xref: /openbmc/qemu/target/arm/kvm.c (revision 52f2b8961409be834abaee5189bff2cc9e372851)
1 /*
2  * ARM implementation of KVM hooks
3  *
4  * Copyright Christoffer Dall 2009-2010
5  *
6  * This work is licensed under the terms of the GNU GPL, version 2 or later.
7  * See the COPYING file in the top-level directory.
8  *
9  */
10 
11 #include "qemu/osdep.h"
12 #include <sys/ioctl.h>
13 
14 #include <linux/kvm.h>
15 
16 #include "qemu-common.h"
17 #include "qemu/timer.h"
18 #include "qemu/error-report.h"
19 #include "sysemu/sysemu.h"
20 #include "sysemu/kvm.h"
21 #include "sysemu/kvm_int.h"
22 #include "kvm_arm.h"
23 #include "cpu.h"
24 #include "trace.h"
25 #include "internals.h"
26 #include "hw/pci/pci.h"
27 #include "exec/memattrs.h"
28 #include "exec/address-spaces.h"
29 #include "hw/boards.h"
30 #include "qemu/log.h"
31 
32 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
33     KVM_CAP_LAST_INFO
34 };
35 
36 static bool cap_has_mp_state;
37 static bool cap_has_inject_serror_esr;
38 
39 static ARMHostCPUFeatures arm_host_cpu_features;
40 
41 int kvm_arm_vcpu_init(CPUState *cs)
42 {
43     ARMCPU *cpu = ARM_CPU(cs);
44     struct kvm_vcpu_init init;
45 
46     init.target = cpu->kvm_target;
47     memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
48 
49     return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
50 }
51 
52 void kvm_arm_init_serror_injection(CPUState *cs)
53 {
54     cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state,
55                                     KVM_CAP_ARM_INJECT_SERROR_ESR);
56 }
57 
58 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
59                                       int *fdarray,
60                                       struct kvm_vcpu_init *init)
61 {
62     int ret, kvmfd = -1, vmfd = -1, cpufd = -1;
63 
64     kvmfd = qemu_open("/dev/kvm", O_RDWR);
65     if (kvmfd < 0) {
66         goto err;
67     }
68     vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0);
69     if (vmfd < 0) {
70         goto err;
71     }
72     cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
73     if (cpufd < 0) {
74         goto err;
75     }
76 
77     if (!init) {
78         /* Caller doesn't want the VCPU to be initialized, so skip it */
79         goto finish;
80     }
81 
82     ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, init);
83     if (ret >= 0) {
84         ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
85         if (ret < 0) {
86             goto err;
87         }
88     } else if (cpus_to_try) {
89         /* Old kernel which doesn't know about the
90          * PREFERRED_TARGET ioctl: we know it will only support
91          * creating one kind of guest CPU which is its preferred
92          * CPU type.
93          */
94         while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
95             init->target = *cpus_to_try++;
96             memset(init->features, 0, sizeof(init->features));
97             ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
98             if (ret >= 0) {
99                 break;
100             }
101         }
102         if (ret < 0) {
103             goto err;
104         }
105     } else {
106         /* Treat a NULL cpus_to_try argument the same as an empty
107          * list, which means we will fail the call since this must
108          * be an old kernel which doesn't support PREFERRED_TARGET.
109          */
110         goto err;
111     }
112 
113 finish:
114     fdarray[0] = kvmfd;
115     fdarray[1] = vmfd;
116     fdarray[2] = cpufd;
117 
118     return true;
119 
120 err:
121     if (cpufd >= 0) {
122         close(cpufd);
123     }
124     if (vmfd >= 0) {
125         close(vmfd);
126     }
127     if (kvmfd >= 0) {
128         close(kvmfd);
129     }
130 
131     return false;
132 }
133 
134 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
135 {
136     int i;
137 
138     for (i = 2; i >= 0; i--) {
139         close(fdarray[i]);
140     }
141 }
142 
143 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
144 {
145     CPUARMState *env = &cpu->env;
146 
147     if (!arm_host_cpu_features.dtb_compatible) {
148         if (!kvm_enabled() ||
149             !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) {
150             /* We can't report this error yet, so flag that we need to
151              * in arm_cpu_realizefn().
152              */
153             cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
154             cpu->host_cpu_probe_failed = true;
155             return;
156         }
157     }
158 
159     cpu->kvm_target = arm_host_cpu_features.target;
160     cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
161     cpu->isar = arm_host_cpu_features.isar;
162     env->features = arm_host_cpu_features.features;
163 }
164 
165 int kvm_arm_get_max_vm_ipa_size(MachineState *ms)
166 {
167     KVMState *s = KVM_STATE(ms->accelerator);
168     int ret;
169 
170     ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE);
171     return ret > 0 ? ret : 40;
172 }
173 
174 int kvm_arch_init(MachineState *ms, KVMState *s)
175 {
176     /* For ARM interrupt delivery is always asynchronous,
177      * whether we are using an in-kernel VGIC or not.
178      */
179     kvm_async_interrupts_allowed = true;
180 
181     /*
182      * PSCI wakes up secondary cores, so we always need to
183      * have vCPUs waiting in kernel space
184      */
185     kvm_halt_in_kernel_allowed = true;
186 
187     cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
188 
189     return 0;
190 }
191 
192 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
193 {
194     return cpu->cpu_index;
195 }
196 
197 /* We track all the KVM devices which need their memory addresses
198  * passing to the kernel in a list of these structures.
199  * When board init is complete we run through the list and
200  * tell the kernel the base addresses of the memory regions.
201  * We use a MemoryListener to track mapping and unmapping of
202  * the regions during board creation, so the board models don't
203  * need to do anything special for the KVM case.
204  *
205  * Sometimes the address must be OR'ed with some other fields
206  * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
207  * @kda_addr_ormask aims at storing the value of those fields.
208  */
209 typedef struct KVMDevice {
210     struct kvm_arm_device_addr kda;
211     struct kvm_device_attr kdattr;
212     uint64_t kda_addr_ormask;
213     MemoryRegion *mr;
214     QSLIST_ENTRY(KVMDevice) entries;
215     int dev_fd;
216 } KVMDevice;
217 
218 static QSLIST_HEAD(, KVMDevice) kvm_devices_head;
219 
220 static void kvm_arm_devlistener_add(MemoryListener *listener,
221                                     MemoryRegionSection *section)
222 {
223     KVMDevice *kd;
224 
225     QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
226         if (section->mr == kd->mr) {
227             kd->kda.addr = section->offset_within_address_space;
228         }
229     }
230 }
231 
232 static void kvm_arm_devlistener_del(MemoryListener *listener,
233                                     MemoryRegionSection *section)
234 {
235     KVMDevice *kd;
236 
237     QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
238         if (section->mr == kd->mr) {
239             kd->kda.addr = -1;
240         }
241     }
242 }
243 
244 static MemoryListener devlistener = {
245     .region_add = kvm_arm_devlistener_add,
246     .region_del = kvm_arm_devlistener_del,
247 };
248 
249 static void kvm_arm_set_device_addr(KVMDevice *kd)
250 {
251     struct kvm_device_attr *attr = &kd->kdattr;
252     int ret;
253 
254     /* If the device control API is available and we have a device fd on the
255      * KVMDevice struct, let's use the newer API
256      */
257     if (kd->dev_fd >= 0) {
258         uint64_t addr = kd->kda.addr;
259 
260         addr |= kd->kda_addr_ormask;
261         attr->addr = (uintptr_t)&addr;
262         ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
263     } else {
264         ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
265     }
266 
267     if (ret < 0) {
268         fprintf(stderr, "Failed to set device address: %s\n",
269                 strerror(-ret));
270         abort();
271     }
272 }
273 
274 static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
275 {
276     KVMDevice *kd, *tkd;
277 
278     QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
279         if (kd->kda.addr != -1) {
280             kvm_arm_set_device_addr(kd);
281         }
282         memory_region_unref(kd->mr);
283         QSLIST_REMOVE_HEAD(&kvm_devices_head, entries);
284         g_free(kd);
285     }
286     memory_listener_unregister(&devlistener);
287 }
288 
289 static Notifier notify = {
290     .notify = kvm_arm_machine_init_done,
291 };
292 
293 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
294                              uint64_t attr, int dev_fd, uint64_t addr_ormask)
295 {
296     KVMDevice *kd;
297 
298     if (!kvm_irqchip_in_kernel()) {
299         return;
300     }
301 
302     if (QSLIST_EMPTY(&kvm_devices_head)) {
303         memory_listener_register(&devlistener, &address_space_memory);
304         qemu_add_machine_init_done_notifier(&notify);
305     }
306     kd = g_new0(KVMDevice, 1);
307     kd->mr = mr;
308     kd->kda.id = devid;
309     kd->kda.addr = -1;
310     kd->kdattr.flags = 0;
311     kd->kdattr.group = group;
312     kd->kdattr.attr = attr;
313     kd->dev_fd = dev_fd;
314     kd->kda_addr_ormask = addr_ormask;
315     QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
316     memory_region_ref(kd->mr);
317 }
318 
319 static int compare_u64(const void *a, const void *b)
320 {
321     if (*(uint64_t *)a > *(uint64_t *)b) {
322         return 1;
323     }
324     if (*(uint64_t *)a < *(uint64_t *)b) {
325         return -1;
326     }
327     return 0;
328 }
329 
330 /* Initialize the ARMCPU cpreg list according to the kernel's
331  * definition of what CPU registers it knows about (and throw away
332  * the previous TCG-created cpreg list).
333  */
334 int kvm_arm_init_cpreg_list(ARMCPU *cpu)
335 {
336     struct kvm_reg_list rl;
337     struct kvm_reg_list *rlp;
338     int i, ret, arraylen;
339     CPUState *cs = CPU(cpu);
340 
341     rl.n = 0;
342     ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
343     if (ret != -E2BIG) {
344         return ret;
345     }
346     rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
347     rlp->n = rl.n;
348     ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
349     if (ret) {
350         goto out;
351     }
352     /* Sort the list we get back from the kernel, since cpreg_tuples
353      * must be in strictly ascending order.
354      */
355     qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
356 
357     for (i = 0, arraylen = 0; i < rlp->n; i++) {
358         if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
359             continue;
360         }
361         switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
362         case KVM_REG_SIZE_U32:
363         case KVM_REG_SIZE_U64:
364             break;
365         default:
366             fprintf(stderr, "Can't handle size of register in kernel list\n");
367             ret = -EINVAL;
368             goto out;
369         }
370 
371         arraylen++;
372     }
373 
374     cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
375     cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
376     cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
377                                          arraylen);
378     cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
379                                         arraylen);
380     cpu->cpreg_array_len = arraylen;
381     cpu->cpreg_vmstate_array_len = arraylen;
382 
383     for (i = 0, arraylen = 0; i < rlp->n; i++) {
384         uint64_t regidx = rlp->reg[i];
385         if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
386             continue;
387         }
388         cpu->cpreg_indexes[arraylen] = regidx;
389         arraylen++;
390     }
391     assert(cpu->cpreg_array_len == arraylen);
392 
393     if (!write_kvmstate_to_list(cpu)) {
394         /* Shouldn't happen unless kernel is inconsistent about
395          * what registers exist.
396          */
397         fprintf(stderr, "Initial read of kernel register state failed\n");
398         ret = -EINVAL;
399         goto out;
400     }
401 
402 out:
403     g_free(rlp);
404     return ret;
405 }
406 
407 bool write_kvmstate_to_list(ARMCPU *cpu)
408 {
409     CPUState *cs = CPU(cpu);
410     int i;
411     bool ok = true;
412 
413     for (i = 0; i < cpu->cpreg_array_len; i++) {
414         struct kvm_one_reg r;
415         uint64_t regidx = cpu->cpreg_indexes[i];
416         uint32_t v32;
417         int ret;
418 
419         r.id = regidx;
420 
421         switch (regidx & KVM_REG_SIZE_MASK) {
422         case KVM_REG_SIZE_U32:
423             r.addr = (uintptr_t)&v32;
424             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
425             if (!ret) {
426                 cpu->cpreg_values[i] = v32;
427             }
428             break;
429         case KVM_REG_SIZE_U64:
430             r.addr = (uintptr_t)(cpu->cpreg_values + i);
431             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
432             break;
433         default:
434             abort();
435         }
436         if (ret) {
437             ok = false;
438         }
439     }
440     return ok;
441 }
442 
443 bool write_list_to_kvmstate(ARMCPU *cpu, int level)
444 {
445     CPUState *cs = CPU(cpu);
446     int i;
447     bool ok = true;
448 
449     for (i = 0; i < cpu->cpreg_array_len; i++) {
450         struct kvm_one_reg r;
451         uint64_t regidx = cpu->cpreg_indexes[i];
452         uint32_t v32;
453         int ret;
454 
455         if (kvm_arm_cpreg_level(regidx) > level) {
456             continue;
457         }
458 
459         r.id = regidx;
460         switch (regidx & KVM_REG_SIZE_MASK) {
461         case KVM_REG_SIZE_U32:
462             v32 = cpu->cpreg_values[i];
463             r.addr = (uintptr_t)&v32;
464             break;
465         case KVM_REG_SIZE_U64:
466             r.addr = (uintptr_t)(cpu->cpreg_values + i);
467             break;
468         default:
469             abort();
470         }
471         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
472         if (ret) {
473             /* We might fail for "unknown register" and also for
474              * "you tried to set a register which is constant with
475              * a different value from what it actually contains".
476              */
477             ok = false;
478         }
479     }
480     return ok;
481 }
482 
483 void kvm_arm_reset_vcpu(ARMCPU *cpu)
484 {
485     int ret;
486 
487     /* Re-init VCPU so that all registers are set to
488      * their respective reset values.
489      */
490     ret = kvm_arm_vcpu_init(CPU(cpu));
491     if (ret < 0) {
492         fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
493         abort();
494     }
495     if (!write_kvmstate_to_list(cpu)) {
496         fprintf(stderr, "write_kvmstate_to_list failed\n");
497         abort();
498     }
499     /*
500      * Sync the reset values also into the CPUState. This is necessary
501      * because the next thing we do will be a kvm_arch_put_registers()
502      * which will update the list values from the CPUState before copying
503      * the list values back to KVM. It's OK to ignore failure returns here
504      * for the same reason we do so in kvm_arch_get_registers().
505      */
506     write_list_to_cpustate(cpu);
507 }
508 
509 /*
510  * Update KVM's MP_STATE based on what QEMU thinks it is
511  */
512 int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
513 {
514     if (cap_has_mp_state) {
515         struct kvm_mp_state mp_state = {
516             .mp_state = (cpu->power_state == PSCI_OFF) ?
517             KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
518         };
519         int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
520         if (ret) {
521             fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n",
522                     __func__, ret, strerror(-ret));
523             return -1;
524         }
525     }
526 
527     return 0;
528 }
529 
530 /*
531  * Sync the KVM MP_STATE into QEMU
532  */
533 int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
534 {
535     if (cap_has_mp_state) {
536         struct kvm_mp_state mp_state;
537         int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
538         if (ret) {
539             fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n",
540                     __func__, ret, strerror(-ret));
541             abort();
542         }
543         cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
544             PSCI_OFF : PSCI_ON;
545     }
546 
547     return 0;
548 }
549 
550 int kvm_put_vcpu_events(ARMCPU *cpu)
551 {
552     CPUARMState *env = &cpu->env;
553     struct kvm_vcpu_events events;
554     int ret;
555 
556     if (!kvm_has_vcpu_events()) {
557         return 0;
558     }
559 
560     memset(&events, 0, sizeof(events));
561     events.exception.serror_pending = env->serror.pending;
562 
563     /* Inject SError to guest with specified syndrome if host kernel
564      * supports it, otherwise inject SError without syndrome.
565      */
566     if (cap_has_inject_serror_esr) {
567         events.exception.serror_has_esr = env->serror.has_esr;
568         events.exception.serror_esr = env->serror.esr;
569     }
570 
571     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
572     if (ret) {
573         error_report("failed to put vcpu events");
574     }
575 
576     return ret;
577 }
578 
579 int kvm_get_vcpu_events(ARMCPU *cpu)
580 {
581     CPUARMState *env = &cpu->env;
582     struct kvm_vcpu_events events;
583     int ret;
584 
585     if (!kvm_has_vcpu_events()) {
586         return 0;
587     }
588 
589     memset(&events, 0, sizeof(events));
590     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
591     if (ret) {
592         error_report("failed to get vcpu events");
593         return ret;
594     }
595 
596     env->serror.pending = events.exception.serror_pending;
597     env->serror.has_esr = events.exception.serror_has_esr;
598     env->serror.esr = events.exception.serror_esr;
599 
600     return 0;
601 }
602 
603 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
604 {
605 }
606 
607 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
608 {
609     ARMCPU *cpu;
610     uint32_t switched_level;
611 
612     if (kvm_irqchip_in_kernel()) {
613         /*
614          * We only need to sync timer states with user-space interrupt
615          * controllers, so return early and save cycles if we don't.
616          */
617         return MEMTXATTRS_UNSPECIFIED;
618     }
619 
620     cpu = ARM_CPU(cs);
621 
622     /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
623     if (run->s.regs.device_irq_level != cpu->device_irq_level) {
624         switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
625 
626         qemu_mutex_lock_iothread();
627 
628         if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
629             qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
630                          !!(run->s.regs.device_irq_level &
631                             KVM_ARM_DEV_EL1_VTIMER));
632             switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
633         }
634 
635         if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
636             qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
637                          !!(run->s.regs.device_irq_level &
638                             KVM_ARM_DEV_EL1_PTIMER));
639             switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
640         }
641 
642         if (switched_level & KVM_ARM_DEV_PMU) {
643             qemu_set_irq(cpu->pmu_interrupt,
644                          !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
645             switched_level &= ~KVM_ARM_DEV_PMU;
646         }
647 
648         if (switched_level) {
649             qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
650                           __func__, switched_level);
651         }
652 
653         /* We also mark unknown levels as processed to not waste cycles */
654         cpu->device_irq_level = run->s.regs.device_irq_level;
655         qemu_mutex_unlock_iothread();
656     }
657 
658     return MEMTXATTRS_UNSPECIFIED;
659 }
660 
661 
662 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
663 {
664     int ret = 0;
665 
666     switch (run->exit_reason) {
667     case KVM_EXIT_DEBUG:
668         if (kvm_arm_handle_debug(cs, &run->debug.arch)) {
669             ret = EXCP_DEBUG;
670         } /* otherwise return to guest */
671         break;
672     default:
673         qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
674                       __func__, run->exit_reason);
675         break;
676     }
677     return ret;
678 }
679 
680 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
681 {
682     return true;
683 }
684 
685 int kvm_arch_process_async_events(CPUState *cs)
686 {
687     return 0;
688 }
689 
690 /* The #ifdef protections are until 32bit headers are imported and can
691  * be removed once both 32 and 64 bit reach feature parity.
692  */
693 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
694 {
695 #ifdef KVM_GUESTDBG_USE_SW_BP
696     if (kvm_sw_breakpoints_active(cs)) {
697         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
698     }
699 #endif
700 #ifdef KVM_GUESTDBG_USE_HW
701     if (kvm_arm_hw_debug_active(cs)) {
702         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
703         kvm_arm_copy_hw_debug_data(&dbg->arch);
704     }
705 #endif
706 }
707 
708 void kvm_arch_init_irq_routing(KVMState *s)
709 {
710 }
711 
712 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
713 {
714      if (machine_kernel_irqchip_split(ms)) {
715          perror("-machine kernel_irqchip=split is not supported on ARM.");
716          exit(1);
717     }
718 
719     /* If we can create the VGIC using the newer device control API, we
720      * let the device do this when it initializes itself, otherwise we
721      * fall back to the old API */
722     return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
723 }
724 
725 int kvm_arm_vgic_probe(void)
726 {
727     if (kvm_create_device(kvm_state,
728                           KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
729         return 3;
730     } else if (kvm_create_device(kvm_state,
731                                  KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
732         return 2;
733     } else {
734         return 0;
735     }
736 }
737 
738 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
739                              uint64_t address, uint32_t data, PCIDevice *dev)
740 {
741     AddressSpace *as = pci_device_iommu_address_space(dev);
742     hwaddr xlat, len, doorbell_gpa;
743     MemoryRegionSection mrs;
744     MemoryRegion *mr;
745     int ret = 1;
746 
747     if (as == &address_space_memory) {
748         return 0;
749     }
750 
751     /* MSI doorbell address is translated by an IOMMU */
752 
753     rcu_read_lock();
754     mr = address_space_translate(as, address, &xlat, &len, true,
755                                  MEMTXATTRS_UNSPECIFIED);
756     if (!mr) {
757         goto unlock;
758     }
759     mrs = memory_region_find(mr, xlat, 1);
760     if (!mrs.mr) {
761         goto unlock;
762     }
763 
764     doorbell_gpa = mrs.offset_within_address_space;
765     memory_region_unref(mrs.mr);
766 
767     route->u.msi.address_lo = doorbell_gpa;
768     route->u.msi.address_hi = doorbell_gpa >> 32;
769 
770     trace_kvm_arm_fixup_msi_route(address, doorbell_gpa);
771 
772     ret = 0;
773 
774 unlock:
775     rcu_read_unlock();
776     return ret;
777 }
778 
779 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
780                                 int vector, PCIDevice *dev)
781 {
782     return 0;
783 }
784 
785 int kvm_arch_release_virq_post(int virq)
786 {
787     return 0;
788 }
789 
790 int kvm_arch_msi_data_to_gsi(uint32_t data)
791 {
792     return (data - 32) & 0xffff;
793 }
794