xref: /openbmc/qemu/target/arm/kvm.c (revision 5e0d6590)
1 /*
2  * ARM implementation of KVM hooks
3  *
4  * Copyright Christoffer Dall 2009-2010
5  *
6  * This work is licensed under the terms of the GNU GPL, version 2 or later.
7  * See the COPYING file in the top-level directory.
8  *
9  */
10 
11 #include "qemu/osdep.h"
12 #include <sys/ioctl.h>
13 
14 #include <linux/kvm.h>
15 
16 #include "qemu/timer.h"
17 #include "qemu/error-report.h"
18 #include "qemu/main-loop.h"
19 #include "qom/object.h"
20 #include "qapi/error.h"
21 #include "sysemu/sysemu.h"
22 #include "sysemu/kvm.h"
23 #include "sysemu/kvm_int.h"
24 #include "kvm_arm.h"
25 #include "cpu.h"
26 #include "trace.h"
27 #include "internals.h"
28 #include "hw/pci/pci.h"
29 #include "exec/memattrs.h"
30 #include "exec/address-spaces.h"
31 #include "hw/boards.h"
32 #include "hw/irq.h"
33 #include "qemu/log.h"
34 
35 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
36     KVM_CAP_LAST_INFO
37 };
38 
39 static bool cap_has_mp_state;
40 static bool cap_has_inject_serror_esr;
41 static bool cap_has_inject_ext_dabt;
42 
43 static ARMHostCPUFeatures arm_host_cpu_features;
44 
45 int kvm_arm_vcpu_init(CPUState *cs)
46 {
47     ARMCPU *cpu = ARM_CPU(cs);
48     struct kvm_vcpu_init init;
49 
50     init.target = cpu->kvm_target;
51     memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
52 
53     return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
54 }
55 
56 int kvm_arm_vcpu_finalize(CPUState *cs, int feature)
57 {
58     return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_FINALIZE, &feature);
59 }
60 
61 void kvm_arm_init_serror_injection(CPUState *cs)
62 {
63     cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state,
64                                     KVM_CAP_ARM_INJECT_SERROR_ESR);
65 }
66 
67 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
68                                       int *fdarray,
69                                       struct kvm_vcpu_init *init)
70 {
71     int ret = 0, kvmfd = -1, vmfd = -1, cpufd = -1;
72     int max_vm_pa_size;
73 
74     kvmfd = qemu_open_old("/dev/kvm", O_RDWR);
75     if (kvmfd < 0) {
76         goto err;
77     }
78     max_vm_pa_size = ioctl(kvmfd, KVM_CHECK_EXTENSION, KVM_CAP_ARM_VM_IPA_SIZE);
79     if (max_vm_pa_size < 0) {
80         max_vm_pa_size = 0;
81     }
82     do {
83         vmfd = ioctl(kvmfd, KVM_CREATE_VM, max_vm_pa_size);
84     } while (vmfd == -1 && errno == EINTR);
85     if (vmfd < 0) {
86         goto err;
87     }
88     cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
89     if (cpufd < 0) {
90         goto err;
91     }
92 
93     if (!init) {
94         /* Caller doesn't want the VCPU to be initialized, so skip it */
95         goto finish;
96     }
97 
98     if (init->target == -1) {
99         struct kvm_vcpu_init preferred;
100 
101         ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, &preferred);
102         if (!ret) {
103             init->target = preferred.target;
104         }
105     }
106     if (ret >= 0) {
107         ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
108         if (ret < 0) {
109             goto err;
110         }
111     } else if (cpus_to_try) {
112         /* Old kernel which doesn't know about the
113          * PREFERRED_TARGET ioctl: we know it will only support
114          * creating one kind of guest CPU which is its preferred
115          * CPU type.
116          */
117         struct kvm_vcpu_init try;
118 
119         while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
120             try.target = *cpus_to_try++;
121             memcpy(try.features, init->features, sizeof(init->features));
122             ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, &try);
123             if (ret >= 0) {
124                 break;
125             }
126         }
127         if (ret < 0) {
128             goto err;
129         }
130         init->target = try.target;
131     } else {
132         /* Treat a NULL cpus_to_try argument the same as an empty
133          * list, which means we will fail the call since this must
134          * be an old kernel which doesn't support PREFERRED_TARGET.
135          */
136         goto err;
137     }
138 
139 finish:
140     fdarray[0] = kvmfd;
141     fdarray[1] = vmfd;
142     fdarray[2] = cpufd;
143 
144     return true;
145 
146 err:
147     if (cpufd >= 0) {
148         close(cpufd);
149     }
150     if (vmfd >= 0) {
151         close(vmfd);
152     }
153     if (kvmfd >= 0) {
154         close(kvmfd);
155     }
156 
157     return false;
158 }
159 
160 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
161 {
162     int i;
163 
164     for (i = 2; i >= 0; i--) {
165         close(fdarray[i]);
166     }
167 }
168 
169 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
170 {
171     CPUARMState *env = &cpu->env;
172 
173     if (!arm_host_cpu_features.dtb_compatible) {
174         if (!kvm_enabled() ||
175             !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) {
176             /* We can't report this error yet, so flag that we need to
177              * in arm_cpu_realizefn().
178              */
179             cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
180             cpu->host_cpu_probe_failed = true;
181             return;
182         }
183     }
184 
185     cpu->kvm_target = arm_host_cpu_features.target;
186     cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
187     cpu->isar = arm_host_cpu_features.isar;
188     env->features = arm_host_cpu_features.features;
189 }
190 
191 static bool kvm_no_adjvtime_get(Object *obj, Error **errp)
192 {
193     return !ARM_CPU(obj)->kvm_adjvtime;
194 }
195 
196 static void kvm_no_adjvtime_set(Object *obj, bool value, Error **errp)
197 {
198     ARM_CPU(obj)->kvm_adjvtime = !value;
199 }
200 
201 static bool kvm_steal_time_get(Object *obj, Error **errp)
202 {
203     return ARM_CPU(obj)->kvm_steal_time != ON_OFF_AUTO_OFF;
204 }
205 
206 static void kvm_steal_time_set(Object *obj, bool value, Error **errp)
207 {
208     ARM_CPU(obj)->kvm_steal_time = value ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
209 }
210 
211 /* KVM VCPU properties should be prefixed with "kvm-". */
212 void kvm_arm_add_vcpu_properties(Object *obj)
213 {
214     ARMCPU *cpu = ARM_CPU(obj);
215     CPUARMState *env = &cpu->env;
216 
217     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
218         cpu->kvm_adjvtime = true;
219         object_property_add_bool(obj, "kvm-no-adjvtime", kvm_no_adjvtime_get,
220                                  kvm_no_adjvtime_set);
221         object_property_set_description(obj, "kvm-no-adjvtime",
222                                         "Set on to disable the adjustment of "
223                                         "the virtual counter. VM stopped time "
224                                         "will be counted.");
225     }
226 
227     cpu->kvm_steal_time = ON_OFF_AUTO_AUTO;
228     object_property_add_bool(obj, "kvm-steal-time", kvm_steal_time_get,
229                              kvm_steal_time_set);
230     object_property_set_description(obj, "kvm-steal-time",
231                                     "Set off to disable KVM steal time.");
232 }
233 
234 bool kvm_arm_pmu_supported(void)
235 {
236     return kvm_check_extension(kvm_state, KVM_CAP_ARM_PMU_V3);
237 }
238 
239 int kvm_arm_get_max_vm_ipa_size(MachineState *ms, bool *fixed_ipa)
240 {
241     KVMState *s = KVM_STATE(ms->accelerator);
242     int ret;
243 
244     ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE);
245     *fixed_ipa = ret <= 0;
246 
247     return ret > 0 ? ret : 40;
248 }
249 
250 int kvm_arch_get_default_type(MachineState *ms)
251 {
252     return 0;
253 }
254 
255 int kvm_arch_init(MachineState *ms, KVMState *s)
256 {
257     int ret = 0;
258     /* For ARM interrupt delivery is always asynchronous,
259      * whether we are using an in-kernel VGIC or not.
260      */
261     kvm_async_interrupts_allowed = true;
262 
263     /*
264      * PSCI wakes up secondary cores, so we always need to
265      * have vCPUs waiting in kernel space
266      */
267     kvm_halt_in_kernel_allowed = true;
268 
269     cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
270 
271     if (ms->smp.cpus > 256 &&
272         !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) {
273         error_report("Using more than 256 vcpus requires a host kernel "
274                      "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2");
275         ret = -EINVAL;
276     }
277 
278     if (kvm_check_extension(s, KVM_CAP_ARM_NISV_TO_USER)) {
279         if (kvm_vm_enable_cap(s, KVM_CAP_ARM_NISV_TO_USER, 0)) {
280             error_report("Failed to enable KVM_CAP_ARM_NISV_TO_USER cap");
281         } else {
282             /* Set status for supporting the external dabt injection */
283             cap_has_inject_ext_dabt = kvm_check_extension(s,
284                                     KVM_CAP_ARM_INJECT_EXT_DABT);
285         }
286     }
287 
288     kvm_arm_init_debug(s);
289 
290     return ret;
291 }
292 
293 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
294 {
295     return cpu->cpu_index;
296 }
297 
298 /* We track all the KVM devices which need their memory addresses
299  * passing to the kernel in a list of these structures.
300  * When board init is complete we run through the list and
301  * tell the kernel the base addresses of the memory regions.
302  * We use a MemoryListener to track mapping and unmapping of
303  * the regions during board creation, so the board models don't
304  * need to do anything special for the KVM case.
305  *
306  * Sometimes the address must be OR'ed with some other fields
307  * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
308  * @kda_addr_ormask aims at storing the value of those fields.
309  */
310 typedef struct KVMDevice {
311     struct kvm_arm_device_addr kda;
312     struct kvm_device_attr kdattr;
313     uint64_t kda_addr_ormask;
314     MemoryRegion *mr;
315     QSLIST_ENTRY(KVMDevice) entries;
316     int dev_fd;
317 } KVMDevice;
318 
319 static QSLIST_HEAD(, KVMDevice) kvm_devices_head;
320 
321 static void kvm_arm_devlistener_add(MemoryListener *listener,
322                                     MemoryRegionSection *section)
323 {
324     KVMDevice *kd;
325 
326     QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
327         if (section->mr == kd->mr) {
328             kd->kda.addr = section->offset_within_address_space;
329         }
330     }
331 }
332 
333 static void kvm_arm_devlistener_del(MemoryListener *listener,
334                                     MemoryRegionSection *section)
335 {
336     KVMDevice *kd;
337 
338     QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
339         if (section->mr == kd->mr) {
340             kd->kda.addr = -1;
341         }
342     }
343 }
344 
345 static MemoryListener devlistener = {
346     .name = "kvm-arm",
347     .region_add = kvm_arm_devlistener_add,
348     .region_del = kvm_arm_devlistener_del,
349     .priority = MEMORY_LISTENER_PRIORITY_MIN,
350 };
351 
352 static void kvm_arm_set_device_addr(KVMDevice *kd)
353 {
354     struct kvm_device_attr *attr = &kd->kdattr;
355     int ret;
356 
357     /* If the device control API is available and we have a device fd on the
358      * KVMDevice struct, let's use the newer API
359      */
360     if (kd->dev_fd >= 0) {
361         uint64_t addr = kd->kda.addr;
362 
363         addr |= kd->kda_addr_ormask;
364         attr->addr = (uintptr_t)&addr;
365         ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
366     } else {
367         ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
368     }
369 
370     if (ret < 0) {
371         fprintf(stderr, "Failed to set device address: %s\n",
372                 strerror(-ret));
373         abort();
374     }
375 }
376 
377 static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
378 {
379     KVMDevice *kd, *tkd;
380 
381     QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
382         if (kd->kda.addr != -1) {
383             kvm_arm_set_device_addr(kd);
384         }
385         memory_region_unref(kd->mr);
386         QSLIST_REMOVE_HEAD(&kvm_devices_head, entries);
387         g_free(kd);
388     }
389     memory_listener_unregister(&devlistener);
390 }
391 
392 static Notifier notify = {
393     .notify = kvm_arm_machine_init_done,
394 };
395 
396 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
397                              uint64_t attr, int dev_fd, uint64_t addr_ormask)
398 {
399     KVMDevice *kd;
400 
401     if (!kvm_irqchip_in_kernel()) {
402         return;
403     }
404 
405     if (QSLIST_EMPTY(&kvm_devices_head)) {
406         memory_listener_register(&devlistener, &address_space_memory);
407         qemu_add_machine_init_done_notifier(&notify);
408     }
409     kd = g_new0(KVMDevice, 1);
410     kd->mr = mr;
411     kd->kda.id = devid;
412     kd->kda.addr = -1;
413     kd->kdattr.flags = 0;
414     kd->kdattr.group = group;
415     kd->kdattr.attr = attr;
416     kd->dev_fd = dev_fd;
417     kd->kda_addr_ormask = addr_ormask;
418     QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
419     memory_region_ref(kd->mr);
420 }
421 
422 static int compare_u64(const void *a, const void *b)
423 {
424     if (*(uint64_t *)a > *(uint64_t *)b) {
425         return 1;
426     }
427     if (*(uint64_t *)a < *(uint64_t *)b) {
428         return -1;
429     }
430     return 0;
431 }
432 
433 /*
434  * cpreg_values are sorted in ascending order by KVM register ID
435  * (see kvm_arm_init_cpreg_list). This allows us to cheaply find
436  * the storage for a KVM register by ID with a binary search.
437  */
438 static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx)
439 {
440     uint64_t *res;
441 
442     res = bsearch(&regidx, cpu->cpreg_indexes, cpu->cpreg_array_len,
443                   sizeof(uint64_t), compare_u64);
444     assert(res);
445 
446     return &cpu->cpreg_values[res - cpu->cpreg_indexes];
447 }
448 
449 /* Initialize the ARMCPU cpreg list according to the kernel's
450  * definition of what CPU registers it knows about (and throw away
451  * the previous TCG-created cpreg list).
452  */
453 int kvm_arm_init_cpreg_list(ARMCPU *cpu)
454 {
455     struct kvm_reg_list rl;
456     struct kvm_reg_list *rlp;
457     int i, ret, arraylen;
458     CPUState *cs = CPU(cpu);
459 
460     rl.n = 0;
461     ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
462     if (ret != -E2BIG) {
463         return ret;
464     }
465     rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
466     rlp->n = rl.n;
467     ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
468     if (ret) {
469         goto out;
470     }
471     /* Sort the list we get back from the kernel, since cpreg_tuples
472      * must be in strictly ascending order.
473      */
474     qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
475 
476     for (i = 0, arraylen = 0; i < rlp->n; i++) {
477         if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
478             continue;
479         }
480         switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
481         case KVM_REG_SIZE_U32:
482         case KVM_REG_SIZE_U64:
483             break;
484         default:
485             fprintf(stderr, "Can't handle size of register in kernel list\n");
486             ret = -EINVAL;
487             goto out;
488         }
489 
490         arraylen++;
491     }
492 
493     cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
494     cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
495     cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
496                                          arraylen);
497     cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
498                                         arraylen);
499     cpu->cpreg_array_len = arraylen;
500     cpu->cpreg_vmstate_array_len = arraylen;
501 
502     for (i = 0, arraylen = 0; i < rlp->n; i++) {
503         uint64_t regidx = rlp->reg[i];
504         if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
505             continue;
506         }
507         cpu->cpreg_indexes[arraylen] = regidx;
508         arraylen++;
509     }
510     assert(cpu->cpreg_array_len == arraylen);
511 
512     if (!write_kvmstate_to_list(cpu)) {
513         /* Shouldn't happen unless kernel is inconsistent about
514          * what registers exist.
515          */
516         fprintf(stderr, "Initial read of kernel register state failed\n");
517         ret = -EINVAL;
518         goto out;
519     }
520 
521 out:
522     g_free(rlp);
523     return ret;
524 }
525 
526 bool write_kvmstate_to_list(ARMCPU *cpu)
527 {
528     CPUState *cs = CPU(cpu);
529     int i;
530     bool ok = true;
531 
532     for (i = 0; i < cpu->cpreg_array_len; i++) {
533         struct kvm_one_reg r;
534         uint64_t regidx = cpu->cpreg_indexes[i];
535         uint32_t v32;
536         int ret;
537 
538         r.id = regidx;
539 
540         switch (regidx & KVM_REG_SIZE_MASK) {
541         case KVM_REG_SIZE_U32:
542             r.addr = (uintptr_t)&v32;
543             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
544             if (!ret) {
545                 cpu->cpreg_values[i] = v32;
546             }
547             break;
548         case KVM_REG_SIZE_U64:
549             r.addr = (uintptr_t)(cpu->cpreg_values + i);
550             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
551             break;
552         default:
553             g_assert_not_reached();
554         }
555         if (ret) {
556             ok = false;
557         }
558     }
559     return ok;
560 }
561 
562 bool write_list_to_kvmstate(ARMCPU *cpu, int level)
563 {
564     CPUState *cs = CPU(cpu);
565     int i;
566     bool ok = true;
567 
568     for (i = 0; i < cpu->cpreg_array_len; i++) {
569         struct kvm_one_reg r;
570         uint64_t regidx = cpu->cpreg_indexes[i];
571         uint32_t v32;
572         int ret;
573 
574         if (kvm_arm_cpreg_level(regidx) > level) {
575             continue;
576         }
577 
578         r.id = regidx;
579         switch (regidx & KVM_REG_SIZE_MASK) {
580         case KVM_REG_SIZE_U32:
581             v32 = cpu->cpreg_values[i];
582             r.addr = (uintptr_t)&v32;
583             break;
584         case KVM_REG_SIZE_U64:
585             r.addr = (uintptr_t)(cpu->cpreg_values + i);
586             break;
587         default:
588             g_assert_not_reached();
589         }
590         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
591         if (ret) {
592             /* We might fail for "unknown register" and also for
593              * "you tried to set a register which is constant with
594              * a different value from what it actually contains".
595              */
596             ok = false;
597         }
598     }
599     return ok;
600 }
601 
602 void kvm_arm_cpu_pre_save(ARMCPU *cpu)
603 {
604     /* KVM virtual time adjustment */
605     if (cpu->kvm_vtime_dirty) {
606         *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT) = cpu->kvm_vtime;
607     }
608 }
609 
610 void kvm_arm_cpu_post_load(ARMCPU *cpu)
611 {
612     /* KVM virtual time adjustment */
613     if (cpu->kvm_adjvtime) {
614         cpu->kvm_vtime = *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT);
615         cpu->kvm_vtime_dirty = true;
616     }
617 }
618 
619 void kvm_arm_reset_vcpu(ARMCPU *cpu)
620 {
621     int ret;
622 
623     /* Re-init VCPU so that all registers are set to
624      * their respective reset values.
625      */
626     ret = kvm_arm_vcpu_init(CPU(cpu));
627     if (ret < 0) {
628         fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
629         abort();
630     }
631     if (!write_kvmstate_to_list(cpu)) {
632         fprintf(stderr, "write_kvmstate_to_list failed\n");
633         abort();
634     }
635     /*
636      * Sync the reset values also into the CPUState. This is necessary
637      * because the next thing we do will be a kvm_arch_put_registers()
638      * which will update the list values from the CPUState before copying
639      * the list values back to KVM. It's OK to ignore failure returns here
640      * for the same reason we do so in kvm_arch_get_registers().
641      */
642     write_list_to_cpustate(cpu);
643 }
644 
645 /*
646  * Update KVM's MP_STATE based on what QEMU thinks it is
647  */
648 int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
649 {
650     if (cap_has_mp_state) {
651         struct kvm_mp_state mp_state = {
652             .mp_state = (cpu->power_state == PSCI_OFF) ?
653             KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
654         };
655         int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
656         if (ret) {
657             fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n",
658                     __func__, ret, strerror(-ret));
659             return -1;
660         }
661     }
662 
663     return 0;
664 }
665 
666 /*
667  * Sync the KVM MP_STATE into QEMU
668  */
669 int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
670 {
671     if (cap_has_mp_state) {
672         struct kvm_mp_state mp_state;
673         int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
674         if (ret) {
675             fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n",
676                     __func__, ret, strerror(-ret));
677             abort();
678         }
679         cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
680             PSCI_OFF : PSCI_ON;
681     }
682 
683     return 0;
684 }
685 
686 void kvm_arm_get_virtual_time(CPUState *cs)
687 {
688     ARMCPU *cpu = ARM_CPU(cs);
689     struct kvm_one_reg reg = {
690         .id = KVM_REG_ARM_TIMER_CNT,
691         .addr = (uintptr_t)&cpu->kvm_vtime,
692     };
693     int ret;
694 
695     if (cpu->kvm_vtime_dirty) {
696         return;
697     }
698 
699     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
700     if (ret) {
701         error_report("Failed to get KVM_REG_ARM_TIMER_CNT");
702         abort();
703     }
704 
705     cpu->kvm_vtime_dirty = true;
706 }
707 
708 void kvm_arm_put_virtual_time(CPUState *cs)
709 {
710     ARMCPU *cpu = ARM_CPU(cs);
711     struct kvm_one_reg reg = {
712         .id = KVM_REG_ARM_TIMER_CNT,
713         .addr = (uintptr_t)&cpu->kvm_vtime,
714     };
715     int ret;
716 
717     if (!cpu->kvm_vtime_dirty) {
718         return;
719     }
720 
721     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
722     if (ret) {
723         error_report("Failed to set KVM_REG_ARM_TIMER_CNT");
724         abort();
725     }
726 
727     cpu->kvm_vtime_dirty = false;
728 }
729 
730 int kvm_put_vcpu_events(ARMCPU *cpu)
731 {
732     CPUARMState *env = &cpu->env;
733     struct kvm_vcpu_events events;
734     int ret;
735 
736     if (!kvm_has_vcpu_events()) {
737         return 0;
738     }
739 
740     memset(&events, 0, sizeof(events));
741     events.exception.serror_pending = env->serror.pending;
742 
743     /* Inject SError to guest with specified syndrome if host kernel
744      * supports it, otherwise inject SError without syndrome.
745      */
746     if (cap_has_inject_serror_esr) {
747         events.exception.serror_has_esr = env->serror.has_esr;
748         events.exception.serror_esr = env->serror.esr;
749     }
750 
751     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
752     if (ret) {
753         error_report("failed to put vcpu events");
754     }
755 
756     return ret;
757 }
758 
759 int kvm_get_vcpu_events(ARMCPU *cpu)
760 {
761     CPUARMState *env = &cpu->env;
762     struct kvm_vcpu_events events;
763     int ret;
764 
765     if (!kvm_has_vcpu_events()) {
766         return 0;
767     }
768 
769     memset(&events, 0, sizeof(events));
770     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
771     if (ret) {
772         error_report("failed to get vcpu events");
773         return ret;
774     }
775 
776     env->serror.pending = events.exception.serror_pending;
777     env->serror.has_esr = events.exception.serror_has_esr;
778     env->serror.esr = events.exception.serror_esr;
779 
780     return 0;
781 }
782 
783 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
784 {
785     ARMCPU *cpu = ARM_CPU(cs);
786     CPUARMState *env = &cpu->env;
787 
788     if (unlikely(env->ext_dabt_raised)) {
789         /*
790          * Verifying that the ext DABT has been properly injected,
791          * otherwise risking indefinitely re-running the faulting instruction
792          * Covering a very narrow case for kernels 5.5..5.5.4
793          * when injected abort was misconfigured to be
794          * an IMPLEMENTATION DEFINED exception (for 32-bit EL1)
795          */
796         if (!arm_feature(env, ARM_FEATURE_AARCH64) &&
797             unlikely(!kvm_arm_verify_ext_dabt_pending(cs))) {
798 
799             error_report("Data abort exception with no valid ISS generated by "
800                    "guest memory access. KVM unable to emulate faulting "
801                    "instruction. Failed to inject an external data abort "
802                    "into the guest.");
803             abort();
804        }
805        /* Clear the status */
806        env->ext_dabt_raised = 0;
807     }
808 }
809 
810 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
811 {
812     ARMCPU *cpu;
813     uint32_t switched_level;
814 
815     if (kvm_irqchip_in_kernel()) {
816         /*
817          * We only need to sync timer states with user-space interrupt
818          * controllers, so return early and save cycles if we don't.
819          */
820         return MEMTXATTRS_UNSPECIFIED;
821     }
822 
823     cpu = ARM_CPU(cs);
824 
825     /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
826     if (run->s.regs.device_irq_level != cpu->device_irq_level) {
827         switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
828 
829         qemu_mutex_lock_iothread();
830 
831         if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
832             qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
833                          !!(run->s.regs.device_irq_level &
834                             KVM_ARM_DEV_EL1_VTIMER));
835             switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
836         }
837 
838         if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
839             qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
840                          !!(run->s.regs.device_irq_level &
841                             KVM_ARM_DEV_EL1_PTIMER));
842             switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
843         }
844 
845         if (switched_level & KVM_ARM_DEV_PMU) {
846             qemu_set_irq(cpu->pmu_interrupt,
847                          !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
848             switched_level &= ~KVM_ARM_DEV_PMU;
849         }
850 
851         if (switched_level) {
852             qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
853                           __func__, switched_level);
854         }
855 
856         /* We also mark unknown levels as processed to not waste cycles */
857         cpu->device_irq_level = run->s.regs.device_irq_level;
858         qemu_mutex_unlock_iothread();
859     }
860 
861     return MEMTXATTRS_UNSPECIFIED;
862 }
863 
864 void kvm_arm_vm_state_change(void *opaque, bool running, RunState state)
865 {
866     CPUState *cs = opaque;
867     ARMCPU *cpu = ARM_CPU(cs);
868 
869     if (running) {
870         if (cpu->kvm_adjvtime) {
871             kvm_arm_put_virtual_time(cs);
872         }
873     } else {
874         if (cpu->kvm_adjvtime) {
875             kvm_arm_get_virtual_time(cs);
876         }
877     }
878 }
879 
880 /**
881  * kvm_arm_handle_dabt_nisv:
882  * @cs: CPUState
883  * @esr_iss: ISS encoding (limited) for the exception from Data Abort
884  *           ISV bit set to '0b0' -> no valid instruction syndrome
885  * @fault_ipa: faulting address for the synchronous data abort
886  *
887  * Returns: 0 if the exception has been handled, < 0 otherwise
888  */
889 static int kvm_arm_handle_dabt_nisv(CPUState *cs, uint64_t esr_iss,
890                                     uint64_t fault_ipa)
891 {
892     ARMCPU *cpu = ARM_CPU(cs);
893     CPUARMState *env = &cpu->env;
894     /*
895      * Request KVM to inject the external data abort into the guest
896      */
897     if (cap_has_inject_ext_dabt) {
898         struct kvm_vcpu_events events = { };
899         /*
900          * The external data abort event will be handled immediately by KVM
901          * using the address fault that triggered the exit on given VCPU.
902          * Requesting injection of the external data abort does not rely
903          * on any other VCPU state. Therefore, in this particular case, the VCPU
904          * synchronization can be exceptionally skipped.
905          */
906         events.exception.ext_dabt_pending = 1;
907         /* KVM_CAP_ARM_INJECT_EXT_DABT implies KVM_CAP_VCPU_EVENTS */
908         if (!kvm_vcpu_ioctl(cs, KVM_SET_VCPU_EVENTS, &events)) {
909             env->ext_dabt_raised = 1;
910             return 0;
911         }
912     } else {
913         error_report("Data abort exception triggered by guest memory access "
914                      "at physical address: 0x"  TARGET_FMT_lx,
915                      (target_ulong)fault_ipa);
916         error_printf("KVM unable to emulate faulting instruction.\n");
917     }
918     return -1;
919 }
920 
921 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
922 {
923     int ret = 0;
924 
925     switch (run->exit_reason) {
926     case KVM_EXIT_DEBUG:
927         if (kvm_arm_handle_debug(cs, &run->debug.arch)) {
928             ret = EXCP_DEBUG;
929         } /* otherwise return to guest */
930         break;
931     case KVM_EXIT_ARM_NISV:
932         /* External DABT with no valid iss to decode */
933         ret = kvm_arm_handle_dabt_nisv(cs, run->arm_nisv.esr_iss,
934                                        run->arm_nisv.fault_ipa);
935         break;
936     default:
937         qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
938                       __func__, run->exit_reason);
939         break;
940     }
941     return ret;
942 }
943 
944 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
945 {
946     return true;
947 }
948 
949 int kvm_arch_process_async_events(CPUState *cs)
950 {
951     return 0;
952 }
953 
954 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
955 {
956     if (kvm_sw_breakpoints_active(cs)) {
957         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
958     }
959     if (kvm_arm_hw_debug_active(cs)) {
960         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
961         kvm_arm_copy_hw_debug_data(&dbg->arch);
962     }
963 }
964 
965 void kvm_arch_init_irq_routing(KVMState *s)
966 {
967 }
968 
969 int kvm_arch_irqchip_create(KVMState *s)
970 {
971     if (kvm_kernel_irqchip_split()) {
972         error_report("-machine kernel_irqchip=split is not supported on ARM.");
973         exit(1);
974     }
975 
976     /* If we can create the VGIC using the newer device control API, we
977      * let the device do this when it initializes itself, otherwise we
978      * fall back to the old API */
979     return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
980 }
981 
982 int kvm_arm_vgic_probe(void)
983 {
984     int val = 0;
985 
986     if (kvm_create_device(kvm_state,
987                           KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
988         val |= KVM_ARM_VGIC_V3;
989     }
990     if (kvm_create_device(kvm_state,
991                           KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
992         val |= KVM_ARM_VGIC_V2;
993     }
994     return val;
995 }
996 
997 int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level)
998 {
999     int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq;
1000     int cpu_idx1 = cpu % 256;
1001     int cpu_idx2 = cpu / 256;
1002 
1003     kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) |
1004                (cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT);
1005 
1006     return kvm_set_irq(kvm_state, kvm_irq, !!level);
1007 }
1008 
1009 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
1010                              uint64_t address, uint32_t data, PCIDevice *dev)
1011 {
1012     AddressSpace *as = pci_device_iommu_address_space(dev);
1013     hwaddr xlat, len, doorbell_gpa;
1014     MemoryRegionSection mrs;
1015     MemoryRegion *mr;
1016 
1017     if (as == &address_space_memory) {
1018         return 0;
1019     }
1020 
1021     /* MSI doorbell address is translated by an IOMMU */
1022 
1023     RCU_READ_LOCK_GUARD();
1024 
1025     mr = address_space_translate(as, address, &xlat, &len, true,
1026                                  MEMTXATTRS_UNSPECIFIED);
1027 
1028     if (!mr) {
1029         return 1;
1030     }
1031 
1032     mrs = memory_region_find(mr, xlat, 1);
1033 
1034     if (!mrs.mr) {
1035         return 1;
1036     }
1037 
1038     doorbell_gpa = mrs.offset_within_address_space;
1039     memory_region_unref(mrs.mr);
1040 
1041     route->u.msi.address_lo = doorbell_gpa;
1042     route->u.msi.address_hi = doorbell_gpa >> 32;
1043 
1044     trace_kvm_arm_fixup_msi_route(address, doorbell_gpa);
1045 
1046     return 0;
1047 }
1048 
1049 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
1050                                 int vector, PCIDevice *dev)
1051 {
1052     return 0;
1053 }
1054 
1055 int kvm_arch_release_virq_post(int virq)
1056 {
1057     return 0;
1058 }
1059 
1060 int kvm_arch_msi_data_to_gsi(uint32_t data)
1061 {
1062     return (data - 32) & 0xffff;
1063 }
1064 
1065 bool kvm_arch_cpu_check_are_resettable(void)
1066 {
1067     return true;
1068 }
1069 
1070 void kvm_arch_accel_class_init(ObjectClass *oc)
1071 {
1072 }
1073