1 /* 2 * ARM implementation of KVM hooks 3 * 4 * Copyright Christoffer Dall 2009-2010 5 * 6 * This work is licensed under the terms of the GNU GPL, version 2 or later. 7 * See the COPYING file in the top-level directory. 8 * 9 */ 10 11 #include "qemu/osdep.h" 12 #include <sys/ioctl.h> 13 14 #include <linux/kvm.h> 15 16 #include "qemu-common.h" 17 #include "qemu/timer.h" 18 #include "qemu/error-report.h" 19 #include "qemu/main-loop.h" 20 #include "sysemu/sysemu.h" 21 #include "sysemu/kvm.h" 22 #include "sysemu/kvm_int.h" 23 #include "kvm_arm.h" 24 #include "cpu.h" 25 #include "trace.h" 26 #include "internals.h" 27 #include "hw/pci/pci.h" 28 #include "exec/memattrs.h" 29 #include "exec/address-spaces.h" 30 #include "hw/boards.h" 31 #include "hw/irq.h" 32 #include "qemu/log.h" 33 34 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 35 KVM_CAP_LAST_INFO 36 }; 37 38 static bool cap_has_mp_state; 39 static bool cap_has_inject_serror_esr; 40 41 static ARMHostCPUFeatures arm_host_cpu_features; 42 43 int kvm_arm_vcpu_init(CPUState *cs) 44 { 45 ARMCPU *cpu = ARM_CPU(cs); 46 struct kvm_vcpu_init init; 47 48 init.target = cpu->kvm_target; 49 memcpy(init.features, cpu->kvm_init_features, sizeof(init.features)); 50 51 return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init); 52 } 53 54 void kvm_arm_init_serror_injection(CPUState *cs) 55 { 56 cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state, 57 KVM_CAP_ARM_INJECT_SERROR_ESR); 58 } 59 60 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try, 61 int *fdarray, 62 struct kvm_vcpu_init *init) 63 { 64 int ret, kvmfd = -1, vmfd = -1, cpufd = -1; 65 66 kvmfd = qemu_open("/dev/kvm", O_RDWR); 67 if (kvmfd < 0) { 68 goto err; 69 } 70 vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0); 71 if (vmfd < 0) { 72 goto err; 73 } 74 cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0); 75 if (cpufd < 0) { 76 goto err; 77 } 78 79 if (!init) { 80 /* Caller doesn't want the VCPU to be initialized, so skip it */ 81 goto finish; 82 } 83 84 ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, init); 85 if (ret >= 0) { 86 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init); 87 if (ret < 0) { 88 goto err; 89 } 90 } else if (cpus_to_try) { 91 /* Old kernel which doesn't know about the 92 * PREFERRED_TARGET ioctl: we know it will only support 93 * creating one kind of guest CPU which is its preferred 94 * CPU type. 95 */ 96 while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) { 97 init->target = *cpus_to_try++; 98 memset(init->features, 0, sizeof(init->features)); 99 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init); 100 if (ret >= 0) { 101 break; 102 } 103 } 104 if (ret < 0) { 105 goto err; 106 } 107 } else { 108 /* Treat a NULL cpus_to_try argument the same as an empty 109 * list, which means we will fail the call since this must 110 * be an old kernel which doesn't support PREFERRED_TARGET. 111 */ 112 goto err; 113 } 114 115 finish: 116 fdarray[0] = kvmfd; 117 fdarray[1] = vmfd; 118 fdarray[2] = cpufd; 119 120 return true; 121 122 err: 123 if (cpufd >= 0) { 124 close(cpufd); 125 } 126 if (vmfd >= 0) { 127 close(vmfd); 128 } 129 if (kvmfd >= 0) { 130 close(kvmfd); 131 } 132 133 return false; 134 } 135 136 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray) 137 { 138 int i; 139 140 for (i = 2; i >= 0; i--) { 141 close(fdarray[i]); 142 } 143 } 144 145 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu) 146 { 147 CPUARMState *env = &cpu->env; 148 149 if (!arm_host_cpu_features.dtb_compatible) { 150 if (!kvm_enabled() || 151 !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) { 152 /* We can't report this error yet, so flag that we need to 153 * in arm_cpu_realizefn(). 154 */ 155 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE; 156 cpu->host_cpu_probe_failed = true; 157 return; 158 } 159 } 160 161 cpu->kvm_target = arm_host_cpu_features.target; 162 cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible; 163 cpu->isar = arm_host_cpu_features.isar; 164 env->features = arm_host_cpu_features.features; 165 } 166 167 bool kvm_arm_pmu_supported(CPUState *cpu) 168 { 169 KVMState *s = KVM_STATE(current_machine->accelerator); 170 171 return kvm_check_extension(s, KVM_CAP_ARM_PMU_V3); 172 } 173 174 int kvm_arm_get_max_vm_ipa_size(MachineState *ms) 175 { 176 KVMState *s = KVM_STATE(ms->accelerator); 177 int ret; 178 179 ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE); 180 return ret > 0 ? ret : 40; 181 } 182 183 int kvm_arch_init(MachineState *ms, KVMState *s) 184 { 185 int ret = 0; 186 /* For ARM interrupt delivery is always asynchronous, 187 * whether we are using an in-kernel VGIC or not. 188 */ 189 kvm_async_interrupts_allowed = true; 190 191 /* 192 * PSCI wakes up secondary cores, so we always need to 193 * have vCPUs waiting in kernel space 194 */ 195 kvm_halt_in_kernel_allowed = true; 196 197 cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE); 198 199 if (ms->smp.cpus > 256 && 200 !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) { 201 error_report("Using more than 256 vcpus requires a host kernel " 202 "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2"); 203 ret = -EINVAL; 204 } 205 206 return ret; 207 } 208 209 unsigned long kvm_arch_vcpu_id(CPUState *cpu) 210 { 211 return cpu->cpu_index; 212 } 213 214 /* We track all the KVM devices which need their memory addresses 215 * passing to the kernel in a list of these structures. 216 * When board init is complete we run through the list and 217 * tell the kernel the base addresses of the memory regions. 218 * We use a MemoryListener to track mapping and unmapping of 219 * the regions during board creation, so the board models don't 220 * need to do anything special for the KVM case. 221 * 222 * Sometimes the address must be OR'ed with some other fields 223 * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION). 224 * @kda_addr_ormask aims at storing the value of those fields. 225 */ 226 typedef struct KVMDevice { 227 struct kvm_arm_device_addr kda; 228 struct kvm_device_attr kdattr; 229 uint64_t kda_addr_ormask; 230 MemoryRegion *mr; 231 QSLIST_ENTRY(KVMDevice) entries; 232 int dev_fd; 233 } KVMDevice; 234 235 static QSLIST_HEAD(, KVMDevice) kvm_devices_head; 236 237 static void kvm_arm_devlistener_add(MemoryListener *listener, 238 MemoryRegionSection *section) 239 { 240 KVMDevice *kd; 241 242 QSLIST_FOREACH(kd, &kvm_devices_head, entries) { 243 if (section->mr == kd->mr) { 244 kd->kda.addr = section->offset_within_address_space; 245 } 246 } 247 } 248 249 static void kvm_arm_devlistener_del(MemoryListener *listener, 250 MemoryRegionSection *section) 251 { 252 KVMDevice *kd; 253 254 QSLIST_FOREACH(kd, &kvm_devices_head, entries) { 255 if (section->mr == kd->mr) { 256 kd->kda.addr = -1; 257 } 258 } 259 } 260 261 static MemoryListener devlistener = { 262 .region_add = kvm_arm_devlistener_add, 263 .region_del = kvm_arm_devlistener_del, 264 }; 265 266 static void kvm_arm_set_device_addr(KVMDevice *kd) 267 { 268 struct kvm_device_attr *attr = &kd->kdattr; 269 int ret; 270 271 /* If the device control API is available and we have a device fd on the 272 * KVMDevice struct, let's use the newer API 273 */ 274 if (kd->dev_fd >= 0) { 275 uint64_t addr = kd->kda.addr; 276 277 addr |= kd->kda_addr_ormask; 278 attr->addr = (uintptr_t)&addr; 279 ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr); 280 } else { 281 ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda); 282 } 283 284 if (ret < 0) { 285 fprintf(stderr, "Failed to set device address: %s\n", 286 strerror(-ret)); 287 abort(); 288 } 289 } 290 291 static void kvm_arm_machine_init_done(Notifier *notifier, void *data) 292 { 293 KVMDevice *kd, *tkd; 294 295 QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) { 296 if (kd->kda.addr != -1) { 297 kvm_arm_set_device_addr(kd); 298 } 299 memory_region_unref(kd->mr); 300 QSLIST_REMOVE_HEAD(&kvm_devices_head, entries); 301 g_free(kd); 302 } 303 memory_listener_unregister(&devlistener); 304 } 305 306 static Notifier notify = { 307 .notify = kvm_arm_machine_init_done, 308 }; 309 310 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group, 311 uint64_t attr, int dev_fd, uint64_t addr_ormask) 312 { 313 KVMDevice *kd; 314 315 if (!kvm_irqchip_in_kernel()) { 316 return; 317 } 318 319 if (QSLIST_EMPTY(&kvm_devices_head)) { 320 memory_listener_register(&devlistener, &address_space_memory); 321 qemu_add_machine_init_done_notifier(¬ify); 322 } 323 kd = g_new0(KVMDevice, 1); 324 kd->mr = mr; 325 kd->kda.id = devid; 326 kd->kda.addr = -1; 327 kd->kdattr.flags = 0; 328 kd->kdattr.group = group; 329 kd->kdattr.attr = attr; 330 kd->dev_fd = dev_fd; 331 kd->kda_addr_ormask = addr_ormask; 332 QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries); 333 memory_region_ref(kd->mr); 334 } 335 336 static int compare_u64(const void *a, const void *b) 337 { 338 if (*(uint64_t *)a > *(uint64_t *)b) { 339 return 1; 340 } 341 if (*(uint64_t *)a < *(uint64_t *)b) { 342 return -1; 343 } 344 return 0; 345 } 346 347 /* Initialize the ARMCPU cpreg list according to the kernel's 348 * definition of what CPU registers it knows about (and throw away 349 * the previous TCG-created cpreg list). 350 */ 351 int kvm_arm_init_cpreg_list(ARMCPU *cpu) 352 { 353 struct kvm_reg_list rl; 354 struct kvm_reg_list *rlp; 355 int i, ret, arraylen; 356 CPUState *cs = CPU(cpu); 357 358 rl.n = 0; 359 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl); 360 if (ret != -E2BIG) { 361 return ret; 362 } 363 rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t)); 364 rlp->n = rl.n; 365 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp); 366 if (ret) { 367 goto out; 368 } 369 /* Sort the list we get back from the kernel, since cpreg_tuples 370 * must be in strictly ascending order. 371 */ 372 qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64); 373 374 for (i = 0, arraylen = 0; i < rlp->n; i++) { 375 if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) { 376 continue; 377 } 378 switch (rlp->reg[i] & KVM_REG_SIZE_MASK) { 379 case KVM_REG_SIZE_U32: 380 case KVM_REG_SIZE_U64: 381 break; 382 default: 383 fprintf(stderr, "Can't handle size of register in kernel list\n"); 384 ret = -EINVAL; 385 goto out; 386 } 387 388 arraylen++; 389 } 390 391 cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen); 392 cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen); 393 cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes, 394 arraylen); 395 cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values, 396 arraylen); 397 cpu->cpreg_array_len = arraylen; 398 cpu->cpreg_vmstate_array_len = arraylen; 399 400 for (i = 0, arraylen = 0; i < rlp->n; i++) { 401 uint64_t regidx = rlp->reg[i]; 402 if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) { 403 continue; 404 } 405 cpu->cpreg_indexes[arraylen] = regidx; 406 arraylen++; 407 } 408 assert(cpu->cpreg_array_len == arraylen); 409 410 if (!write_kvmstate_to_list(cpu)) { 411 /* Shouldn't happen unless kernel is inconsistent about 412 * what registers exist. 413 */ 414 fprintf(stderr, "Initial read of kernel register state failed\n"); 415 ret = -EINVAL; 416 goto out; 417 } 418 419 out: 420 g_free(rlp); 421 return ret; 422 } 423 424 bool write_kvmstate_to_list(ARMCPU *cpu) 425 { 426 CPUState *cs = CPU(cpu); 427 int i; 428 bool ok = true; 429 430 for (i = 0; i < cpu->cpreg_array_len; i++) { 431 struct kvm_one_reg r; 432 uint64_t regidx = cpu->cpreg_indexes[i]; 433 uint32_t v32; 434 int ret; 435 436 r.id = regidx; 437 438 switch (regidx & KVM_REG_SIZE_MASK) { 439 case KVM_REG_SIZE_U32: 440 r.addr = (uintptr_t)&v32; 441 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); 442 if (!ret) { 443 cpu->cpreg_values[i] = v32; 444 } 445 break; 446 case KVM_REG_SIZE_U64: 447 r.addr = (uintptr_t)(cpu->cpreg_values + i); 448 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); 449 break; 450 default: 451 abort(); 452 } 453 if (ret) { 454 ok = false; 455 } 456 } 457 return ok; 458 } 459 460 bool write_list_to_kvmstate(ARMCPU *cpu, int level) 461 { 462 CPUState *cs = CPU(cpu); 463 int i; 464 bool ok = true; 465 466 for (i = 0; i < cpu->cpreg_array_len; i++) { 467 struct kvm_one_reg r; 468 uint64_t regidx = cpu->cpreg_indexes[i]; 469 uint32_t v32; 470 int ret; 471 472 if (kvm_arm_cpreg_level(regidx) > level) { 473 continue; 474 } 475 476 r.id = regidx; 477 switch (regidx & KVM_REG_SIZE_MASK) { 478 case KVM_REG_SIZE_U32: 479 v32 = cpu->cpreg_values[i]; 480 r.addr = (uintptr_t)&v32; 481 break; 482 case KVM_REG_SIZE_U64: 483 r.addr = (uintptr_t)(cpu->cpreg_values + i); 484 break; 485 default: 486 abort(); 487 } 488 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); 489 if (ret) { 490 /* We might fail for "unknown register" and also for 491 * "you tried to set a register which is constant with 492 * a different value from what it actually contains". 493 */ 494 ok = false; 495 } 496 } 497 return ok; 498 } 499 500 void kvm_arm_reset_vcpu(ARMCPU *cpu) 501 { 502 int ret; 503 504 /* Re-init VCPU so that all registers are set to 505 * their respective reset values. 506 */ 507 ret = kvm_arm_vcpu_init(CPU(cpu)); 508 if (ret < 0) { 509 fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret)); 510 abort(); 511 } 512 if (!write_kvmstate_to_list(cpu)) { 513 fprintf(stderr, "write_kvmstate_to_list failed\n"); 514 abort(); 515 } 516 /* 517 * Sync the reset values also into the CPUState. This is necessary 518 * because the next thing we do will be a kvm_arch_put_registers() 519 * which will update the list values from the CPUState before copying 520 * the list values back to KVM. It's OK to ignore failure returns here 521 * for the same reason we do so in kvm_arch_get_registers(). 522 */ 523 write_list_to_cpustate(cpu); 524 } 525 526 /* 527 * Update KVM's MP_STATE based on what QEMU thinks it is 528 */ 529 int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu) 530 { 531 if (cap_has_mp_state) { 532 struct kvm_mp_state mp_state = { 533 .mp_state = (cpu->power_state == PSCI_OFF) ? 534 KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE 535 }; 536 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); 537 if (ret) { 538 fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n", 539 __func__, ret, strerror(-ret)); 540 return -1; 541 } 542 } 543 544 return 0; 545 } 546 547 /* 548 * Sync the KVM MP_STATE into QEMU 549 */ 550 int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu) 551 { 552 if (cap_has_mp_state) { 553 struct kvm_mp_state mp_state; 554 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state); 555 if (ret) { 556 fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n", 557 __func__, ret, strerror(-ret)); 558 abort(); 559 } 560 cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ? 561 PSCI_OFF : PSCI_ON; 562 } 563 564 return 0; 565 } 566 567 int kvm_put_vcpu_events(ARMCPU *cpu) 568 { 569 CPUARMState *env = &cpu->env; 570 struct kvm_vcpu_events events; 571 int ret; 572 573 if (!kvm_has_vcpu_events()) { 574 return 0; 575 } 576 577 memset(&events, 0, sizeof(events)); 578 events.exception.serror_pending = env->serror.pending; 579 580 /* Inject SError to guest with specified syndrome if host kernel 581 * supports it, otherwise inject SError without syndrome. 582 */ 583 if (cap_has_inject_serror_esr) { 584 events.exception.serror_has_esr = env->serror.has_esr; 585 events.exception.serror_esr = env->serror.esr; 586 } 587 588 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); 589 if (ret) { 590 error_report("failed to put vcpu events"); 591 } 592 593 return ret; 594 } 595 596 int kvm_get_vcpu_events(ARMCPU *cpu) 597 { 598 CPUARMState *env = &cpu->env; 599 struct kvm_vcpu_events events; 600 int ret; 601 602 if (!kvm_has_vcpu_events()) { 603 return 0; 604 } 605 606 memset(&events, 0, sizeof(events)); 607 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); 608 if (ret) { 609 error_report("failed to get vcpu events"); 610 return ret; 611 } 612 613 env->serror.pending = events.exception.serror_pending; 614 env->serror.has_esr = events.exception.serror_has_esr; 615 env->serror.esr = events.exception.serror_esr; 616 617 return 0; 618 } 619 620 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run) 621 { 622 } 623 624 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) 625 { 626 ARMCPU *cpu; 627 uint32_t switched_level; 628 629 if (kvm_irqchip_in_kernel()) { 630 /* 631 * We only need to sync timer states with user-space interrupt 632 * controllers, so return early and save cycles if we don't. 633 */ 634 return MEMTXATTRS_UNSPECIFIED; 635 } 636 637 cpu = ARM_CPU(cs); 638 639 /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */ 640 if (run->s.regs.device_irq_level != cpu->device_irq_level) { 641 switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level; 642 643 qemu_mutex_lock_iothread(); 644 645 if (switched_level & KVM_ARM_DEV_EL1_VTIMER) { 646 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT], 647 !!(run->s.regs.device_irq_level & 648 KVM_ARM_DEV_EL1_VTIMER)); 649 switched_level &= ~KVM_ARM_DEV_EL1_VTIMER; 650 } 651 652 if (switched_level & KVM_ARM_DEV_EL1_PTIMER) { 653 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS], 654 !!(run->s.regs.device_irq_level & 655 KVM_ARM_DEV_EL1_PTIMER)); 656 switched_level &= ~KVM_ARM_DEV_EL1_PTIMER; 657 } 658 659 if (switched_level & KVM_ARM_DEV_PMU) { 660 qemu_set_irq(cpu->pmu_interrupt, 661 !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU)); 662 switched_level &= ~KVM_ARM_DEV_PMU; 663 } 664 665 if (switched_level) { 666 qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n", 667 __func__, switched_level); 668 } 669 670 /* We also mark unknown levels as processed to not waste cycles */ 671 cpu->device_irq_level = run->s.regs.device_irq_level; 672 qemu_mutex_unlock_iothread(); 673 } 674 675 return MEMTXATTRS_UNSPECIFIED; 676 } 677 678 679 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 680 { 681 int ret = 0; 682 683 switch (run->exit_reason) { 684 case KVM_EXIT_DEBUG: 685 if (kvm_arm_handle_debug(cs, &run->debug.arch)) { 686 ret = EXCP_DEBUG; 687 } /* otherwise return to guest */ 688 break; 689 default: 690 qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n", 691 __func__, run->exit_reason); 692 break; 693 } 694 return ret; 695 } 696 697 bool kvm_arch_stop_on_emulation_error(CPUState *cs) 698 { 699 return true; 700 } 701 702 int kvm_arch_process_async_events(CPUState *cs) 703 { 704 return 0; 705 } 706 707 /* The #ifdef protections are until 32bit headers are imported and can 708 * be removed once both 32 and 64 bit reach feature parity. 709 */ 710 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg) 711 { 712 #ifdef KVM_GUESTDBG_USE_SW_BP 713 if (kvm_sw_breakpoints_active(cs)) { 714 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; 715 } 716 #endif 717 #ifdef KVM_GUESTDBG_USE_HW 718 if (kvm_arm_hw_debug_active(cs)) { 719 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW; 720 kvm_arm_copy_hw_debug_data(&dbg->arch); 721 } 722 #endif 723 } 724 725 void kvm_arch_init_irq_routing(KVMState *s) 726 { 727 } 728 729 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s) 730 { 731 if (machine_kernel_irqchip_split(ms)) { 732 perror("-machine kernel_irqchip=split is not supported on ARM."); 733 exit(1); 734 } 735 736 /* If we can create the VGIC using the newer device control API, we 737 * let the device do this when it initializes itself, otherwise we 738 * fall back to the old API */ 739 return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL); 740 } 741 742 int kvm_arm_vgic_probe(void) 743 { 744 if (kvm_create_device(kvm_state, 745 KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) { 746 return 3; 747 } else if (kvm_create_device(kvm_state, 748 KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) { 749 return 2; 750 } else { 751 return 0; 752 } 753 } 754 755 int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level) 756 { 757 int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq; 758 int cpu_idx1 = cpu % 256; 759 int cpu_idx2 = cpu / 256; 760 761 kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) | 762 (cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT); 763 764 return kvm_set_irq(kvm_state, kvm_irq, !!level); 765 } 766 767 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 768 uint64_t address, uint32_t data, PCIDevice *dev) 769 { 770 AddressSpace *as = pci_device_iommu_address_space(dev); 771 hwaddr xlat, len, doorbell_gpa; 772 MemoryRegionSection mrs; 773 MemoryRegion *mr; 774 int ret = 1; 775 776 if (as == &address_space_memory) { 777 return 0; 778 } 779 780 /* MSI doorbell address is translated by an IOMMU */ 781 782 rcu_read_lock(); 783 mr = address_space_translate(as, address, &xlat, &len, true, 784 MEMTXATTRS_UNSPECIFIED); 785 if (!mr) { 786 goto unlock; 787 } 788 mrs = memory_region_find(mr, xlat, 1); 789 if (!mrs.mr) { 790 goto unlock; 791 } 792 793 doorbell_gpa = mrs.offset_within_address_space; 794 memory_region_unref(mrs.mr); 795 796 route->u.msi.address_lo = doorbell_gpa; 797 route->u.msi.address_hi = doorbell_gpa >> 32; 798 799 trace_kvm_arm_fixup_msi_route(address, doorbell_gpa); 800 801 ret = 0; 802 803 unlock: 804 rcu_read_unlock(); 805 return ret; 806 } 807 808 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 809 int vector, PCIDevice *dev) 810 { 811 return 0; 812 } 813 814 int kvm_arch_release_virq_post(int virq) 815 { 816 return 0; 817 } 818 819 int kvm_arch_msi_data_to_gsi(uint32_t data) 820 { 821 return (data - 32) & 0xffff; 822 } 823