1 /* 2 * ARM implementation of KVM hooks 3 * 4 * Copyright Christoffer Dall 2009-2010 5 * 6 * This work is licensed under the terms of the GNU GPL, version 2 or later. 7 * See the COPYING file in the top-level directory. 8 * 9 */ 10 11 #include "qemu/osdep.h" 12 #include <sys/ioctl.h> 13 14 #include <linux/kvm.h> 15 16 #include "qemu-common.h" 17 #include "qemu/timer.h" 18 #include "qemu/error-report.h" 19 #include "sysemu/sysemu.h" 20 #include "sysemu/kvm.h" 21 #include "kvm_arm.h" 22 #include "cpu.h" 23 #include "trace.h" 24 #include "internals.h" 25 #include "hw/arm/arm.h" 26 #include "hw/pci/pci.h" 27 #include "exec/memattrs.h" 28 #include "exec/address-spaces.h" 29 #include "hw/boards.h" 30 #include "qemu/log.h" 31 32 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 33 KVM_CAP_LAST_INFO 34 }; 35 36 static bool cap_has_mp_state; 37 static bool cap_has_inject_serror_esr; 38 39 static ARMHostCPUFeatures arm_host_cpu_features; 40 41 int kvm_arm_vcpu_init(CPUState *cs) 42 { 43 ARMCPU *cpu = ARM_CPU(cs); 44 struct kvm_vcpu_init init; 45 46 init.target = cpu->kvm_target; 47 memcpy(init.features, cpu->kvm_init_features, sizeof(init.features)); 48 49 return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init); 50 } 51 52 void kvm_arm_init_serror_injection(CPUState *cs) 53 { 54 cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state, 55 KVM_CAP_ARM_INJECT_SERROR_ESR); 56 } 57 58 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try, 59 int *fdarray, 60 struct kvm_vcpu_init *init) 61 { 62 int ret, kvmfd = -1, vmfd = -1, cpufd = -1; 63 64 kvmfd = qemu_open("/dev/kvm", O_RDWR); 65 if (kvmfd < 0) { 66 goto err; 67 } 68 vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0); 69 if (vmfd < 0) { 70 goto err; 71 } 72 cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0); 73 if (cpufd < 0) { 74 goto err; 75 } 76 77 if (!init) { 78 /* Caller doesn't want the VCPU to be initialized, so skip it */ 79 goto finish; 80 } 81 82 ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, init); 83 if (ret >= 0) { 84 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init); 85 if (ret < 0) { 86 goto err; 87 } 88 } else if (cpus_to_try) { 89 /* Old kernel which doesn't know about the 90 * PREFERRED_TARGET ioctl: we know it will only support 91 * creating one kind of guest CPU which is its preferred 92 * CPU type. 93 */ 94 while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) { 95 init->target = *cpus_to_try++; 96 memset(init->features, 0, sizeof(init->features)); 97 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init); 98 if (ret >= 0) { 99 break; 100 } 101 } 102 if (ret < 0) { 103 goto err; 104 } 105 } else { 106 /* Treat a NULL cpus_to_try argument the same as an empty 107 * list, which means we will fail the call since this must 108 * be an old kernel which doesn't support PREFERRED_TARGET. 109 */ 110 goto err; 111 } 112 113 finish: 114 fdarray[0] = kvmfd; 115 fdarray[1] = vmfd; 116 fdarray[2] = cpufd; 117 118 return true; 119 120 err: 121 if (cpufd >= 0) { 122 close(cpufd); 123 } 124 if (vmfd >= 0) { 125 close(vmfd); 126 } 127 if (kvmfd >= 0) { 128 close(kvmfd); 129 } 130 131 return false; 132 } 133 134 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray) 135 { 136 int i; 137 138 for (i = 2; i >= 0; i--) { 139 close(fdarray[i]); 140 } 141 } 142 143 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu) 144 { 145 CPUARMState *env = &cpu->env; 146 147 if (!arm_host_cpu_features.dtb_compatible) { 148 if (!kvm_enabled() || 149 !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) { 150 /* We can't report this error yet, so flag that we need to 151 * in arm_cpu_realizefn(). 152 */ 153 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE; 154 cpu->host_cpu_probe_failed = true; 155 return; 156 } 157 } 158 159 cpu->kvm_target = arm_host_cpu_features.target; 160 cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible; 161 env->features = arm_host_cpu_features.features; 162 } 163 164 int kvm_arch_init(MachineState *ms, KVMState *s) 165 { 166 /* For ARM interrupt delivery is always asynchronous, 167 * whether we are using an in-kernel VGIC or not. 168 */ 169 kvm_async_interrupts_allowed = true; 170 171 /* 172 * PSCI wakes up secondary cores, so we always need to 173 * have vCPUs waiting in kernel space 174 */ 175 kvm_halt_in_kernel_allowed = true; 176 177 cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE); 178 179 return 0; 180 } 181 182 unsigned long kvm_arch_vcpu_id(CPUState *cpu) 183 { 184 return cpu->cpu_index; 185 } 186 187 /* We track all the KVM devices which need their memory addresses 188 * passing to the kernel in a list of these structures. 189 * When board init is complete we run through the list and 190 * tell the kernel the base addresses of the memory regions. 191 * We use a MemoryListener to track mapping and unmapping of 192 * the regions during board creation, so the board models don't 193 * need to do anything special for the KVM case. 194 * 195 * Sometimes the address must be OR'ed with some other fields 196 * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION). 197 * @kda_addr_ormask aims at storing the value of those fields. 198 */ 199 typedef struct KVMDevice { 200 struct kvm_arm_device_addr kda; 201 struct kvm_device_attr kdattr; 202 uint64_t kda_addr_ormask; 203 MemoryRegion *mr; 204 QSLIST_ENTRY(KVMDevice) entries; 205 int dev_fd; 206 } KVMDevice; 207 208 static QSLIST_HEAD(kvm_devices_head, KVMDevice) kvm_devices_head; 209 210 static void kvm_arm_devlistener_add(MemoryListener *listener, 211 MemoryRegionSection *section) 212 { 213 KVMDevice *kd; 214 215 QSLIST_FOREACH(kd, &kvm_devices_head, entries) { 216 if (section->mr == kd->mr) { 217 kd->kda.addr = section->offset_within_address_space; 218 } 219 } 220 } 221 222 static void kvm_arm_devlistener_del(MemoryListener *listener, 223 MemoryRegionSection *section) 224 { 225 KVMDevice *kd; 226 227 QSLIST_FOREACH(kd, &kvm_devices_head, entries) { 228 if (section->mr == kd->mr) { 229 kd->kda.addr = -1; 230 } 231 } 232 } 233 234 static MemoryListener devlistener = { 235 .region_add = kvm_arm_devlistener_add, 236 .region_del = kvm_arm_devlistener_del, 237 }; 238 239 static void kvm_arm_set_device_addr(KVMDevice *kd) 240 { 241 struct kvm_device_attr *attr = &kd->kdattr; 242 int ret; 243 244 /* If the device control API is available and we have a device fd on the 245 * KVMDevice struct, let's use the newer API 246 */ 247 if (kd->dev_fd >= 0) { 248 uint64_t addr = kd->kda.addr; 249 250 addr |= kd->kda_addr_ormask; 251 attr->addr = (uintptr_t)&addr; 252 ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr); 253 } else { 254 ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda); 255 } 256 257 if (ret < 0) { 258 fprintf(stderr, "Failed to set device address: %s\n", 259 strerror(-ret)); 260 abort(); 261 } 262 } 263 264 static void kvm_arm_machine_init_done(Notifier *notifier, void *data) 265 { 266 KVMDevice *kd, *tkd; 267 268 QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) { 269 if (kd->kda.addr != -1) { 270 kvm_arm_set_device_addr(kd); 271 } 272 memory_region_unref(kd->mr); 273 QSLIST_REMOVE_HEAD(&kvm_devices_head, entries); 274 g_free(kd); 275 } 276 memory_listener_unregister(&devlistener); 277 } 278 279 static Notifier notify = { 280 .notify = kvm_arm_machine_init_done, 281 }; 282 283 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group, 284 uint64_t attr, int dev_fd, uint64_t addr_ormask) 285 { 286 KVMDevice *kd; 287 288 if (!kvm_irqchip_in_kernel()) { 289 return; 290 } 291 292 if (QSLIST_EMPTY(&kvm_devices_head)) { 293 memory_listener_register(&devlistener, &address_space_memory); 294 qemu_add_machine_init_done_notifier(¬ify); 295 } 296 kd = g_new0(KVMDevice, 1); 297 kd->mr = mr; 298 kd->kda.id = devid; 299 kd->kda.addr = -1; 300 kd->kdattr.flags = 0; 301 kd->kdattr.group = group; 302 kd->kdattr.attr = attr; 303 kd->dev_fd = dev_fd; 304 kd->kda_addr_ormask = addr_ormask; 305 QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries); 306 memory_region_ref(kd->mr); 307 } 308 309 static int compare_u64(const void *a, const void *b) 310 { 311 if (*(uint64_t *)a > *(uint64_t *)b) { 312 return 1; 313 } 314 if (*(uint64_t *)a < *(uint64_t *)b) { 315 return -1; 316 } 317 return 0; 318 } 319 320 /* Initialize the ARMCPU cpreg list according to the kernel's 321 * definition of what CPU registers it knows about (and throw away 322 * the previous TCG-created cpreg list). 323 */ 324 int kvm_arm_init_cpreg_list(ARMCPU *cpu) 325 { 326 struct kvm_reg_list rl; 327 struct kvm_reg_list *rlp; 328 int i, ret, arraylen; 329 CPUState *cs = CPU(cpu); 330 331 rl.n = 0; 332 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl); 333 if (ret != -E2BIG) { 334 return ret; 335 } 336 rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t)); 337 rlp->n = rl.n; 338 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp); 339 if (ret) { 340 goto out; 341 } 342 /* Sort the list we get back from the kernel, since cpreg_tuples 343 * must be in strictly ascending order. 344 */ 345 qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64); 346 347 for (i = 0, arraylen = 0; i < rlp->n; i++) { 348 if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) { 349 continue; 350 } 351 switch (rlp->reg[i] & KVM_REG_SIZE_MASK) { 352 case KVM_REG_SIZE_U32: 353 case KVM_REG_SIZE_U64: 354 break; 355 default: 356 fprintf(stderr, "Can't handle size of register in kernel list\n"); 357 ret = -EINVAL; 358 goto out; 359 } 360 361 arraylen++; 362 } 363 364 cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen); 365 cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen); 366 cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes, 367 arraylen); 368 cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values, 369 arraylen); 370 cpu->cpreg_array_len = arraylen; 371 cpu->cpreg_vmstate_array_len = arraylen; 372 373 for (i = 0, arraylen = 0; i < rlp->n; i++) { 374 uint64_t regidx = rlp->reg[i]; 375 if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) { 376 continue; 377 } 378 cpu->cpreg_indexes[arraylen] = regidx; 379 arraylen++; 380 } 381 assert(cpu->cpreg_array_len == arraylen); 382 383 if (!write_kvmstate_to_list(cpu)) { 384 /* Shouldn't happen unless kernel is inconsistent about 385 * what registers exist. 386 */ 387 fprintf(stderr, "Initial read of kernel register state failed\n"); 388 ret = -EINVAL; 389 goto out; 390 } 391 392 out: 393 g_free(rlp); 394 return ret; 395 } 396 397 bool write_kvmstate_to_list(ARMCPU *cpu) 398 { 399 CPUState *cs = CPU(cpu); 400 int i; 401 bool ok = true; 402 403 for (i = 0; i < cpu->cpreg_array_len; i++) { 404 struct kvm_one_reg r; 405 uint64_t regidx = cpu->cpreg_indexes[i]; 406 uint32_t v32; 407 int ret; 408 409 r.id = regidx; 410 411 switch (regidx & KVM_REG_SIZE_MASK) { 412 case KVM_REG_SIZE_U32: 413 r.addr = (uintptr_t)&v32; 414 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); 415 if (!ret) { 416 cpu->cpreg_values[i] = v32; 417 } 418 break; 419 case KVM_REG_SIZE_U64: 420 r.addr = (uintptr_t)(cpu->cpreg_values + i); 421 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); 422 break; 423 default: 424 abort(); 425 } 426 if (ret) { 427 ok = false; 428 } 429 } 430 return ok; 431 } 432 433 bool write_list_to_kvmstate(ARMCPU *cpu, int level) 434 { 435 CPUState *cs = CPU(cpu); 436 int i; 437 bool ok = true; 438 439 for (i = 0; i < cpu->cpreg_array_len; i++) { 440 struct kvm_one_reg r; 441 uint64_t regidx = cpu->cpreg_indexes[i]; 442 uint32_t v32; 443 int ret; 444 445 if (kvm_arm_cpreg_level(regidx) > level) { 446 continue; 447 } 448 449 r.id = regidx; 450 switch (regidx & KVM_REG_SIZE_MASK) { 451 case KVM_REG_SIZE_U32: 452 v32 = cpu->cpreg_values[i]; 453 r.addr = (uintptr_t)&v32; 454 break; 455 case KVM_REG_SIZE_U64: 456 r.addr = (uintptr_t)(cpu->cpreg_values + i); 457 break; 458 default: 459 abort(); 460 } 461 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); 462 if (ret) { 463 /* We might fail for "unknown register" and also for 464 * "you tried to set a register which is constant with 465 * a different value from what it actually contains". 466 */ 467 ok = false; 468 } 469 } 470 return ok; 471 } 472 473 void kvm_arm_reset_vcpu(ARMCPU *cpu) 474 { 475 int ret; 476 477 /* Re-init VCPU so that all registers are set to 478 * their respective reset values. 479 */ 480 ret = kvm_arm_vcpu_init(CPU(cpu)); 481 if (ret < 0) { 482 fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret)); 483 abort(); 484 } 485 if (!write_kvmstate_to_list(cpu)) { 486 fprintf(stderr, "write_kvmstate_to_list failed\n"); 487 abort(); 488 } 489 } 490 491 /* 492 * Update KVM's MP_STATE based on what QEMU thinks it is 493 */ 494 int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu) 495 { 496 if (cap_has_mp_state) { 497 struct kvm_mp_state mp_state = { 498 .mp_state = (cpu->power_state == PSCI_OFF) ? 499 KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE 500 }; 501 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); 502 if (ret) { 503 fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n", 504 __func__, ret, strerror(-ret)); 505 return -1; 506 } 507 } 508 509 return 0; 510 } 511 512 /* 513 * Sync the KVM MP_STATE into QEMU 514 */ 515 int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu) 516 { 517 if (cap_has_mp_state) { 518 struct kvm_mp_state mp_state; 519 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state); 520 if (ret) { 521 fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n", 522 __func__, ret, strerror(-ret)); 523 abort(); 524 } 525 cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ? 526 PSCI_OFF : PSCI_ON; 527 } 528 529 return 0; 530 } 531 532 int kvm_put_vcpu_events(ARMCPU *cpu) 533 { 534 CPUARMState *env = &cpu->env; 535 struct kvm_vcpu_events events; 536 int ret; 537 538 if (!kvm_has_vcpu_events()) { 539 return 0; 540 } 541 542 memset(&events, 0, sizeof(events)); 543 events.exception.serror_pending = env->serror.pending; 544 545 /* Inject SError to guest with specified syndrome if host kernel 546 * supports it, otherwise inject SError without syndrome. 547 */ 548 if (cap_has_inject_serror_esr) { 549 events.exception.serror_has_esr = env->serror.has_esr; 550 events.exception.serror_esr = env->serror.esr; 551 } 552 553 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); 554 if (ret) { 555 error_report("failed to put vcpu events"); 556 } 557 558 return ret; 559 } 560 561 int kvm_get_vcpu_events(ARMCPU *cpu) 562 { 563 CPUARMState *env = &cpu->env; 564 struct kvm_vcpu_events events; 565 int ret; 566 567 if (!kvm_has_vcpu_events()) { 568 return 0; 569 } 570 571 memset(&events, 0, sizeof(events)); 572 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); 573 if (ret) { 574 error_report("failed to get vcpu events"); 575 return ret; 576 } 577 578 env->serror.pending = events.exception.serror_pending; 579 env->serror.has_esr = events.exception.serror_has_esr; 580 env->serror.esr = events.exception.serror_esr; 581 582 return 0; 583 } 584 585 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run) 586 { 587 } 588 589 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) 590 { 591 ARMCPU *cpu; 592 uint32_t switched_level; 593 594 if (kvm_irqchip_in_kernel()) { 595 /* 596 * We only need to sync timer states with user-space interrupt 597 * controllers, so return early and save cycles if we don't. 598 */ 599 return MEMTXATTRS_UNSPECIFIED; 600 } 601 602 cpu = ARM_CPU(cs); 603 604 /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */ 605 if (run->s.regs.device_irq_level != cpu->device_irq_level) { 606 switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level; 607 608 qemu_mutex_lock_iothread(); 609 610 if (switched_level & KVM_ARM_DEV_EL1_VTIMER) { 611 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT], 612 !!(run->s.regs.device_irq_level & 613 KVM_ARM_DEV_EL1_VTIMER)); 614 switched_level &= ~KVM_ARM_DEV_EL1_VTIMER; 615 } 616 617 if (switched_level & KVM_ARM_DEV_EL1_PTIMER) { 618 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS], 619 !!(run->s.regs.device_irq_level & 620 KVM_ARM_DEV_EL1_PTIMER)); 621 switched_level &= ~KVM_ARM_DEV_EL1_PTIMER; 622 } 623 624 if (switched_level & KVM_ARM_DEV_PMU) { 625 qemu_set_irq(cpu->pmu_interrupt, 626 !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU)); 627 switched_level &= ~KVM_ARM_DEV_PMU; 628 } 629 630 if (switched_level) { 631 qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n", 632 __func__, switched_level); 633 } 634 635 /* We also mark unknown levels as processed to not waste cycles */ 636 cpu->device_irq_level = run->s.regs.device_irq_level; 637 qemu_mutex_unlock_iothread(); 638 } 639 640 return MEMTXATTRS_UNSPECIFIED; 641 } 642 643 644 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 645 { 646 int ret = 0; 647 648 switch (run->exit_reason) { 649 case KVM_EXIT_DEBUG: 650 if (kvm_arm_handle_debug(cs, &run->debug.arch)) { 651 ret = EXCP_DEBUG; 652 } /* otherwise return to guest */ 653 break; 654 default: 655 qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n", 656 __func__, run->exit_reason); 657 break; 658 } 659 return ret; 660 } 661 662 bool kvm_arch_stop_on_emulation_error(CPUState *cs) 663 { 664 return true; 665 } 666 667 int kvm_arch_process_async_events(CPUState *cs) 668 { 669 return 0; 670 } 671 672 /* The #ifdef protections are until 32bit headers are imported and can 673 * be removed once both 32 and 64 bit reach feature parity. 674 */ 675 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg) 676 { 677 #ifdef KVM_GUESTDBG_USE_SW_BP 678 if (kvm_sw_breakpoints_active(cs)) { 679 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; 680 } 681 #endif 682 #ifdef KVM_GUESTDBG_USE_HW 683 if (kvm_arm_hw_debug_active(cs)) { 684 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW; 685 kvm_arm_copy_hw_debug_data(&dbg->arch); 686 } 687 #endif 688 } 689 690 void kvm_arch_init_irq_routing(KVMState *s) 691 { 692 } 693 694 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s) 695 { 696 if (machine_kernel_irqchip_split(ms)) { 697 perror("-machine kernel_irqchip=split is not supported on ARM."); 698 exit(1); 699 } 700 701 /* If we can create the VGIC using the newer device control API, we 702 * let the device do this when it initializes itself, otherwise we 703 * fall back to the old API */ 704 return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL); 705 } 706 707 int kvm_arm_vgic_probe(void) 708 { 709 if (kvm_create_device(kvm_state, 710 KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) { 711 return 3; 712 } else if (kvm_create_device(kvm_state, 713 KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) { 714 return 2; 715 } else { 716 return 0; 717 } 718 } 719 720 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 721 uint64_t address, uint32_t data, PCIDevice *dev) 722 { 723 AddressSpace *as = pci_device_iommu_address_space(dev); 724 hwaddr xlat, len, doorbell_gpa; 725 MemoryRegionSection mrs; 726 MemoryRegion *mr; 727 int ret = 1; 728 729 if (as == &address_space_memory) { 730 return 0; 731 } 732 733 /* MSI doorbell address is translated by an IOMMU */ 734 735 rcu_read_lock(); 736 mr = address_space_translate(as, address, &xlat, &len, true, 737 MEMTXATTRS_UNSPECIFIED); 738 if (!mr) { 739 goto unlock; 740 } 741 mrs = memory_region_find(mr, xlat, 1); 742 if (!mrs.mr) { 743 goto unlock; 744 } 745 746 doorbell_gpa = mrs.offset_within_address_space; 747 memory_region_unref(mrs.mr); 748 749 route->u.msi.address_lo = doorbell_gpa; 750 route->u.msi.address_hi = doorbell_gpa >> 32; 751 752 trace_kvm_arm_fixup_msi_route(address, doorbell_gpa); 753 754 ret = 0; 755 756 unlock: 757 rcu_read_unlock(); 758 return ret; 759 } 760 761 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 762 int vector, PCIDevice *dev) 763 { 764 return 0; 765 } 766 767 int kvm_arch_release_virq_post(int virq) 768 { 769 return 0; 770 } 771 772 int kvm_arch_msi_data_to_gsi(uint32_t data) 773 { 774 return (data - 32) & 0xffff; 775 } 776