xref: /openbmc/qemu/target/arm/kvm.c (revision 4a9b31b8)
1 /*
2  * ARM implementation of KVM hooks
3  *
4  * Copyright Christoffer Dall 2009-2010
5  *
6  * This work is licensed under the terms of the GNU GPL, version 2 or later.
7  * See the COPYING file in the top-level directory.
8  *
9  */
10 
11 #include "qemu/osdep.h"
12 #include <sys/ioctl.h>
13 
14 #include <linux/kvm.h>
15 
16 #include "qemu-common.h"
17 #include "qemu/timer.h"
18 #include "qemu/error-report.h"
19 #include "sysemu/sysemu.h"
20 #include "sysemu/kvm.h"
21 #include "kvm_arm.h"
22 #include "cpu.h"
23 #include "trace.h"
24 #include "internals.h"
25 #include "hw/arm/arm.h"
26 #include "hw/pci/pci.h"
27 #include "exec/memattrs.h"
28 #include "exec/address-spaces.h"
29 #include "hw/boards.h"
30 #include "qemu/log.h"
31 
32 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
33     KVM_CAP_LAST_INFO
34 };
35 
36 static bool cap_has_mp_state;
37 static bool cap_has_inject_serror_esr;
38 
39 static ARMHostCPUFeatures arm_host_cpu_features;
40 
41 int kvm_arm_vcpu_init(CPUState *cs)
42 {
43     ARMCPU *cpu = ARM_CPU(cs);
44     struct kvm_vcpu_init init;
45 
46     init.target = cpu->kvm_target;
47     memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
48 
49     return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
50 }
51 
52 void kvm_arm_init_serror_injection(CPUState *cs)
53 {
54     cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state,
55                                     KVM_CAP_ARM_INJECT_SERROR_ESR);
56 }
57 
58 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
59                                       int *fdarray,
60                                       struct kvm_vcpu_init *init)
61 {
62     int ret, kvmfd = -1, vmfd = -1, cpufd = -1;
63 
64     kvmfd = qemu_open("/dev/kvm", O_RDWR);
65     if (kvmfd < 0) {
66         goto err;
67     }
68     vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0);
69     if (vmfd < 0) {
70         goto err;
71     }
72     cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
73     if (cpufd < 0) {
74         goto err;
75     }
76 
77     if (!init) {
78         /* Caller doesn't want the VCPU to be initialized, so skip it */
79         goto finish;
80     }
81 
82     ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, init);
83     if (ret >= 0) {
84         ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
85         if (ret < 0) {
86             goto err;
87         }
88     } else if (cpus_to_try) {
89         /* Old kernel which doesn't know about the
90          * PREFERRED_TARGET ioctl: we know it will only support
91          * creating one kind of guest CPU which is its preferred
92          * CPU type.
93          */
94         while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
95             init->target = *cpus_to_try++;
96             memset(init->features, 0, sizeof(init->features));
97             ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
98             if (ret >= 0) {
99                 break;
100             }
101         }
102         if (ret < 0) {
103             goto err;
104         }
105     } else {
106         /* Treat a NULL cpus_to_try argument the same as an empty
107          * list, which means we will fail the call since this must
108          * be an old kernel which doesn't support PREFERRED_TARGET.
109          */
110         goto err;
111     }
112 
113 finish:
114     fdarray[0] = kvmfd;
115     fdarray[1] = vmfd;
116     fdarray[2] = cpufd;
117 
118     return true;
119 
120 err:
121     if (cpufd >= 0) {
122         close(cpufd);
123     }
124     if (vmfd >= 0) {
125         close(vmfd);
126     }
127     if (kvmfd >= 0) {
128         close(kvmfd);
129     }
130 
131     return false;
132 }
133 
134 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
135 {
136     int i;
137 
138     for (i = 2; i >= 0; i--) {
139         close(fdarray[i]);
140     }
141 }
142 
143 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
144 {
145     CPUARMState *env = &cpu->env;
146 
147     if (!arm_host_cpu_features.dtb_compatible) {
148         if (!kvm_enabled() ||
149             !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) {
150             /* We can't report this error yet, so flag that we need to
151              * in arm_cpu_realizefn().
152              */
153             cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
154             cpu->host_cpu_probe_failed = true;
155             return;
156         }
157     }
158 
159     cpu->kvm_target = arm_host_cpu_features.target;
160     cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
161     env->features = arm_host_cpu_features.features;
162 }
163 
164 int kvm_arch_init(MachineState *ms, KVMState *s)
165 {
166     /* For ARM interrupt delivery is always asynchronous,
167      * whether we are using an in-kernel VGIC or not.
168      */
169     kvm_async_interrupts_allowed = true;
170 
171     /*
172      * PSCI wakes up secondary cores, so we always need to
173      * have vCPUs waiting in kernel space
174      */
175     kvm_halt_in_kernel_allowed = true;
176 
177     cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
178 
179     return 0;
180 }
181 
182 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
183 {
184     return cpu->cpu_index;
185 }
186 
187 /* We track all the KVM devices which need their memory addresses
188  * passing to the kernel in a list of these structures.
189  * When board init is complete we run through the list and
190  * tell the kernel the base addresses of the memory regions.
191  * We use a MemoryListener to track mapping and unmapping of
192  * the regions during board creation, so the board models don't
193  * need to do anything special for the KVM case.
194  *
195  * Sometimes the address must be OR'ed with some other fields
196  * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
197  * @kda_addr_ormask aims at storing the value of those fields.
198  */
199 typedef struct KVMDevice {
200     struct kvm_arm_device_addr kda;
201     struct kvm_device_attr kdattr;
202     uint64_t kda_addr_ormask;
203     MemoryRegion *mr;
204     QSLIST_ENTRY(KVMDevice) entries;
205     int dev_fd;
206 } KVMDevice;
207 
208 static QSLIST_HEAD(kvm_devices_head, KVMDevice) kvm_devices_head;
209 
210 static void kvm_arm_devlistener_add(MemoryListener *listener,
211                                     MemoryRegionSection *section)
212 {
213     KVMDevice *kd;
214 
215     QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
216         if (section->mr == kd->mr) {
217             kd->kda.addr = section->offset_within_address_space;
218         }
219     }
220 }
221 
222 static void kvm_arm_devlistener_del(MemoryListener *listener,
223                                     MemoryRegionSection *section)
224 {
225     KVMDevice *kd;
226 
227     QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
228         if (section->mr == kd->mr) {
229             kd->kda.addr = -1;
230         }
231     }
232 }
233 
234 static MemoryListener devlistener = {
235     .region_add = kvm_arm_devlistener_add,
236     .region_del = kvm_arm_devlistener_del,
237 };
238 
239 static void kvm_arm_set_device_addr(KVMDevice *kd)
240 {
241     struct kvm_device_attr *attr = &kd->kdattr;
242     int ret;
243 
244     /* If the device control API is available and we have a device fd on the
245      * KVMDevice struct, let's use the newer API
246      */
247     if (kd->dev_fd >= 0) {
248         uint64_t addr = kd->kda.addr;
249 
250         addr |= kd->kda_addr_ormask;
251         attr->addr = (uintptr_t)&addr;
252         ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
253     } else {
254         ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
255     }
256 
257     if (ret < 0) {
258         fprintf(stderr, "Failed to set device address: %s\n",
259                 strerror(-ret));
260         abort();
261     }
262 }
263 
264 static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
265 {
266     KVMDevice *kd, *tkd;
267 
268     QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
269         if (kd->kda.addr != -1) {
270             kvm_arm_set_device_addr(kd);
271         }
272         memory_region_unref(kd->mr);
273         QSLIST_REMOVE_HEAD(&kvm_devices_head, entries);
274         g_free(kd);
275     }
276     memory_listener_unregister(&devlistener);
277 }
278 
279 static Notifier notify = {
280     .notify = kvm_arm_machine_init_done,
281 };
282 
283 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
284                              uint64_t attr, int dev_fd, uint64_t addr_ormask)
285 {
286     KVMDevice *kd;
287 
288     if (!kvm_irqchip_in_kernel()) {
289         return;
290     }
291 
292     if (QSLIST_EMPTY(&kvm_devices_head)) {
293         memory_listener_register(&devlistener, &address_space_memory);
294         qemu_add_machine_init_done_notifier(&notify);
295     }
296     kd = g_new0(KVMDevice, 1);
297     kd->mr = mr;
298     kd->kda.id = devid;
299     kd->kda.addr = -1;
300     kd->kdattr.flags = 0;
301     kd->kdattr.group = group;
302     kd->kdattr.attr = attr;
303     kd->dev_fd = dev_fd;
304     kd->kda_addr_ormask = addr_ormask;
305     QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
306     memory_region_ref(kd->mr);
307 }
308 
309 static int compare_u64(const void *a, const void *b)
310 {
311     if (*(uint64_t *)a > *(uint64_t *)b) {
312         return 1;
313     }
314     if (*(uint64_t *)a < *(uint64_t *)b) {
315         return -1;
316     }
317     return 0;
318 }
319 
320 /* Initialize the ARMCPU cpreg list according to the kernel's
321  * definition of what CPU registers it knows about (and throw away
322  * the previous TCG-created cpreg list).
323  */
324 int kvm_arm_init_cpreg_list(ARMCPU *cpu)
325 {
326     struct kvm_reg_list rl;
327     struct kvm_reg_list *rlp;
328     int i, ret, arraylen;
329     CPUState *cs = CPU(cpu);
330 
331     rl.n = 0;
332     ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
333     if (ret != -E2BIG) {
334         return ret;
335     }
336     rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
337     rlp->n = rl.n;
338     ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
339     if (ret) {
340         goto out;
341     }
342     /* Sort the list we get back from the kernel, since cpreg_tuples
343      * must be in strictly ascending order.
344      */
345     qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
346 
347     for (i = 0, arraylen = 0; i < rlp->n; i++) {
348         if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
349             continue;
350         }
351         switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
352         case KVM_REG_SIZE_U32:
353         case KVM_REG_SIZE_U64:
354             break;
355         default:
356             fprintf(stderr, "Can't handle size of register in kernel list\n");
357             ret = -EINVAL;
358             goto out;
359         }
360 
361         arraylen++;
362     }
363 
364     cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
365     cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
366     cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
367                                          arraylen);
368     cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
369                                         arraylen);
370     cpu->cpreg_array_len = arraylen;
371     cpu->cpreg_vmstate_array_len = arraylen;
372 
373     for (i = 0, arraylen = 0; i < rlp->n; i++) {
374         uint64_t regidx = rlp->reg[i];
375         if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
376             continue;
377         }
378         cpu->cpreg_indexes[arraylen] = regidx;
379         arraylen++;
380     }
381     assert(cpu->cpreg_array_len == arraylen);
382 
383     if (!write_kvmstate_to_list(cpu)) {
384         /* Shouldn't happen unless kernel is inconsistent about
385          * what registers exist.
386          */
387         fprintf(stderr, "Initial read of kernel register state failed\n");
388         ret = -EINVAL;
389         goto out;
390     }
391 
392 out:
393     g_free(rlp);
394     return ret;
395 }
396 
397 bool write_kvmstate_to_list(ARMCPU *cpu)
398 {
399     CPUState *cs = CPU(cpu);
400     int i;
401     bool ok = true;
402 
403     for (i = 0; i < cpu->cpreg_array_len; i++) {
404         struct kvm_one_reg r;
405         uint64_t regidx = cpu->cpreg_indexes[i];
406         uint32_t v32;
407         int ret;
408 
409         r.id = regidx;
410 
411         switch (regidx & KVM_REG_SIZE_MASK) {
412         case KVM_REG_SIZE_U32:
413             r.addr = (uintptr_t)&v32;
414             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
415             if (!ret) {
416                 cpu->cpreg_values[i] = v32;
417             }
418             break;
419         case KVM_REG_SIZE_U64:
420             r.addr = (uintptr_t)(cpu->cpreg_values + i);
421             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
422             break;
423         default:
424             abort();
425         }
426         if (ret) {
427             ok = false;
428         }
429     }
430     return ok;
431 }
432 
433 bool write_list_to_kvmstate(ARMCPU *cpu, int level)
434 {
435     CPUState *cs = CPU(cpu);
436     int i;
437     bool ok = true;
438 
439     for (i = 0; i < cpu->cpreg_array_len; i++) {
440         struct kvm_one_reg r;
441         uint64_t regidx = cpu->cpreg_indexes[i];
442         uint32_t v32;
443         int ret;
444 
445         if (kvm_arm_cpreg_level(regidx) > level) {
446             continue;
447         }
448 
449         r.id = regidx;
450         switch (regidx & KVM_REG_SIZE_MASK) {
451         case KVM_REG_SIZE_U32:
452             v32 = cpu->cpreg_values[i];
453             r.addr = (uintptr_t)&v32;
454             break;
455         case KVM_REG_SIZE_U64:
456             r.addr = (uintptr_t)(cpu->cpreg_values + i);
457             break;
458         default:
459             abort();
460         }
461         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
462         if (ret) {
463             /* We might fail for "unknown register" and also for
464              * "you tried to set a register which is constant with
465              * a different value from what it actually contains".
466              */
467             ok = false;
468         }
469     }
470     return ok;
471 }
472 
473 void kvm_arm_reset_vcpu(ARMCPU *cpu)
474 {
475     int ret;
476 
477     /* Re-init VCPU so that all registers are set to
478      * their respective reset values.
479      */
480     ret = kvm_arm_vcpu_init(CPU(cpu));
481     if (ret < 0) {
482         fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
483         abort();
484     }
485     if (!write_kvmstate_to_list(cpu)) {
486         fprintf(stderr, "write_kvmstate_to_list failed\n");
487         abort();
488     }
489 }
490 
491 /*
492  * Update KVM's MP_STATE based on what QEMU thinks it is
493  */
494 int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
495 {
496     if (cap_has_mp_state) {
497         struct kvm_mp_state mp_state = {
498             .mp_state = (cpu->power_state == PSCI_OFF) ?
499             KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
500         };
501         int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
502         if (ret) {
503             fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n",
504                     __func__, ret, strerror(-ret));
505             return -1;
506         }
507     }
508 
509     return 0;
510 }
511 
512 /*
513  * Sync the KVM MP_STATE into QEMU
514  */
515 int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
516 {
517     if (cap_has_mp_state) {
518         struct kvm_mp_state mp_state;
519         int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
520         if (ret) {
521             fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n",
522                     __func__, ret, strerror(-ret));
523             abort();
524         }
525         cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
526             PSCI_OFF : PSCI_ON;
527     }
528 
529     return 0;
530 }
531 
532 int kvm_put_vcpu_events(ARMCPU *cpu)
533 {
534     CPUARMState *env = &cpu->env;
535     struct kvm_vcpu_events events;
536     int ret;
537 
538     if (!kvm_has_vcpu_events()) {
539         return 0;
540     }
541 
542     memset(&events, 0, sizeof(events));
543     events.exception.serror_pending = env->serror.pending;
544 
545     /* Inject SError to guest with specified syndrome if host kernel
546      * supports it, otherwise inject SError without syndrome.
547      */
548     if (cap_has_inject_serror_esr) {
549         events.exception.serror_has_esr = env->serror.has_esr;
550         events.exception.serror_esr = env->serror.esr;
551     }
552 
553     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
554     if (ret) {
555         error_report("failed to put vcpu events");
556     }
557 
558     return ret;
559 }
560 
561 int kvm_get_vcpu_events(ARMCPU *cpu)
562 {
563     CPUARMState *env = &cpu->env;
564     struct kvm_vcpu_events events;
565     int ret;
566 
567     if (!kvm_has_vcpu_events()) {
568         return 0;
569     }
570 
571     memset(&events, 0, sizeof(events));
572     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
573     if (ret) {
574         error_report("failed to get vcpu events");
575         return ret;
576     }
577 
578     env->serror.pending = events.exception.serror_pending;
579     env->serror.has_esr = events.exception.serror_has_esr;
580     env->serror.esr = events.exception.serror_esr;
581 
582     return 0;
583 }
584 
585 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
586 {
587 }
588 
589 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
590 {
591     ARMCPU *cpu;
592     uint32_t switched_level;
593 
594     if (kvm_irqchip_in_kernel()) {
595         /*
596          * We only need to sync timer states with user-space interrupt
597          * controllers, so return early and save cycles if we don't.
598          */
599         return MEMTXATTRS_UNSPECIFIED;
600     }
601 
602     cpu = ARM_CPU(cs);
603 
604     /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
605     if (run->s.regs.device_irq_level != cpu->device_irq_level) {
606         switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
607 
608         qemu_mutex_lock_iothread();
609 
610         if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
611             qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
612                          !!(run->s.regs.device_irq_level &
613                             KVM_ARM_DEV_EL1_VTIMER));
614             switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
615         }
616 
617         if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
618             qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
619                          !!(run->s.regs.device_irq_level &
620                             KVM_ARM_DEV_EL1_PTIMER));
621             switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
622         }
623 
624         if (switched_level & KVM_ARM_DEV_PMU) {
625             qemu_set_irq(cpu->pmu_interrupt,
626                          !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
627             switched_level &= ~KVM_ARM_DEV_PMU;
628         }
629 
630         if (switched_level) {
631             qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
632                           __func__, switched_level);
633         }
634 
635         /* We also mark unknown levels as processed to not waste cycles */
636         cpu->device_irq_level = run->s.regs.device_irq_level;
637         qemu_mutex_unlock_iothread();
638     }
639 
640     return MEMTXATTRS_UNSPECIFIED;
641 }
642 
643 
644 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
645 {
646     int ret = 0;
647 
648     switch (run->exit_reason) {
649     case KVM_EXIT_DEBUG:
650         if (kvm_arm_handle_debug(cs, &run->debug.arch)) {
651             ret = EXCP_DEBUG;
652         } /* otherwise return to guest */
653         break;
654     default:
655         qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
656                       __func__, run->exit_reason);
657         break;
658     }
659     return ret;
660 }
661 
662 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
663 {
664     return true;
665 }
666 
667 int kvm_arch_process_async_events(CPUState *cs)
668 {
669     return 0;
670 }
671 
672 /* The #ifdef protections are until 32bit headers are imported and can
673  * be removed once both 32 and 64 bit reach feature parity.
674  */
675 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
676 {
677 #ifdef KVM_GUESTDBG_USE_SW_BP
678     if (kvm_sw_breakpoints_active(cs)) {
679         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
680     }
681 #endif
682 #ifdef KVM_GUESTDBG_USE_HW
683     if (kvm_arm_hw_debug_active(cs)) {
684         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
685         kvm_arm_copy_hw_debug_data(&dbg->arch);
686     }
687 #endif
688 }
689 
690 void kvm_arch_init_irq_routing(KVMState *s)
691 {
692 }
693 
694 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
695 {
696      if (machine_kernel_irqchip_split(ms)) {
697          perror("-machine kernel_irqchip=split is not supported on ARM.");
698          exit(1);
699     }
700 
701     /* If we can create the VGIC using the newer device control API, we
702      * let the device do this when it initializes itself, otherwise we
703      * fall back to the old API */
704     return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
705 }
706 
707 int kvm_arm_vgic_probe(void)
708 {
709     if (kvm_create_device(kvm_state,
710                           KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
711         return 3;
712     } else if (kvm_create_device(kvm_state,
713                                  KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
714         return 2;
715     } else {
716         return 0;
717     }
718 }
719 
720 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
721                              uint64_t address, uint32_t data, PCIDevice *dev)
722 {
723     AddressSpace *as = pci_device_iommu_address_space(dev);
724     hwaddr xlat, len, doorbell_gpa;
725     MemoryRegionSection mrs;
726     MemoryRegion *mr;
727     int ret = 1;
728 
729     if (as == &address_space_memory) {
730         return 0;
731     }
732 
733     /* MSI doorbell address is translated by an IOMMU */
734 
735     rcu_read_lock();
736     mr = address_space_translate(as, address, &xlat, &len, true,
737                                  MEMTXATTRS_UNSPECIFIED);
738     if (!mr) {
739         goto unlock;
740     }
741     mrs = memory_region_find(mr, xlat, 1);
742     if (!mrs.mr) {
743         goto unlock;
744     }
745 
746     doorbell_gpa = mrs.offset_within_address_space;
747     memory_region_unref(mrs.mr);
748 
749     route->u.msi.address_lo = doorbell_gpa;
750     route->u.msi.address_hi = doorbell_gpa >> 32;
751 
752     trace_kvm_arm_fixup_msi_route(address, doorbell_gpa);
753 
754     ret = 0;
755 
756 unlock:
757     rcu_read_unlock();
758     return ret;
759 }
760 
761 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
762                                 int vector, PCIDevice *dev)
763 {
764     return 0;
765 }
766 
767 int kvm_arch_release_virq_post(int virq)
768 {
769     return 0;
770 }
771 
772 int kvm_arch_msi_data_to_gsi(uint32_t data)
773 {
774     return (data - 32) & 0xffff;
775 }
776