_adjvtime) {
873             kvm_arm_put_virtual_time(cs);
874         }
875     } else {
876         if (cpu->kvm_adjvtime) {
877             kvm_arm_get_virtual_time(cs);
878         }
879     }
880 }
881 
882 /**
883  * kvm_arm_handle_dabt_nisv:
884  * @cs: CPUState
885  * @esr_iss: ISS encoding (limited) for the exception from Data Abort
886  *           ISV bit set to '0b0' -> no valid instruction syndrome
887  * @fault_ipa: faulting address for the synchronous data abort
888  *
889  * Returns: 0 if the exception has been handled, < 0 otherwise
890  */
891 static int kvm_arm_handle_dabt_nisv(CPUState *cs, uint64_t esr_iss,
892                                     uint64_t fault_ipa)
893 {
894     ARMCPU *cpu = ARM_CPU(cs);
895     CPUARMState *env = &cpu->env;
896     /*
897      * Request KVM to inject the external data abort into the guest
898      */
899     if (cap_has_inject_ext_dabt) {
900         struct kvm_vcpu_events events = { };
901         /*
902          * The external data abort event will be handled immediately by KVM
903          * using the address fault that triggered the exit on given VCPU.
904          * Requesting injection of the external data abort does not rely
905          * on any other VCPU state. Therefore, in this particular case, the VCPU
906          * synchronization can be exceptionally skipped.
907          */
908         events.exception.ext_dabt_pending = 1;
909         /* KVM_CAP_ARM_INJECT_EXT_DABT implies KVM_CAP_VCPU_EVENTS */
910         if (!kvm_vcpu_ioctl(cs, KVM_SET_VCPU_EVENTS, &events)) {
911             env->ext_dabt_raised = 1;
912             return 0;
913         }
914     } else {
915         error_report("Data abort exception triggered by guest memory access "
916                      "at physical address: 0x"  TARGET_FMT_lx,
917                      (target_ulong)fault_ipa);
918         error_printf("KVM unable to emulate faulting instruction.\n");
919     }
920     return -1;
921 }
922 
923 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
924 {
925     int ret = 0;
926 
927     switch (run->exit_reason) {
928     case KVM_EXIT_DEBUG:
929         if (kvm_arm_handle_debug(cs, &run->debug.arch)) {
930             ret = EXCP_DEBUG;
931         } /* otherwise return to guest */
932         break;
933     case KVM_EXIT_ARM_NISV:
934         /* External DABT with no valid iss to decode */
935         ret = kvm_arm_handle_dabt_nisv(cs, run->arm_nisv.esr_iss,
936                                        run->arm_nisv.fault_ipa);
937         break;
938     default:
939         qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
940                       __func__, run->exit_reason);
941         break;
942     }
943     return ret;
944 }
945 
946 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
947 {
948     return true;
949 }
950 
951 int kvm_arch_process_async_events(CPUState *cs)
952 {
953     return 0;
954 }
955 
956 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
957 {
958     if (kvm_sw_breakpoints_active(cs)) {
959         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
960     }
961     if (kvm_arm_hw_debug_active(cs)) {
962         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
963         kvm_arm_copy_hw_debug_data(&dbg->arch);
964     }
965 }
966 
967 void kvm_arch_init_irq_routing(KVMState *s)
968 {
969 }
970 
971 int kvm_arch_irqchip_create(KVMState *s)
972 {
973     if (kvm_kernel_irqchip_split()) {
974         error_report("-machine kernel_irqchip=split is not supported on ARM.");
975         exit(1);
976     }
977 
978     /* If we can create the VGIC using the newer device control API, we
979      * let the device do this when it initializes itself, otherwise we
980      * fall back to the old API */
981     return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
982 }
983 
984 int kvm_arm_vgic_probe(void)
985 {
986     int val = 0;
987 
988     if (kvm_create_device(kvm_state,
989                           KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
990         val |= KVM_ARM_VGIC_V3;
991     }
992     if (kvm_create_device(kvm_state,
993                           KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
994         val |= KVM_ARM_VGIC_V2;
995     }
996     return val;
997 }
998 
999 int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level)
1000 {
1001     int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq;
1002     int cpu_idx1 = cpu % 256;
1003     int cpu_idx2 = cpu / 256;
1004 
1005     kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) |
1006                (cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT);
1007 
1008     return kvm_set_irq(kvm_state, kvm_irq, !!level);
1009 }
1010 
1011 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
1012                              uint64_t address, uint32_t data, PCIDevice *dev)
1013 {
1014     AddressSpace *as = pci_device_iommu_address_space(dev);
1015     hwaddr xlat, len, doorbell_gpa;
1016     MemoryRegionSection mrs;
1017     MemoryRegion *mr;
1018 
1019     if (as == &address_space_memory) {
1020         return 0;
1021     }
1022 
1023     /* MSI doorbell address is translated by an IOMMU */
1024 
1025     RCU_READ_LOCK_GUARD();
1026 
1027     mr = address_space_translate(as, address, &xlat, &len, true,
1028                                  MEMTXATTRS_UNSPECIFIED);
1029 
1030     if (!mr) {
1031         return 1;
1032     }
1033 
1034     mrs = memory_region_find(mr, xlat, 1);
1035 
1036     if (!mrs.mr) {
1037         return 1;
1038     }
1039 
1040     doorbell_gpa = mrs.offset_within_address_space;
1041     memory_region_unref(mrs.mr);
1042 
1043     route->u.msi.address_lo = doorbell_gpa;
1044     route->u.msi.address_hi = doorbell_gpa >> 32;
1045 
1046     trace_kvm_arm_fixup_msi_route(address, doorbell_gpa);
1047 
1048     return 0;
1049 }
1050 
1051 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
1052                                 int vector, PCIDevice *dev)
1053 {
1054     return 0;
1055 }
1056 
1057 int kvm_arch_release_virq_post(int virq)
1058 {
1059     return 0;
1060 }
1061 
1062 int kvm_arch_msi_data_to_gsi(uint32_t data)
1063 {
1064     return (data - 32) & 0xffff;
1065 }
1066 
1067 bool kvm_arch_cpu_check_are_resettable(void)
1068 {
1069     return true;
1070 }
1071 
1072 void kvm_arch_accel_class_init(ObjectClass *oc)
1073 {
1074 }
1075