1 /* 2 * ARM implementation of KVM hooks 3 * 4 * Copyright Christoffer Dall 2009-2010 5 * 6 * This work is licensed under the terms of the GNU GPL, version 2 or later. 7 * See the COPYING file in the top-level directory. 8 * 9 */ 10 11 #include "qemu/osdep.h" 12 #include <sys/ioctl.h> 13 14 #include <linux/kvm.h> 15 16 #include "qemu/timer.h" 17 #include "qemu/error-report.h" 18 #include "qemu/main-loop.h" 19 #include "qom/object.h" 20 #include "qapi/error.h" 21 #include "sysemu/sysemu.h" 22 #include "sysemu/kvm.h" 23 #include "sysemu/kvm_int.h" 24 #include "kvm_arm.h" 25 #include "cpu.h" 26 #include "trace.h" 27 #include "internals.h" 28 #include "hw/pci/pci.h" 29 #include "exec/memattrs.h" 30 #include "exec/address-spaces.h" 31 #include "hw/boards.h" 32 #include "hw/irq.h" 33 #include "qemu/log.h" 34 35 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 36 KVM_CAP_LAST_INFO 37 }; 38 39 static bool cap_has_mp_state; 40 static bool cap_has_inject_serror_esr; 41 static bool cap_has_inject_ext_dabt; 42 43 static ARMHostCPUFeatures arm_host_cpu_features; 44 45 int kvm_arm_vcpu_init(CPUState *cs) 46 { 47 ARMCPU *cpu = ARM_CPU(cs); 48 struct kvm_vcpu_init init; 49 50 init.target = cpu->kvm_target; 51 memcpy(init.features, cpu->kvm_init_features, sizeof(init.features)); 52 53 return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init); 54 } 55 56 int kvm_arm_vcpu_finalize(CPUState *cs, int feature) 57 { 58 return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_FINALIZE, &feature); 59 } 60 61 void kvm_arm_init_serror_injection(CPUState *cs) 62 { 63 cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state, 64 KVM_CAP_ARM_INJECT_SERROR_ESR); 65 } 66 67 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try, 68 int *fdarray, 69 struct kvm_vcpu_init *init) 70 { 71 int ret = 0, kvmfd = -1, vmfd = -1, cpufd = -1; 72 int max_vm_pa_size; 73 74 kvmfd = qemu_open_old("/dev/kvm", O_RDWR); 75 if (kvmfd < 0) { 76 goto err; 77 } 78 max_vm_pa_size = ioctl(kvmfd, KVM_CHECK_EXTENSION, KVM_CAP_ARM_VM_IPA_SIZE); 79 if (max_vm_pa_size < 0) { 80 max_vm_pa_size = 0; 81 } 82 do { 83 vmfd = ioctl(kvmfd, KVM_CREATE_VM, max_vm_pa_size); 84 } while (vmfd == -1 && errno == EINTR); 85 if (vmfd < 0) { 86 goto err; 87 } 88 cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0); 89 if (cpufd < 0) { 90 goto err; 91 } 92 93 if (!init) { 94 /* Caller doesn't want the VCPU to be initialized, so skip it */ 95 goto finish; 96 } 97 98 if (init->target == -1) { 99 struct kvm_vcpu_init preferred; 100 101 ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, &preferred); 102 if (!ret) { 103 init->target = preferred.target; 104 } 105 } 106 if (ret >= 0) { 107 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init); 108 if (ret < 0) { 109 goto err; 110 } 111 } else if (cpus_to_try) { 112 /* Old kernel which doesn't know about the 113 * PREFERRED_TARGET ioctl: we know it will only support 114 * creating one kind of guest CPU which is its preferred 115 * CPU type. 116 */ 117 struct kvm_vcpu_init try; 118 119 while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) { 120 try.target = *cpus_to_try++; 121 memcpy(try.features, init->features, sizeof(init->features)); 122 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, &try); 123 if (ret >= 0) { 124 break; 125 } 126 } 127 if (ret < 0) { 128 goto err; 129 } 130 init->target = try.target; 131 } else { 132 /* Treat a NULL cpus_to_try argument the same as an empty 133 * list, which means we will fail the call since this must 134 * be an old kernel which doesn't support PREFERRED_TARGET. 135 */ 136 goto err; 137 } 138 139 finish: 140 fdarray[0] = kvmfd; 141 fdarray[1] = vmfd; 142 fdarray[2] = cpufd; 143 144 return true; 145 146 err: 147 if (cpufd >= 0) { 148 close(cpufd); 149 } 150 if (vmfd >= 0) { 151 close(vmfd); 152 } 153 if (kvmfd >= 0) { 154 close(kvmfd); 155 } 156 157 return false; 158 } 159 160 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray) 161 { 162 int i; 163 164 for (i = 2; i >= 0; i--) { 165 close(fdarray[i]); 166 } 167 } 168 169 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu) 170 { 171 CPUARMState *env = &cpu->env; 172 173 if (!arm_host_cpu_features.dtb_compatible) { 174 if (!kvm_enabled() || 175 !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) { 176 /* We can't report this error yet, so flag that we need to 177 * in arm_cpu_realizefn(). 178 */ 179 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE; 180 cpu->host_cpu_probe_failed = true; 181 return; 182 } 183 } 184 185 cpu->kvm_target = arm_host_cpu_features.target; 186 cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible; 187 cpu->isar = arm_host_cpu_features.isar; 188 env->features = arm_host_cpu_features.features; 189 } 190 191 static bool kvm_no_adjvtime_get(Object *obj, Error **errp) 192 { 193 return !ARM_CPU(obj)->kvm_adjvtime; 194 } 195 196 static void kvm_no_adjvtime_set(Object *obj, bool value, Error **errp) 197 { 198 ARM_CPU(obj)->kvm_adjvtime = !value; 199 } 200 201 static bool kvm_steal_time_get(Object *obj, Error **errp) 202 { 203 return ARM_CPU(obj)->kvm_steal_time != ON_OFF_AUTO_OFF; 204 } 205 206 static void kvm_steal_time_set(Object *obj, bool value, Error **errp) 207 { 208 ARM_CPU(obj)->kvm_steal_time = value ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 209 } 210 211 /* KVM VCPU properties should be prefixed with "kvm-". */ 212 void kvm_arm_add_vcpu_properties(Object *obj) 213 { 214 ARMCPU *cpu = ARM_CPU(obj); 215 CPUARMState *env = &cpu->env; 216 217 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 218 cpu->kvm_adjvtime = true; 219 object_property_add_bool(obj, "kvm-no-adjvtime", kvm_no_adjvtime_get, 220 kvm_no_adjvtime_set); 221 object_property_set_description(obj, "kvm-no-adjvtime", 222 "Set on to disable the adjustment of " 223 "the virtual counter. VM stopped time " 224 "will be counted."); 225 } 226 227 cpu->kvm_steal_time = ON_OFF_AUTO_AUTO; 228 object_property_add_bool(obj, "kvm-steal-time", kvm_steal_time_get, 229 kvm_steal_time_set); 230 object_property_set_description(obj, "kvm-steal-time", 231 "Set off to disable KVM steal time."); 232 } 233 234 bool kvm_arm_pmu_supported(void) 235 { 236 return kvm_check_extension(kvm_state, KVM_CAP_ARM_PMU_V3); 237 } 238 239 int kvm_arm_get_max_vm_ipa_size(MachineState *ms, bool *fixed_ipa) 240 { 241 KVMState *s = KVM_STATE(ms->accelerator); 242 int ret; 243 244 ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE); 245 *fixed_ipa = ret <= 0; 246 247 return ret > 0 ? ret : 40; 248 } 249 250 int kvm_arch_get_default_type(MachineState *ms) 251 { 252 return 0; 253 } 254 255 int kvm_arch_init(MachineState *ms, KVMState *s) 256 { 257 int ret = 0; 258 /* For ARM interrupt delivery is always asynchronous, 259 * whether we are using an in-kernel VGIC or not. 260 */ 261 kvm_async_interrupts_allowed = true; 262 263 /* 264 * PSCI wakes up secondary cores, so we always need to 265 * have vCPUs waiting in kernel space 266 */ 267 kvm_halt_in_kernel_allowed = true; 268 269 cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE); 270 271 if (ms->smp.cpus > 256 && 272 !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) { 273 error_report("Using more than 256 vcpus requires a host kernel " 274 "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2"); 275 ret = -EINVAL; 276 } 277 278 if (kvm_check_extension(s, KVM_CAP_ARM_NISV_TO_USER)) { 279 if (kvm_vm_enable_cap(s, KVM_CAP_ARM_NISV_TO_USER, 0)) { 280 error_report("Failed to enable KVM_CAP_ARM_NISV_TO_USER cap"); 281 } else { 282 /* Set status for supporting the external dabt injection */ 283 cap_has_inject_ext_dabt = kvm_check_extension(s, 284 KVM_CAP_ARM_INJECT_EXT_DABT); 285 } 286 } 287 288 kvm_arm_init_debug(s); 289 290 return ret; 291 } 292 293 unsigned long kvm_arch_vcpu_id(CPUState *cpu) 294 { 295 return cpu->cpu_index; 296 } 297 298 /* We track all the KVM devices which need their memory addresses 299 * passing to the kernel in a list of these structures. 300 * When board init is complete we run through the list and 301 * tell the kernel the base addresses of the memory regions. 302 * We use a MemoryListener to track mapping and unmapping of 303 * the regions during board creation, so the board models don't 304 * need to do anything special for the KVM case. 305 * 306 * Sometimes the address must be OR'ed with some other fields 307 * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION). 308 * @kda_addr_ormask aims at storing the value of those fields. 309 */ 310 typedef struct KVMDevice { 311 struct kvm_arm_device_addr kda; 312 struct kvm_device_attr kdattr; 313 uint64_t kda_addr_ormask; 314 MemoryRegion *mr; 315 QSLIST_ENTRY(KVMDevice) entries; 316 int dev_fd; 317 } KVMDevice; 318 319 static QSLIST_HEAD(, KVMDevice) kvm_devices_head; 320 321 static void kvm_arm_devlistener_add(MemoryListener *listener, 322 MemoryRegionSection *section) 323 { 324 KVMDevice *kd; 325 326 QSLIST_FOREACH(kd, &kvm_devices_head, entries) { 327 if (section->mr == kd->mr) { 328 kd->kda.addr = section->offset_within_address_space; 329 } 330 } 331 } 332 333 static void kvm_arm_devlistener_del(MemoryListener *listener, 334 MemoryRegionSection *section) 335 { 336 KVMDevice *kd; 337 338 QSLIST_FOREACH(kd, &kvm_devices_head, entries) { 339 if (section->mr == kd->mr) { 340 kd->kda.addr = -1; 341 } 342 } 343 } 344 345 static MemoryListener devlistener = { 346 .name = "kvm-arm", 347 .region_add = kvm_arm_devlistener_add, 348 .region_del = kvm_arm_devlistener_del, 349 .priority = MEMORY_LISTENER_PRIORITY_MIN, 350 }; 351 352 static void kvm_arm_set_device_addr(KVMDevice *kd) 353 { 354 struct kvm_device_attr *attr = &kd->kdattr; 355 int ret; 356 357 /* If the device control API is available and we have a device fd on the 358 * KVMDevice struct, let's use the newer API 359 */ 360 if (kd->dev_fd >= 0) { 361 uint64_t addr = kd->kda.addr; 362 363 addr |= kd->kda_addr_ormask; 364 attr->addr = (uintptr_t)&addr; 365 ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr); 366 } else { 367 ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda); 368 } 369 370 if (ret < 0) { 371 fprintf(stderr, "Failed to set device address: %s\n", 372 strerror(-ret)); 373 abort(); 374 } 375 } 376 377 static void kvm_arm_machine_init_done(Notifier *notifier, void *data) 378 { 379 KVMDevice *kd, *tkd; 380 381 QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) { 382 if (kd->kda.addr != -1) { 383 kvm_arm_set_device_addr(kd); 384 } 385 memory_region_unref(kd->mr); 386 QSLIST_REMOVE_HEAD(&kvm_devices_head, entries); 387 g_free(kd); 388 } 389 memory_listener_unregister(&devlistener); 390 } 391 392 static Notifier notify = { 393 .notify = kvm_arm_machine_init_done, 394 }; 395 396 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group, 397 uint64_t attr, int dev_fd, uint64_t addr_ormask) 398 { 399 KVMDevice *kd; 400 401 if (!kvm_irqchip_in_kernel()) { 402 return; 403 } 404 405 if (QSLIST_EMPTY(&kvm_devices_head)) { 406 memory_listener_register(&devlistener, &address_space_memory); 407 qemu_add_machine_init_done_notifier(¬ify); 408 } 409 kd = g_new0(KVMDevice, 1); 410 kd->mr = mr; 411 kd->kda.id = devid; 412 kd->kda.addr = -1; 413 kd->kdattr.flags = 0; 414 kd->kdattr.group = group; 415 kd->kdattr.attr = attr; 416 kd->dev_fd = dev_fd; 417 kd->kda_addr_ormask = addr_ormask; 418 QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries); 419 memory_region_ref(kd->mr); 420 } 421 422 static int compare_u64(const void *a, const void *b) 423 { 424 if (*(uint64_t *)a > *(uint64_t *)b) { 425 return 1; 426 } 427 if (*(uint64_t *)a < *(uint64_t *)b) { 428 return -1; 429 } 430 return 0; 431 } 432 433 /* 434 * cpreg_values are sorted in ascending order by KVM register ID 435 * (see kvm_arm_init_cpreg_list). This allows us to cheaply find 436 * the storage for a KVM register by ID with a binary search. 437 */ 438 static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx) 439 { 440 uint64_t *res; 441 442 res = bsearch(®idx, cpu->cpreg_indexes, cpu->cpreg_array_len, 443 sizeof(uint64_t), compare_u64); 444 assert(res); 445 446 return &cpu->cpreg_values[res - cpu->cpreg_indexes]; 447 } 448 449 /* Initialize the ARMCPU cpreg list according to the kernel's 450 * definition of what CPU registers it knows about (and throw away 451 * the previous TCG-created cpreg list). 452 */ 453 int kvm_arm_init_cpreg_list(ARMCPU *cpu) 454 { 455 struct kvm_reg_list rl; 456 struct kvm_reg_list *rlp; 457 int i, ret, arraylen; 458 CPUState *cs = CPU(cpu); 459 460 rl.n = 0; 461 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl); 462 if (ret != -E2BIG) { 463 return ret; 464 } 465 rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t)); 466 rlp->n = rl.n; 467 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp); 468 if (ret) { 469 goto out; 470 } 471 /* Sort the list we get back from the kernel, since cpreg_tuples 472 * must be in strictly ascending order. 473 */ 474 qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64); 475 476 for (i = 0, arraylen = 0; i < rlp->n; i++) { 477 if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) { 478 continue; 479 } 480 switch (rlp->reg[i] & KVM_REG_SIZE_MASK) { 481 case KVM_REG_SIZE_U32: 482 case KVM_REG_SIZE_U64: 483 break; 484 default: 485 fprintf(stderr, "Can't handle size of register in kernel list\n"); 486 ret = -EINVAL; 487 goto out; 488 } 489 490 arraylen++; 491 } 492 493 cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen); 494 cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen); 495 cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes, 496 arraylen); 497 cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values, 498 arraylen); 499 cpu->cpreg_array_len = arraylen; 500 cpu->cpreg_vmstate_array_len = arraylen; 501 502 for (i = 0, arraylen = 0; i < rlp->n; i++) { 503 uint64_t regidx = rlp->reg[i]; 504 if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) { 505 continue; 506 } 507 cpu->cpreg_indexes[arraylen] = regidx; 508 arraylen++; 509 } 510 assert(cpu->cpreg_array_len == arraylen); 511 512 if (!write_kvmstate_to_list(cpu)) { 513 /* Shouldn't happen unless kernel is inconsistent about 514 * what registers exist. 515 */ 516 fprintf(stderr, "Initial read of kernel register state failed\n"); 517 ret = -EINVAL; 518 goto out; 519 } 520 521 out: 522 g_free(rlp); 523 return ret; 524 } 525 526 bool write_kvmstate_to_list(ARMCPU *cpu) 527 { 528 CPUState *cs = CPU(cpu); 529 int i; 530 bool ok = true; 531 532 for (i = 0; i < cpu->cpreg_array_len; i++) { 533 struct kvm_one_reg r; 534 uint64_t regidx = cpu->cpreg_indexes[i]; 535 uint32_t v32; 536 int ret; 537 538 r.id = regidx; 539 540 switch (regidx & KVM_REG_SIZE_MASK) { 541 case KVM_REG_SIZE_U32: 542 r.addr = (uintptr_t)&v32; 543 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); 544 if (!ret) { 545 cpu->cpreg_values[i] = v32; 546 } 547 break; 548 case KVM_REG_SIZE_U64: 549 r.addr = (uintptr_t)(cpu->cpreg_values + i); 550 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); 551 break; 552 default: 553 g_assert_not_reached(); 554 } 555 if (ret) { 556 ok = false; 557 } 558 } 559 return ok; 560 } 561 562 bool write_list_to_kvmstate(ARMCPU *cpu, int level) 563 { 564 CPUState *cs = CPU(cpu); 565 int i; 566 bool ok = true; 567 568 for (i = 0; i < cpu->cpreg_array_len; i++) { 569 struct kvm_one_reg r; 570 uint64_t regidx = cpu->cpreg_indexes[i]; 571 uint32_t v32; 572 int ret; 573 574 if (kvm_arm_cpreg_level(regidx) > level) { 575 continue; 576 } 577 578 r.id = regidx; 579 switch (regidx & KVM_REG_SIZE_MASK) { 580 case KVM_REG_SIZE_U32: 581 v32 = cpu->cpreg_values[i]; 582 r.addr = (uintptr_t)&v32; 583 break; 584 case KVM_REG_SIZE_U64: 585 r.addr = (uintptr_t)(cpu->cpreg_values + i); 586 break; 587 default: 588 g_assert_not_reached(); 589 } 590 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); 591 if (ret) { 592 /* We might fail for "unknown register" and also for 593 * "you tried to set a register which is constant with 594 * a different value from what it actually contains". 595 */ 596 ok = false; 597 } 598 } 599 return ok; 600 } 601 602 void kvm_arm_cpu_pre_save(ARMCPU *cpu) 603 { 604 /* KVM virtual time adjustment */ 605 if (cpu->kvm_vtime_dirty) { 606 *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT) = cpu->kvm_vtime; 607 } 608 } 609 610 void kvm_arm_cpu_post_load(ARMCPU *cpu) 611 { 612 /* KVM virtual time adjustment */ 613 if (cpu->kvm_adjvtime) { 614 cpu->kvm_vtime = *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT); 615 cpu->kvm_vtime_dirty = true; 616 } 617 } 618 619 void kvm_arm_reset_vcpu(ARMCPU *cpu) 620 { 621 int ret; 622 623 /* Re-init VCPU so that all registers are set to 624 * their respective reset values. 625 */ 626 ret = kvm_arm_vcpu_init(CPU(cpu)); 627 if (ret < 0) { 628 fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret)); 629 abort(); 630 } 631 if (!write_kvmstate_to_list(cpu)) { 632 fprintf(stderr, "write_kvmstate_to_list failed\n"); 633 abort(); 634 } 635 /* 636 * Sync the reset values also into the CPUState. This is necessary 637 * because the next thing we do will be a kvm_arch_put_registers() 638 * which will update the list values from the CPUState before copying 639 * the list values back to KVM. It's OK to ignore failure returns here 640 * for the same reason we do so in kvm_arch_get_registers(). 641 */ 642 write_list_to_cpustate(cpu); 643 } 644 645 /* 646 * Update KVM's MP_STATE based on what QEMU thinks it is 647 */ 648 int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu) 649 { 650 if (cap_has_mp_state) { 651 struct kvm_mp_state mp_state = { 652 .mp_state = (cpu->power_state == PSCI_OFF) ? 653 KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE 654 }; 655 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); 656 if (ret) { 657 fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n", 658 __func__, ret, strerror(-ret)); 659 return -1; 660 } 661 } 662 663 return 0; 664 } 665 666 /* 667 * Sync the KVM MP_STATE into QEMU 668 */ 669 int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu) 670 { 671 if (cap_has_mp_state) { 672 struct kvm_mp_state mp_state; 673 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state); 674 if (ret) { 675 fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n", 676 __func__, ret, strerror(-ret)); 677 abort(); 678 } 679 cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ? 680 PSCI_OFF : PSCI_ON; 681 } 682 683 return 0; 684 } 685 686 void kvm_arm_get_virtual_time(CPUState *cs) 687 { 688 ARMCPU *cpu = ARM_CPU(cs); 689 struct kvm_one_reg reg = { 690 .id = KVM_REG_ARM_TIMER_CNT, 691 .addr = (uintptr_t)&cpu->kvm_vtime, 692 }; 693 int ret; 694 695 if (cpu->kvm_vtime_dirty) { 696 return; 697 } 698 699 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 700 if (ret) { 701 error_report("Failed to get KVM_REG_ARM_TIMER_CNT"); 702 abort(); 703 } 704 705 cpu->kvm_vtime_dirty = true; 706 } 707 708 void kvm_arm_put_virtual_time(CPUState *cs) 709 { 710 ARMCPU *cpu = ARM_CPU(cs); 711 struct kvm_one_reg reg = { 712 .id = KVM_REG_ARM_TIMER_CNT, 713 .addr = (uintptr_t)&cpu->kvm_vtime, 714 }; 715 int ret; 716 717 if (!cpu->kvm_vtime_dirty) { 718 return; 719 } 720 721 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 722 if (ret) { 723 error_report("Failed to set KVM_REG_ARM_TIMER_CNT"); 724 abort(); 725 } 726 727 cpu->kvm_vtime_dirty = false; 728 } 729 730 int kvm_put_vcpu_events(ARMCPU *cpu) 731 { 732 CPUARMState *env = &cpu->env; 733 struct kvm_vcpu_events events; 734 int ret; 735 736 if (!kvm_has_vcpu_events()) { 737 return 0; 738 } 739 740 memset(&events, 0, sizeof(events)); 741 events.exception.serror_pending = env->serror.pending; 742 743 /* Inject SError to guest with specified syndrome if host kernel 744 * supports it, otherwise inject SError without syndrome. 745 */ 746 if (cap_has_inject_serror_esr) { 747 events.exception.serror_has_esr = env->serror.has_esr; 748 events.exception.serror_esr = env->serror.esr; 749 } 750 751 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); 752 if (ret) { 753 error_report("failed to put vcpu events"); 754 } 755 756 return ret; 757 } 758 759 int kvm_get_vcpu_events(ARMCPU *cpu) 760 { 761 CPUARMState *env = &cpu->env; 762 struct kvm_vcpu_events events; 763 int ret; 764 765 if (!kvm_has_vcpu_events()) { 766 return 0; 767 } 768 769 memset(&events, 0, sizeof(events)); 770 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); 771 if (ret) { 772 error_report("failed to get vcpu events"); 773 return ret; 774 } 775 776 env->serror.pending = events.exception.serror_pending; 777 env->serror.has_esr = events.exception.serror_has_esr; 778 env->serror.esr = events.exception.serror_esr; 779 780 return 0; 781 } 782 783 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run) 784 { 785 ARMCPU *cpu = ARM_CPU(cs); 786 CPUARMState *env = &cpu->env; 787 788 if (unlikely(env->ext_dabt_raised)) { 789 /* 790 * Verifying that the ext DABT has been properly injected, 791 * otherwise risking indefinitely re-running the faulting instruction 792 * Covering a very narrow case for kernels 5.5..5.5.4 793 * when injected abort was misconfigured to be 794 * an IMPLEMENTATION DEFINED exception (for 32-bit EL1) 795 */ 796 if (!arm_feature(env, ARM_FEATURE_AARCH64) && 797 unlikely(!kvm_arm_verify_ext_dabt_pending(cs))) { 798 799 error_report("Data abort exception with no valid ISS generated by " 800 "guest memory access. KVM unable to emulate faulting " 801 "instruction. Failed to inject an external data abort " 802 "into the guest."); 803 abort(); 804 } 805 /* Clear the status */ 806 env->ext_dabt_raised = 0; 807 } 808 } 809 810 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) 811 { 812 ARMCPU *cpu; 813 uint32_t switched_level; 814 815 if (kvm_irqchip_in_kernel()) { 816 /* 817 * We only need to sync timer states with user-space interrupt 818 * controllers, so return early and save cycles if we don't. 819 */ 820 return MEMTXATTRS_UNSPECIFIED; 821 } 822 823 cpu = ARM_CPU(cs); 824 825 /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */ 826 if (run->s.regs.device_irq_level != cpu->device_irq_level) { 827 switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level; 828 829 qemu_mutex_lock_iothread(); 830 831 if (switched_level & KVM_ARM_DEV_EL1_VTIMER) { 832 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT], 833 !!(run->s.regs.device_irq_level & 834 KVM_ARM_DEV_EL1_VTIMER)); 835 switched_level &= ~KVM_ARM_DEV_EL1_VTIMER; 836 } 837 838 if (switched_level & KVM_ARM_DEV_EL1_PTIMER) { 839 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS], 840 !!(run->s.regs.device_irq_level & 841 KVM_ARM_DEV_EL1_PTIMER)); 842 switched_level &= ~KVM_ARM_DEV_EL1_PTIMER; 843 } 844 845 if (switched_level & KVM_ARM_DEV_PMU) { 846 qemu_set_irq(cpu->pmu_interrupt, 847 !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU)); 848 switched_level &= ~KVM_ARM_DEV_PMU; 849 } 850 851 if (switched_level) { 852 qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n", 853 __func__, switched_level); 854 } 855 856 /* We also mark unknown levels as processed to not waste cycles */ 857 cpu->device_irq_level = run->s.regs.device_irq_level; 858 qemu_mutex_unlock_iothread(); 859 } 860 861 return MEMTXATTRS_UNSPECIFIED; 862 } 863 864 void kvm_arm_vm_state_change(void *opaque, bool running, RunState state) 865 { 866 CPUState *cs = opaque; 867 ARMCPU *cpu = ARM_CPU(cs); 868 869 if (running) { 870 if (cpu->kvm_adjvtime) { 871 kvm_arm_put_virtual_time(cs); 872 } 873 } else { 874 if (cpu->kvm_adjvtime) { 875 kvm_arm_get_virtual_time(cs); 876 } 877 } 878 } 879 880 /** 881 * kvm_arm_handle_dabt_nisv: 882 * @cs: CPUState 883 * @esr_iss: ISS encoding (limited) for the exception from Data Abort 884 * ISV bit set to '0b0' -> no valid instruction syndrome 885 * @fault_ipa: faulting address for the synchronous data abort 886 * 887 * Returns: 0 if the exception has been handled, < 0 otherwise 888 */ 889 static int kvm_arm_handle_dabt_nisv(CPUState *cs, uint64_t esr_iss, 890 uint64_t fault_ipa) 891 { 892 ARMCPU *cpu = ARM_CPU(cs); 893 CPUARMState *env = &cpu->env; 894 /* 895 * Request KVM to inject the external data abort into the guest 896 */ 897 if (cap_has_inject_ext_dabt) { 898 struct kvm_vcpu_events events = { }; 899 /* 900 * The external data abort event will be handled immediately by KVM 901 * using the address fault that triggered the exit on given VCPU. 902 * Requesting injection of the external data abort does not rely 903 * on any other VCPU state. Therefore, in this particular case, the VCPU 904 * synchronization can be exceptionally skipped. 905 */ 906 events.exception.ext_dabt_pending = 1; 907 /* KVM_CAP_ARM_INJECT_EXT_DABT implies KVM_CAP_VCPU_EVENTS */ 908 if (!kvm_vcpu_ioctl(cs, KVM_SET_VCPU_EVENTS, &events)) { 909 env->ext_dabt_raised = 1; 910 return 0; 911 } 912 } else { 913 error_report("Data abort exception triggered by guest memory access " 914 "at physical address: 0x" TARGET_FMT_lx, 915 (target_ulong)fault_ipa); 916 error_printf("KVM unable to emulate faulting instruction.\n"); 917 } 918 return -1; 919 } 920 921 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 922 { 923 int ret = 0; 924 925 switch (run->exit_reason) { 926 case KVM_EXIT_DEBUG: 927 if (kvm_arm_handle_debug(cs, &run->debug.arch)) { 928 ret = EXCP_DEBUG; 929 } /* otherwise return to guest */ 930 break; 931 case KVM_EXIT_ARM_NISV: 932 /* External DABT with no valid iss to decode */ 933 ret = kvm_arm_handle_dabt_nisv(cs, run->arm_nisv.esr_iss, 934 run->arm_nisv.fault_ipa); 935 break; 936 default: 937 qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n", 938 __func__, run->exit_reason); 939 break; 940 } 941 return ret; 942 } 943 944 bool kvm_arch_stop_on_emulation_error(CPUState *cs) 945 { 946 return true; 947 } 948 949 int kvm_arch_process_async_events(CPUState *cs) 950 { 951 return 0; 952 } 953 954 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg) 955 { 956 if (kvm_sw_breakpoints_active(cs)) { 957 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; 958 } 959 if (kvm_arm_hw_debug_active(cs)) { 960 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW; 961 kvm_arm_copy_hw_debug_data(&dbg->arch); 962 } 963 } 964 965 void kvm_arch_init_irq_routing(KVMState *s) 966 { 967 } 968 969 int kvm_arch_irqchip_create(KVMState *s) 970 { 971 if (kvm_kernel_irqchip_split()) { 972 error_report("-machine kernel_irqchip=split is not supported on ARM."); 973 exit(1); 974 } 975 976 /* If we can create the VGIC using the newer device control API, we 977 * let the device do this when it initializes itself, otherwise we 978 * fall back to the old API */ 979 return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL); 980 } 981 982 int kvm_arm_vgic_probe(void) 983 { 984 int val = 0; 985 986 if (kvm_create_device(kvm_state, 987 KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) { 988 val |= KVM_ARM_VGIC_V3; 989 } 990 if (kvm_create_device(kvm_state, 991 KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) { 992 val |= KVM_ARM_VGIC_V2; 993 } 994 return val; 995 } 996 997 int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level) 998 { 999 int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq; 1000 int cpu_idx1 = cpu % 256; 1001 int cpu_idx2 = cpu / 256; 1002 1003 kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) | 1004 (cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT); 1005 1006 return kvm_set_irq(kvm_state, kvm_irq, !!level); 1007 } 1008 1009 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 1010 uint64_t address, uint32_t data, PCIDevice *dev) 1011 { 1012 AddressSpace *as = pci_device_iommu_address_space(dev); 1013 hwaddr xlat, len, doorbell_gpa; 1014 MemoryRegionSection mrs; 1015 MemoryRegion *mr; 1016 1017 if (as == &address_space_memory) { 1018 return 0; 1019 } 1020 1021 /* MSI doorbell address is translated by an IOMMU */ 1022 1023 RCU_READ_LOCK_GUARD(); 1024 1025 mr = address_space_translate(as, address, &xlat, &len, true, 1026 MEMTXATTRS_UNSPECIFIED); 1027 1028 if (!mr) { 1029 return 1; 1030 } 1031 1032 mrs = memory_region_find(mr, xlat, 1); 1033 1034 if (!mrs.mr) { 1035 return 1; 1036 } 1037 1038 doorbell_gpa = mrs.offset_within_address_space; 1039 memory_region_unref(mrs.mr); 1040 1041 route->u.msi.address_lo = doorbell_gpa; 1042 route->u.msi.address_hi = doorbell_gpa >> 32; 1043 1044 trace_kvm_arm_fixup_msi_route(address, doorbell_gpa); 1045 1046 return 0; 1047 } 1048 1049 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 1050 int vector, PCIDevice *dev) 1051 { 1052 return 0; 1053 } 1054 1055 int kvm_arch_release_virq_post(int virq) 1056 { 1057 return 0; 1058 } 1059 1060 int kvm_arch_msi_data_to_gsi(uint32_t data) 1061 { 1062 return (data - 32) & 0xffff; 1063 } 1064 1065 bool kvm_arch_cpu_check_are_resettable(void) 1066 { 1067 return true; 1068 } 1069 1070 void kvm_arch_accel_class_init(ObjectClass *oc) 1071 { 1072 } 1073