xref: /openbmc/qemu/target/arm/kvm.c (revision 4b9fa0b4)
1 /*
2  * ARM implementation of KVM hooks
3  *
4  * Copyright Christoffer Dall 2009-2010
5  *
6  * This work is licensed under the terms of the GNU GPL, version 2 or later.
7  * See the COPYING file in the top-level directory.
8  *
9  */
10 
11 #include "qemu/osdep.h"
12 #include <sys/ioctl.h>
13 
14 #include <linux/kvm.h>
15 
16 #include "qemu-common.h"
17 #include "qemu/timer.h"
18 #include "qemu/error-report.h"
19 #include "qemu/main-loop.h"
20 #include "sysemu/sysemu.h"
21 #include "sysemu/kvm.h"
22 #include "sysemu/kvm_int.h"
23 #include "kvm_arm.h"
24 #include "cpu.h"
25 #include "trace.h"
26 #include "internals.h"
27 #include "hw/pci/pci.h"
28 #include "exec/memattrs.h"
29 #include "exec/address-spaces.h"
30 #include "hw/boards.h"
31 #include "hw/irq.h"
32 #include "qemu/log.h"
33 
34 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
35     KVM_CAP_LAST_INFO
36 };
37 
38 static bool cap_has_mp_state;
39 static bool cap_has_inject_serror_esr;
40 
41 static ARMHostCPUFeatures arm_host_cpu_features;
42 
43 int kvm_arm_vcpu_init(CPUState *cs)
44 {
45     ARMCPU *cpu = ARM_CPU(cs);
46     struct kvm_vcpu_init init;
47 
48     init.target = cpu->kvm_target;
49     memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
50 
51     return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
52 }
53 
54 void kvm_arm_init_serror_injection(CPUState *cs)
55 {
56     cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state,
57                                     KVM_CAP_ARM_INJECT_SERROR_ESR);
58 }
59 
60 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
61                                       int *fdarray,
62                                       struct kvm_vcpu_init *init)
63 {
64     int ret, kvmfd = -1, vmfd = -1, cpufd = -1;
65 
66     kvmfd = qemu_open("/dev/kvm", O_RDWR);
67     if (kvmfd < 0) {
68         goto err;
69     }
70     vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0);
71     if (vmfd < 0) {
72         goto err;
73     }
74     cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
75     if (cpufd < 0) {
76         goto err;
77     }
78 
79     if (!init) {
80         /* Caller doesn't want the VCPU to be initialized, so skip it */
81         goto finish;
82     }
83 
84     ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, init);
85     if (ret >= 0) {
86         ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
87         if (ret < 0) {
88             goto err;
89         }
90     } else if (cpus_to_try) {
91         /* Old kernel which doesn't know about the
92          * PREFERRED_TARGET ioctl: we know it will only support
93          * creating one kind of guest CPU which is its preferred
94          * CPU type.
95          */
96         while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
97             init->target = *cpus_to_try++;
98             memset(init->features, 0, sizeof(init->features));
99             ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
100             if (ret >= 0) {
101                 break;
102             }
103         }
104         if (ret < 0) {
105             goto err;
106         }
107     } else {
108         /* Treat a NULL cpus_to_try argument the same as an empty
109          * list, which means we will fail the call since this must
110          * be an old kernel which doesn't support PREFERRED_TARGET.
111          */
112         goto err;
113     }
114 
115 finish:
116     fdarray[0] = kvmfd;
117     fdarray[1] = vmfd;
118     fdarray[2] = cpufd;
119 
120     return true;
121 
122 err:
123     if (cpufd >= 0) {
124         close(cpufd);
125     }
126     if (vmfd >= 0) {
127         close(vmfd);
128     }
129     if (kvmfd >= 0) {
130         close(kvmfd);
131     }
132 
133     return false;
134 }
135 
136 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
137 {
138     int i;
139 
140     for (i = 2; i >= 0; i--) {
141         close(fdarray[i]);
142     }
143 }
144 
145 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
146 {
147     CPUARMState *env = &cpu->env;
148 
149     if (!arm_host_cpu_features.dtb_compatible) {
150         if (!kvm_enabled() ||
151             !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) {
152             /* We can't report this error yet, so flag that we need to
153              * in arm_cpu_realizefn().
154              */
155             cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
156             cpu->host_cpu_probe_failed = true;
157             return;
158         }
159     }
160 
161     cpu->kvm_target = arm_host_cpu_features.target;
162     cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
163     cpu->isar = arm_host_cpu_features.isar;
164     env->features = arm_host_cpu_features.features;
165 }
166 
167 bool kvm_arm_pmu_supported(CPUState *cpu)
168 {
169     KVMState *s = KVM_STATE(current_machine->accelerator);
170 
171     return kvm_check_extension(s, KVM_CAP_ARM_PMU_V3);
172 }
173 
174 int kvm_arm_get_max_vm_ipa_size(MachineState *ms)
175 {
176     KVMState *s = KVM_STATE(ms->accelerator);
177     int ret;
178 
179     ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE);
180     return ret > 0 ? ret : 40;
181 }
182 
183 int kvm_arch_init(MachineState *ms, KVMState *s)
184 {
185     int ret = 0;
186     /* For ARM interrupt delivery is always asynchronous,
187      * whether we are using an in-kernel VGIC or not.
188      */
189     kvm_async_interrupts_allowed = true;
190 
191     /*
192      * PSCI wakes up secondary cores, so we always need to
193      * have vCPUs waiting in kernel space
194      */
195     kvm_halt_in_kernel_allowed = true;
196 
197     cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
198 
199     if (ms->smp.cpus > 256 &&
200         !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) {
201         error_report("Using more than 256 vcpus requires a host kernel "
202                      "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2");
203         ret = -EINVAL;
204     }
205 
206     return ret;
207 }
208 
209 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
210 {
211     return cpu->cpu_index;
212 }
213 
214 /* We track all the KVM devices which need their memory addresses
215  * passing to the kernel in a list of these structures.
216  * When board init is complete we run through the list and
217  * tell the kernel the base addresses of the memory regions.
218  * We use a MemoryListener to track mapping and unmapping of
219  * the regions during board creation, so the board models don't
220  * need to do anything special for the KVM case.
221  *
222  * Sometimes the address must be OR'ed with some other fields
223  * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
224  * @kda_addr_ormask aims at storing the value of those fields.
225  */
226 typedef struct KVMDevice {
227     struct kvm_arm_device_addr kda;
228     struct kvm_device_attr kdattr;
229     uint64_t kda_addr_ormask;
230     MemoryRegion *mr;
231     QSLIST_ENTRY(KVMDevice) entries;
232     int dev_fd;
233 } KVMDevice;
234 
235 static QSLIST_HEAD(, KVMDevice) kvm_devices_head;
236 
237 static void kvm_arm_devlistener_add(MemoryListener *listener,
238                                     MemoryRegionSection *section)
239 {
240     KVMDevice *kd;
241 
242     QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
243         if (section->mr == kd->mr) {
244             kd->kda.addr = section->offset_within_address_space;
245         }
246     }
247 }
248 
249 static void kvm_arm_devlistener_del(MemoryListener *listener,
250                                     MemoryRegionSection *section)
251 {
252     KVMDevice *kd;
253 
254     QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
255         if (section->mr == kd->mr) {
256             kd->kda.addr = -1;
257         }
258     }
259 }
260 
261 static MemoryListener devlistener = {
262     .region_add = kvm_arm_devlistener_add,
263     .region_del = kvm_arm_devlistener_del,
264 };
265 
266 static void kvm_arm_set_device_addr(KVMDevice *kd)
267 {
268     struct kvm_device_attr *attr = &kd->kdattr;
269     int ret;
270 
271     /* If the device control API is available and we have a device fd on the
272      * KVMDevice struct, let's use the newer API
273      */
274     if (kd->dev_fd >= 0) {
275         uint64_t addr = kd->kda.addr;
276 
277         addr |= kd->kda_addr_ormask;
278         attr->addr = (uintptr_t)&addr;
279         ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
280     } else {
281         ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
282     }
283 
284     if (ret < 0) {
285         fprintf(stderr, "Failed to set device address: %s\n",
286                 strerror(-ret));
287         abort();
288     }
289 }
290 
291 static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
292 {
293     KVMDevice *kd, *tkd;
294 
295     QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
296         if (kd->kda.addr != -1) {
297             kvm_arm_set_device_addr(kd);
298         }
299         memory_region_unref(kd->mr);
300         QSLIST_REMOVE_HEAD(&kvm_devices_head, entries);
301         g_free(kd);
302     }
303     memory_listener_unregister(&devlistener);
304 }
305 
306 static Notifier notify = {
307     .notify = kvm_arm_machine_init_done,
308 };
309 
310 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
311                              uint64_t attr, int dev_fd, uint64_t addr_ormask)
312 {
313     KVMDevice *kd;
314 
315     if (!kvm_irqchip_in_kernel()) {
316         return;
317     }
318 
319     if (QSLIST_EMPTY(&kvm_devices_head)) {
320         memory_listener_register(&devlistener, &address_space_memory);
321         qemu_add_machine_init_done_notifier(&notify);
322     }
323     kd = g_new0(KVMDevice, 1);
324     kd->mr = mr;
325     kd->kda.id = devid;
326     kd->kda.addr = -1;
327     kd->kdattr.flags = 0;
328     kd->kdattr.group = group;
329     kd->kdattr.attr = attr;
330     kd->dev_fd = dev_fd;
331     kd->kda_addr_ormask = addr_ormask;
332     QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
333     memory_region_ref(kd->mr);
334 }
335 
336 static int compare_u64(const void *a, const void *b)
337 {
338     if (*(uint64_t *)a > *(uint64_t *)b) {
339         return 1;
340     }
341     if (*(uint64_t *)a < *(uint64_t *)b) {
342         return -1;
343     }
344     return 0;
345 }
346 
347 /* Initialize the ARMCPU cpreg list according to the kernel's
348  * definition of what CPU registers it knows about (and throw away
349  * the previous TCG-created cpreg list).
350  */
351 int kvm_arm_init_cpreg_list(ARMCPU *cpu)
352 {
353     struct kvm_reg_list rl;
354     struct kvm_reg_list *rlp;
355     int i, ret, arraylen;
356     CPUState *cs = CPU(cpu);
357 
358     rl.n = 0;
359     ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
360     if (ret != -E2BIG) {
361         return ret;
362     }
363     rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
364     rlp->n = rl.n;
365     ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
366     if (ret) {
367         goto out;
368     }
369     /* Sort the list we get back from the kernel, since cpreg_tuples
370      * must be in strictly ascending order.
371      */
372     qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
373 
374     for (i = 0, arraylen = 0; i < rlp->n; i++) {
375         if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
376             continue;
377         }
378         switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
379         case KVM_REG_SIZE_U32:
380         case KVM_REG_SIZE_U64:
381             break;
382         default:
383             fprintf(stderr, "Can't handle size of register in kernel list\n");
384             ret = -EINVAL;
385             goto out;
386         }
387 
388         arraylen++;
389     }
390 
391     cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
392     cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
393     cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
394                                          arraylen);
395     cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
396                                         arraylen);
397     cpu->cpreg_array_len = arraylen;
398     cpu->cpreg_vmstate_array_len = arraylen;
399 
400     for (i = 0, arraylen = 0; i < rlp->n; i++) {
401         uint64_t regidx = rlp->reg[i];
402         if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
403             continue;
404         }
405         cpu->cpreg_indexes[arraylen] = regidx;
406         arraylen++;
407     }
408     assert(cpu->cpreg_array_len == arraylen);
409 
410     if (!write_kvmstate_to_list(cpu)) {
411         /* Shouldn't happen unless kernel is inconsistent about
412          * what registers exist.
413          */
414         fprintf(stderr, "Initial read of kernel register state failed\n");
415         ret = -EINVAL;
416         goto out;
417     }
418 
419 out:
420     g_free(rlp);
421     return ret;
422 }
423 
424 bool write_kvmstate_to_list(ARMCPU *cpu)
425 {
426     CPUState *cs = CPU(cpu);
427     int i;
428     bool ok = true;
429 
430     for (i = 0; i < cpu->cpreg_array_len; i++) {
431         struct kvm_one_reg r;
432         uint64_t regidx = cpu->cpreg_indexes[i];
433         uint32_t v32;
434         int ret;
435 
436         r.id = regidx;
437 
438         switch (regidx & KVM_REG_SIZE_MASK) {
439         case KVM_REG_SIZE_U32:
440             r.addr = (uintptr_t)&v32;
441             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
442             if (!ret) {
443                 cpu->cpreg_values[i] = v32;
444             }
445             break;
446         case KVM_REG_SIZE_U64:
447             r.addr = (uintptr_t)(cpu->cpreg_values + i);
448             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
449             break;
450         default:
451             abort();
452         }
453         if (ret) {
454             ok = false;
455         }
456     }
457     return ok;
458 }
459 
460 bool write_list_to_kvmstate(ARMCPU *cpu, int level)
461 {
462     CPUState *cs = CPU(cpu);
463     int i;
464     bool ok = true;
465 
466     for (i = 0; i < cpu->cpreg_array_len; i++) {
467         struct kvm_one_reg r;
468         uint64_t regidx = cpu->cpreg_indexes[i];
469         uint32_t v32;
470         int ret;
471 
472         if (kvm_arm_cpreg_level(regidx) > level) {
473             continue;
474         }
475 
476         r.id = regidx;
477         switch (regidx & KVM_REG_SIZE_MASK) {
478         case KVM_REG_SIZE_U32:
479             v32 = cpu->cpreg_values[i];
480             r.addr = (uintptr_t)&v32;
481             break;
482         case KVM_REG_SIZE_U64:
483             r.addr = (uintptr_t)(cpu->cpreg_values + i);
484             break;
485         default:
486             abort();
487         }
488         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
489         if (ret) {
490             /* We might fail for "unknown register" and also for
491              * "you tried to set a register which is constant with
492              * a different value from what it actually contains".
493              */
494             ok = false;
495         }
496     }
497     return ok;
498 }
499 
500 void kvm_arm_reset_vcpu(ARMCPU *cpu)
501 {
502     int ret;
503 
504     /* Re-init VCPU so that all registers are set to
505      * their respective reset values.
506      */
507     ret = kvm_arm_vcpu_init(CPU(cpu));
508     if (ret < 0) {
509         fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
510         abort();
511     }
512     if (!write_kvmstate_to_list(cpu)) {
513         fprintf(stderr, "write_kvmstate_to_list failed\n");
514         abort();
515     }
516     /*
517      * Sync the reset values also into the CPUState. This is necessary
518      * because the next thing we do will be a kvm_arch_put_registers()
519      * which will update the list values from the CPUState before copying
520      * the list values back to KVM. It's OK to ignore failure returns here
521      * for the same reason we do so in kvm_arch_get_registers().
522      */
523     write_list_to_cpustate(cpu);
524 }
525 
526 /*
527  * Update KVM's MP_STATE based on what QEMU thinks it is
528  */
529 int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
530 {
531     if (cap_has_mp_state) {
532         struct kvm_mp_state mp_state = {
533             .mp_state = (cpu->power_state == PSCI_OFF) ?
534             KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
535         };
536         int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
537         if (ret) {
538             fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n",
539                     __func__, ret, strerror(-ret));
540             return -1;
541         }
542     }
543 
544     return 0;
545 }
546 
547 /*
548  * Sync the KVM MP_STATE into QEMU
549  */
550 int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
551 {
552     if (cap_has_mp_state) {
553         struct kvm_mp_state mp_state;
554         int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
555         if (ret) {
556             fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n",
557                     __func__, ret, strerror(-ret));
558             abort();
559         }
560         cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
561             PSCI_OFF : PSCI_ON;
562     }
563 
564     return 0;
565 }
566 
567 int kvm_put_vcpu_events(ARMCPU *cpu)
568 {
569     CPUARMState *env = &cpu->env;
570     struct kvm_vcpu_events events;
571     int ret;
572 
573     if (!kvm_has_vcpu_events()) {
574         return 0;
575     }
576 
577     memset(&events, 0, sizeof(events));
578     events.exception.serror_pending = env->serror.pending;
579 
580     /* Inject SError to guest with specified syndrome if host kernel
581      * supports it, otherwise inject SError without syndrome.
582      */
583     if (cap_has_inject_serror_esr) {
584         events.exception.serror_has_esr = env->serror.has_esr;
585         events.exception.serror_esr = env->serror.esr;
586     }
587 
588     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
589     if (ret) {
590         error_report("failed to put vcpu events");
591     }
592 
593     return ret;
594 }
595 
596 int kvm_get_vcpu_events(ARMCPU *cpu)
597 {
598     CPUARMState *env = &cpu->env;
599     struct kvm_vcpu_events events;
600     int ret;
601 
602     if (!kvm_has_vcpu_events()) {
603         return 0;
604     }
605 
606     memset(&events, 0, sizeof(events));
607     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
608     if (ret) {
609         error_report("failed to get vcpu events");
610         return ret;
611     }
612 
613     env->serror.pending = events.exception.serror_pending;
614     env->serror.has_esr = events.exception.serror_has_esr;
615     env->serror.esr = events.exception.serror_esr;
616 
617     return 0;
618 }
619 
620 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
621 {
622 }
623 
624 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
625 {
626     ARMCPU *cpu;
627     uint32_t switched_level;
628 
629     if (kvm_irqchip_in_kernel()) {
630         /*
631          * We only need to sync timer states with user-space interrupt
632          * controllers, so return early and save cycles if we don't.
633          */
634         return MEMTXATTRS_UNSPECIFIED;
635     }
636 
637     cpu = ARM_CPU(cs);
638 
639     /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
640     if (run->s.regs.device_irq_level != cpu->device_irq_level) {
641         switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
642 
643         qemu_mutex_lock_iothread();
644 
645         if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
646             qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
647                          !!(run->s.regs.device_irq_level &
648                             KVM_ARM_DEV_EL1_VTIMER));
649             switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
650         }
651 
652         if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
653             qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
654                          !!(run->s.regs.device_irq_level &
655                             KVM_ARM_DEV_EL1_PTIMER));
656             switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
657         }
658 
659         if (switched_level & KVM_ARM_DEV_PMU) {
660             qemu_set_irq(cpu->pmu_interrupt,
661                          !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
662             switched_level &= ~KVM_ARM_DEV_PMU;
663         }
664 
665         if (switched_level) {
666             qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
667                           __func__, switched_level);
668         }
669 
670         /* We also mark unknown levels as processed to not waste cycles */
671         cpu->device_irq_level = run->s.regs.device_irq_level;
672         qemu_mutex_unlock_iothread();
673     }
674 
675     return MEMTXATTRS_UNSPECIFIED;
676 }
677 
678 
679 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
680 {
681     int ret = 0;
682 
683     switch (run->exit_reason) {
684     case KVM_EXIT_DEBUG:
685         if (kvm_arm_handle_debug(cs, &run->debug.arch)) {
686             ret = EXCP_DEBUG;
687         } /* otherwise return to guest */
688         break;
689     default:
690         qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
691                       __func__, run->exit_reason);
692         break;
693     }
694     return ret;
695 }
696 
697 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
698 {
699     return true;
700 }
701 
702 int kvm_arch_process_async_events(CPUState *cs)
703 {
704     return 0;
705 }
706 
707 /* The #ifdef protections are until 32bit headers are imported and can
708  * be removed once both 32 and 64 bit reach feature parity.
709  */
710 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
711 {
712 #ifdef KVM_GUESTDBG_USE_SW_BP
713     if (kvm_sw_breakpoints_active(cs)) {
714         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
715     }
716 #endif
717 #ifdef KVM_GUESTDBG_USE_HW
718     if (kvm_arm_hw_debug_active(cs)) {
719         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
720         kvm_arm_copy_hw_debug_data(&dbg->arch);
721     }
722 #endif
723 }
724 
725 void kvm_arch_init_irq_routing(KVMState *s)
726 {
727 }
728 
729 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
730 {
731      if (machine_kernel_irqchip_split(ms)) {
732          perror("-machine kernel_irqchip=split is not supported on ARM.");
733          exit(1);
734     }
735 
736     /* If we can create the VGIC using the newer device control API, we
737      * let the device do this when it initializes itself, otherwise we
738      * fall back to the old API */
739     return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
740 }
741 
742 int kvm_arm_vgic_probe(void)
743 {
744     if (kvm_create_device(kvm_state,
745                           KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
746         return 3;
747     } else if (kvm_create_device(kvm_state,
748                                  KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
749         return 2;
750     } else {
751         return 0;
752     }
753 }
754 
755 int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level)
756 {
757     int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq;
758     int cpu_idx1 = cpu % 256;
759     int cpu_idx2 = cpu / 256;
760 
761     kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) |
762                (cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT);
763 
764     return kvm_set_irq(kvm_state, kvm_irq, !!level);
765 }
766 
767 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
768                              uint64_t address, uint32_t data, PCIDevice *dev)
769 {
770     AddressSpace *as = pci_device_iommu_address_space(dev);
771     hwaddr xlat, len, doorbell_gpa;
772     MemoryRegionSection mrs;
773     MemoryRegion *mr;
774     int ret = 1;
775 
776     if (as == &address_space_memory) {
777         return 0;
778     }
779 
780     /* MSI doorbell address is translated by an IOMMU */
781 
782     rcu_read_lock();
783     mr = address_space_translate(as, address, &xlat, &len, true,
784                                  MEMTXATTRS_UNSPECIFIED);
785     if (!mr) {
786         goto unlock;
787     }
788     mrs = memory_region_find(mr, xlat, 1);
789     if (!mrs.mr) {
790         goto unlock;
791     }
792 
793     doorbell_gpa = mrs.offset_within_address_space;
794     memory_region_unref(mrs.mr);
795 
796     route->u.msi.address_lo = doorbell_gpa;
797     route->u.msi.address_hi = doorbell_gpa >> 32;
798 
799     trace_kvm_arm_fixup_msi_route(address, doorbell_gpa);
800 
801     ret = 0;
802 
803 unlock:
804     rcu_read_unlock();
805     return ret;
806 }
807 
808 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
809                                 int vector, PCIDevice *dev)
810 {
811     return 0;
812 }
813 
814 int kvm_arch_release_virq_post(int virq)
815 {
816     return 0;
817 }
818 
819 int kvm_arch_msi_data_to_gsi(uint32_t data)
820 {
821     return (data - 32) & 0xffff;
822 }
823