1 /* 2 * ARM implementation of KVM hooks 3 * 4 * Copyright Christoffer Dall 2009-2010 5 * 6 * This work is licensed under the terms of the GNU GPL, version 2 or later. 7 * See the COPYING file in the top-level directory. 8 * 9 */ 10 11 #include "qemu/osdep.h" 12 #include <sys/ioctl.h> 13 14 #include <linux/kvm.h> 15 16 #include "qemu-common.h" 17 #include "qemu/timer.h" 18 #include "qemu/error-report.h" 19 #include "qemu/main-loop.h" 20 #include "qom/object.h" 21 #include "qapi/error.h" 22 #include "sysemu/sysemu.h" 23 #include "sysemu/kvm.h" 24 #include "sysemu/kvm_int.h" 25 #include "kvm_arm.h" 26 #include "cpu.h" 27 #include "trace.h" 28 #include "internals.h" 29 #include "hw/pci/pci.h" 30 #include "exec/memattrs.h" 31 #include "exec/address-spaces.h" 32 #include "hw/boards.h" 33 #include "hw/irq.h" 34 #include "qemu/log.h" 35 36 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 37 KVM_CAP_LAST_INFO 38 }; 39 40 static bool cap_has_mp_state; 41 static bool cap_has_inject_serror_esr; 42 static bool cap_has_inject_ext_dabt; 43 44 static ARMHostCPUFeatures arm_host_cpu_features; 45 46 int kvm_arm_vcpu_init(CPUState *cs) 47 { 48 ARMCPU *cpu = ARM_CPU(cs); 49 struct kvm_vcpu_init init; 50 51 init.target = cpu->kvm_target; 52 memcpy(init.features, cpu->kvm_init_features, sizeof(init.features)); 53 54 return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init); 55 } 56 57 int kvm_arm_vcpu_finalize(CPUState *cs, int feature) 58 { 59 return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_FINALIZE, &feature); 60 } 61 62 void kvm_arm_init_serror_injection(CPUState *cs) 63 { 64 cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state, 65 KVM_CAP_ARM_INJECT_SERROR_ESR); 66 } 67 68 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try, 69 int *fdarray, 70 struct kvm_vcpu_init *init) 71 { 72 int ret = 0, kvmfd = -1, vmfd = -1, cpufd = -1; 73 int max_vm_pa_size; 74 75 kvmfd = qemu_open_old("/dev/kvm", O_RDWR); 76 if (kvmfd < 0) { 77 goto err; 78 } 79 max_vm_pa_size = ioctl(kvmfd, KVM_CHECK_EXTENSION, KVM_CAP_ARM_VM_IPA_SIZE); 80 if (max_vm_pa_size < 0) { 81 max_vm_pa_size = 0; 82 } 83 vmfd = ioctl(kvmfd, KVM_CREATE_VM, max_vm_pa_size); 84 if (vmfd < 0) { 85 goto err; 86 } 87 cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0); 88 if (cpufd < 0) { 89 goto err; 90 } 91 92 if (!init) { 93 /* Caller doesn't want the VCPU to be initialized, so skip it */ 94 goto finish; 95 } 96 97 if (init->target == -1) { 98 struct kvm_vcpu_init preferred; 99 100 ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, &preferred); 101 if (!ret) { 102 init->target = preferred.target; 103 } 104 } 105 if (ret >= 0) { 106 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init); 107 if (ret < 0) { 108 goto err; 109 } 110 } else if (cpus_to_try) { 111 /* Old kernel which doesn't know about the 112 * PREFERRED_TARGET ioctl: we know it will only support 113 * creating one kind of guest CPU which is its preferred 114 * CPU type. 115 */ 116 struct kvm_vcpu_init try; 117 118 while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) { 119 try.target = *cpus_to_try++; 120 memcpy(try.features, init->features, sizeof(init->features)); 121 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, &try); 122 if (ret >= 0) { 123 break; 124 } 125 } 126 if (ret < 0) { 127 goto err; 128 } 129 init->target = try.target; 130 } else { 131 /* Treat a NULL cpus_to_try argument the same as an empty 132 * list, which means we will fail the call since this must 133 * be an old kernel which doesn't support PREFERRED_TARGET. 134 */ 135 goto err; 136 } 137 138 finish: 139 fdarray[0] = kvmfd; 140 fdarray[1] = vmfd; 141 fdarray[2] = cpufd; 142 143 return true; 144 145 err: 146 if (cpufd >= 0) { 147 close(cpufd); 148 } 149 if (vmfd >= 0) { 150 close(vmfd); 151 } 152 if (kvmfd >= 0) { 153 close(kvmfd); 154 } 155 156 return false; 157 } 158 159 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray) 160 { 161 int i; 162 163 for (i = 2; i >= 0; i--) { 164 close(fdarray[i]); 165 } 166 } 167 168 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu) 169 { 170 CPUARMState *env = &cpu->env; 171 172 if (!arm_host_cpu_features.dtb_compatible) { 173 if (!kvm_enabled() || 174 !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) { 175 /* We can't report this error yet, so flag that we need to 176 * in arm_cpu_realizefn(). 177 */ 178 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE; 179 cpu->host_cpu_probe_failed = true; 180 return; 181 } 182 } 183 184 cpu->kvm_target = arm_host_cpu_features.target; 185 cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible; 186 cpu->isar = arm_host_cpu_features.isar; 187 env->features = arm_host_cpu_features.features; 188 } 189 190 static bool kvm_no_adjvtime_get(Object *obj, Error **errp) 191 { 192 return !ARM_CPU(obj)->kvm_adjvtime; 193 } 194 195 static void kvm_no_adjvtime_set(Object *obj, bool value, Error **errp) 196 { 197 ARM_CPU(obj)->kvm_adjvtime = !value; 198 } 199 200 static bool kvm_steal_time_get(Object *obj, Error **errp) 201 { 202 return ARM_CPU(obj)->kvm_steal_time != ON_OFF_AUTO_OFF; 203 } 204 205 static void kvm_steal_time_set(Object *obj, bool value, Error **errp) 206 { 207 ARM_CPU(obj)->kvm_steal_time = value ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 208 } 209 210 /* KVM VCPU properties should be prefixed with "kvm-". */ 211 void kvm_arm_add_vcpu_properties(Object *obj) 212 { 213 ARMCPU *cpu = ARM_CPU(obj); 214 CPUARMState *env = &cpu->env; 215 216 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 217 cpu->kvm_adjvtime = true; 218 object_property_add_bool(obj, "kvm-no-adjvtime", kvm_no_adjvtime_get, 219 kvm_no_adjvtime_set); 220 object_property_set_description(obj, "kvm-no-adjvtime", 221 "Set on to disable the adjustment of " 222 "the virtual counter. VM stopped time " 223 "will be counted."); 224 } 225 226 cpu->kvm_steal_time = ON_OFF_AUTO_AUTO; 227 object_property_add_bool(obj, "kvm-steal-time", kvm_steal_time_get, 228 kvm_steal_time_set); 229 object_property_set_description(obj, "kvm-steal-time", 230 "Set off to disable KVM steal time."); 231 } 232 233 bool kvm_arm_pmu_supported(void) 234 { 235 return kvm_check_extension(kvm_state, KVM_CAP_ARM_PMU_V3); 236 } 237 238 int kvm_arm_get_max_vm_ipa_size(MachineState *ms, bool *fixed_ipa) 239 { 240 KVMState *s = KVM_STATE(ms->accelerator); 241 int ret; 242 243 ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE); 244 *fixed_ipa = ret <= 0; 245 246 return ret > 0 ? ret : 40; 247 } 248 249 int kvm_arch_init(MachineState *ms, KVMState *s) 250 { 251 int ret = 0; 252 /* For ARM interrupt delivery is always asynchronous, 253 * whether we are using an in-kernel VGIC or not. 254 */ 255 kvm_async_interrupts_allowed = true; 256 257 /* 258 * PSCI wakes up secondary cores, so we always need to 259 * have vCPUs waiting in kernel space 260 */ 261 kvm_halt_in_kernel_allowed = true; 262 263 cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE); 264 265 if (ms->smp.cpus > 256 && 266 !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) { 267 error_report("Using more than 256 vcpus requires a host kernel " 268 "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2"); 269 ret = -EINVAL; 270 } 271 272 if (kvm_check_extension(s, KVM_CAP_ARM_NISV_TO_USER)) { 273 if (kvm_vm_enable_cap(s, KVM_CAP_ARM_NISV_TO_USER, 0)) { 274 error_report("Failed to enable KVM_CAP_ARM_NISV_TO_USER cap"); 275 } else { 276 /* Set status for supporting the external dabt injection */ 277 cap_has_inject_ext_dabt = kvm_check_extension(s, 278 KVM_CAP_ARM_INJECT_EXT_DABT); 279 } 280 } 281 282 return ret; 283 } 284 285 unsigned long kvm_arch_vcpu_id(CPUState *cpu) 286 { 287 return cpu->cpu_index; 288 } 289 290 /* We track all the KVM devices which need their memory addresses 291 * passing to the kernel in a list of these structures. 292 * When board init is complete we run through the list and 293 * tell the kernel the base addresses of the memory regions. 294 * We use a MemoryListener to track mapping and unmapping of 295 * the regions during board creation, so the board models don't 296 * need to do anything special for the KVM case. 297 * 298 * Sometimes the address must be OR'ed with some other fields 299 * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION). 300 * @kda_addr_ormask aims at storing the value of those fields. 301 */ 302 typedef struct KVMDevice { 303 struct kvm_arm_device_addr kda; 304 struct kvm_device_attr kdattr; 305 uint64_t kda_addr_ormask; 306 MemoryRegion *mr; 307 QSLIST_ENTRY(KVMDevice) entries; 308 int dev_fd; 309 } KVMDevice; 310 311 static QSLIST_HEAD(, KVMDevice) kvm_devices_head; 312 313 static void kvm_arm_devlistener_add(MemoryListener *listener, 314 MemoryRegionSection *section) 315 { 316 KVMDevice *kd; 317 318 QSLIST_FOREACH(kd, &kvm_devices_head, entries) { 319 if (section->mr == kd->mr) { 320 kd->kda.addr = section->offset_within_address_space; 321 } 322 } 323 } 324 325 static void kvm_arm_devlistener_del(MemoryListener *listener, 326 MemoryRegionSection *section) 327 { 328 KVMDevice *kd; 329 330 QSLIST_FOREACH(kd, &kvm_devices_head, entries) { 331 if (section->mr == kd->mr) { 332 kd->kda.addr = -1; 333 } 334 } 335 } 336 337 static MemoryListener devlistener = { 338 .name = "kvm-arm", 339 .region_add = kvm_arm_devlistener_add, 340 .region_del = kvm_arm_devlistener_del, 341 }; 342 343 static void kvm_arm_set_device_addr(KVMDevice *kd) 344 { 345 struct kvm_device_attr *attr = &kd->kdattr; 346 int ret; 347 348 /* If the device control API is available and we have a device fd on the 349 * KVMDevice struct, let's use the newer API 350 */ 351 if (kd->dev_fd >= 0) { 352 uint64_t addr = kd->kda.addr; 353 354 addr |= kd->kda_addr_ormask; 355 attr->addr = (uintptr_t)&addr; 356 ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr); 357 } else { 358 ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda); 359 } 360 361 if (ret < 0) { 362 fprintf(stderr, "Failed to set device address: %s\n", 363 strerror(-ret)); 364 abort(); 365 } 366 } 367 368 static void kvm_arm_machine_init_done(Notifier *notifier, void *data) 369 { 370 KVMDevice *kd, *tkd; 371 372 QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) { 373 if (kd->kda.addr != -1) { 374 kvm_arm_set_device_addr(kd); 375 } 376 memory_region_unref(kd->mr); 377 QSLIST_REMOVE_HEAD(&kvm_devices_head, entries); 378 g_free(kd); 379 } 380 memory_listener_unregister(&devlistener); 381 } 382 383 static Notifier notify = { 384 .notify = kvm_arm_machine_init_done, 385 }; 386 387 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group, 388 uint64_t attr, int dev_fd, uint64_t addr_ormask) 389 { 390 KVMDevice *kd; 391 392 if (!kvm_irqchip_in_kernel()) { 393 return; 394 } 395 396 if (QSLIST_EMPTY(&kvm_devices_head)) { 397 memory_listener_register(&devlistener, &address_space_memory); 398 qemu_add_machine_init_done_notifier(¬ify); 399 } 400 kd = g_new0(KVMDevice, 1); 401 kd->mr = mr; 402 kd->kda.id = devid; 403 kd->kda.addr = -1; 404 kd->kdattr.flags = 0; 405 kd->kdattr.group = group; 406 kd->kdattr.attr = attr; 407 kd->dev_fd = dev_fd; 408 kd->kda_addr_ormask = addr_ormask; 409 QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries); 410 memory_region_ref(kd->mr); 411 } 412 413 static int compare_u64(const void *a, const void *b) 414 { 415 if (*(uint64_t *)a > *(uint64_t *)b) { 416 return 1; 417 } 418 if (*(uint64_t *)a < *(uint64_t *)b) { 419 return -1; 420 } 421 return 0; 422 } 423 424 /* 425 * cpreg_values are sorted in ascending order by KVM register ID 426 * (see kvm_arm_init_cpreg_list). This allows us to cheaply find 427 * the storage for a KVM register by ID with a binary search. 428 */ 429 static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx) 430 { 431 uint64_t *res; 432 433 res = bsearch(®idx, cpu->cpreg_indexes, cpu->cpreg_array_len, 434 sizeof(uint64_t), compare_u64); 435 assert(res); 436 437 return &cpu->cpreg_values[res - cpu->cpreg_indexes]; 438 } 439 440 /* Initialize the ARMCPU cpreg list according to the kernel's 441 * definition of what CPU registers it knows about (and throw away 442 * the previous TCG-created cpreg list). 443 */ 444 int kvm_arm_init_cpreg_list(ARMCPU *cpu) 445 { 446 struct kvm_reg_list rl; 447 struct kvm_reg_list *rlp; 448 int i, ret, arraylen; 449 CPUState *cs = CPU(cpu); 450 451 rl.n = 0; 452 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl); 453 if (ret != -E2BIG) { 454 return ret; 455 } 456 rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t)); 457 rlp->n = rl.n; 458 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp); 459 if (ret) { 460 goto out; 461 } 462 /* Sort the list we get back from the kernel, since cpreg_tuples 463 * must be in strictly ascending order. 464 */ 465 qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64); 466 467 for (i = 0, arraylen = 0; i < rlp->n; i++) { 468 if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) { 469 continue; 470 } 471 switch (rlp->reg[i] & KVM_REG_SIZE_MASK) { 472 case KVM_REG_SIZE_U32: 473 case KVM_REG_SIZE_U64: 474 break; 475 default: 476 fprintf(stderr, "Can't handle size of register in kernel list\n"); 477 ret = -EINVAL; 478 goto out; 479 } 480 481 arraylen++; 482 } 483 484 cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen); 485 cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen); 486 cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes, 487 arraylen); 488 cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values, 489 arraylen); 490 cpu->cpreg_array_len = arraylen; 491 cpu->cpreg_vmstate_array_len = arraylen; 492 493 for (i = 0, arraylen = 0; i < rlp->n; i++) { 494 uint64_t regidx = rlp->reg[i]; 495 if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) { 496 continue; 497 } 498 cpu->cpreg_indexes[arraylen] = regidx; 499 arraylen++; 500 } 501 assert(cpu->cpreg_array_len == arraylen); 502 503 if (!write_kvmstate_to_list(cpu)) { 504 /* Shouldn't happen unless kernel is inconsistent about 505 * what registers exist. 506 */ 507 fprintf(stderr, "Initial read of kernel register state failed\n"); 508 ret = -EINVAL; 509 goto out; 510 } 511 512 out: 513 g_free(rlp); 514 return ret; 515 } 516 517 bool write_kvmstate_to_list(ARMCPU *cpu) 518 { 519 CPUState *cs = CPU(cpu); 520 int i; 521 bool ok = true; 522 523 for (i = 0; i < cpu->cpreg_array_len; i++) { 524 struct kvm_one_reg r; 525 uint64_t regidx = cpu->cpreg_indexes[i]; 526 uint32_t v32; 527 int ret; 528 529 r.id = regidx; 530 531 switch (regidx & KVM_REG_SIZE_MASK) { 532 case KVM_REG_SIZE_U32: 533 r.addr = (uintptr_t)&v32; 534 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); 535 if (!ret) { 536 cpu->cpreg_values[i] = v32; 537 } 538 break; 539 case KVM_REG_SIZE_U64: 540 r.addr = (uintptr_t)(cpu->cpreg_values + i); 541 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); 542 break; 543 default: 544 abort(); 545 } 546 if (ret) { 547 ok = false; 548 } 549 } 550 return ok; 551 } 552 553 bool write_list_to_kvmstate(ARMCPU *cpu, int level) 554 { 555 CPUState *cs = CPU(cpu); 556 int i; 557 bool ok = true; 558 559 for (i = 0; i < cpu->cpreg_array_len; i++) { 560 struct kvm_one_reg r; 561 uint64_t regidx = cpu->cpreg_indexes[i]; 562 uint32_t v32; 563 int ret; 564 565 if (kvm_arm_cpreg_level(regidx) > level) { 566 continue; 567 } 568 569 r.id = regidx; 570 switch (regidx & KVM_REG_SIZE_MASK) { 571 case KVM_REG_SIZE_U32: 572 v32 = cpu->cpreg_values[i]; 573 r.addr = (uintptr_t)&v32; 574 break; 575 case KVM_REG_SIZE_U64: 576 r.addr = (uintptr_t)(cpu->cpreg_values + i); 577 break; 578 default: 579 abort(); 580 } 581 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); 582 if (ret) { 583 /* We might fail for "unknown register" and also for 584 * "you tried to set a register which is constant with 585 * a different value from what it actually contains". 586 */ 587 ok = false; 588 } 589 } 590 return ok; 591 } 592 593 void kvm_arm_cpu_pre_save(ARMCPU *cpu) 594 { 595 /* KVM virtual time adjustment */ 596 if (cpu->kvm_vtime_dirty) { 597 *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT) = cpu->kvm_vtime; 598 } 599 } 600 601 void kvm_arm_cpu_post_load(ARMCPU *cpu) 602 { 603 /* KVM virtual time adjustment */ 604 if (cpu->kvm_adjvtime) { 605 cpu->kvm_vtime = *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT); 606 cpu->kvm_vtime_dirty = true; 607 } 608 } 609 610 void kvm_arm_reset_vcpu(ARMCPU *cpu) 611 { 612 int ret; 613 614 /* Re-init VCPU so that all registers are set to 615 * their respective reset values. 616 */ 617 ret = kvm_arm_vcpu_init(CPU(cpu)); 618 if (ret < 0) { 619 fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret)); 620 abort(); 621 } 622 if (!write_kvmstate_to_list(cpu)) { 623 fprintf(stderr, "write_kvmstate_to_list failed\n"); 624 abort(); 625 } 626 /* 627 * Sync the reset values also into the CPUState. This is necessary 628 * because the next thing we do will be a kvm_arch_put_registers() 629 * which will update the list values from the CPUState before copying 630 * the list values back to KVM. It's OK to ignore failure returns here 631 * for the same reason we do so in kvm_arch_get_registers(). 632 */ 633 write_list_to_cpustate(cpu); 634 } 635 636 /* 637 * Update KVM's MP_STATE based on what QEMU thinks it is 638 */ 639 int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu) 640 { 641 if (cap_has_mp_state) { 642 struct kvm_mp_state mp_state = { 643 .mp_state = (cpu->power_state == PSCI_OFF) ? 644 KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE 645 }; 646 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); 647 if (ret) { 648 fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n", 649 __func__, ret, strerror(-ret)); 650 return -1; 651 } 652 } 653 654 return 0; 655 } 656 657 /* 658 * Sync the KVM MP_STATE into QEMU 659 */ 660 int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu) 661 { 662 if (cap_has_mp_state) { 663 struct kvm_mp_state mp_state; 664 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state); 665 if (ret) { 666 fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n", 667 __func__, ret, strerror(-ret)); 668 abort(); 669 } 670 cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ? 671 PSCI_OFF : PSCI_ON; 672 } 673 674 return 0; 675 } 676 677 void kvm_arm_get_virtual_time(CPUState *cs) 678 { 679 ARMCPU *cpu = ARM_CPU(cs); 680 struct kvm_one_reg reg = { 681 .id = KVM_REG_ARM_TIMER_CNT, 682 .addr = (uintptr_t)&cpu->kvm_vtime, 683 }; 684 int ret; 685 686 if (cpu->kvm_vtime_dirty) { 687 return; 688 } 689 690 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 691 if (ret) { 692 error_report("Failed to get KVM_REG_ARM_TIMER_CNT"); 693 abort(); 694 } 695 696 cpu->kvm_vtime_dirty = true; 697 } 698 699 void kvm_arm_put_virtual_time(CPUState *cs) 700 { 701 ARMCPU *cpu = ARM_CPU(cs); 702 struct kvm_one_reg reg = { 703 .id = KVM_REG_ARM_TIMER_CNT, 704 .addr = (uintptr_t)&cpu->kvm_vtime, 705 }; 706 int ret; 707 708 if (!cpu->kvm_vtime_dirty) { 709 return; 710 } 711 712 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 713 if (ret) { 714 error_report("Failed to set KVM_REG_ARM_TIMER_CNT"); 715 abort(); 716 } 717 718 cpu->kvm_vtime_dirty = false; 719 } 720 721 int kvm_put_vcpu_events(ARMCPU *cpu) 722 { 723 CPUARMState *env = &cpu->env; 724 struct kvm_vcpu_events events; 725 int ret; 726 727 if (!kvm_has_vcpu_events()) { 728 return 0; 729 } 730 731 memset(&events, 0, sizeof(events)); 732 events.exception.serror_pending = env->serror.pending; 733 734 /* Inject SError to guest with specified syndrome if host kernel 735 * supports it, otherwise inject SError without syndrome. 736 */ 737 if (cap_has_inject_serror_esr) { 738 events.exception.serror_has_esr = env->serror.has_esr; 739 events.exception.serror_esr = env->serror.esr; 740 } 741 742 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); 743 if (ret) { 744 error_report("failed to put vcpu events"); 745 } 746 747 return ret; 748 } 749 750 int kvm_get_vcpu_events(ARMCPU *cpu) 751 { 752 CPUARMState *env = &cpu->env; 753 struct kvm_vcpu_events events; 754 int ret; 755 756 if (!kvm_has_vcpu_events()) { 757 return 0; 758 } 759 760 memset(&events, 0, sizeof(events)); 761 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); 762 if (ret) { 763 error_report("failed to get vcpu events"); 764 return ret; 765 } 766 767 env->serror.pending = events.exception.serror_pending; 768 env->serror.has_esr = events.exception.serror_has_esr; 769 env->serror.esr = events.exception.serror_esr; 770 771 return 0; 772 } 773 774 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run) 775 { 776 ARMCPU *cpu = ARM_CPU(cs); 777 CPUARMState *env = &cpu->env; 778 779 if (unlikely(env->ext_dabt_raised)) { 780 /* 781 * Verifying that the ext DABT has been properly injected, 782 * otherwise risking indefinitely re-running the faulting instruction 783 * Covering a very narrow case for kernels 5.5..5.5.4 784 * when injected abort was misconfigured to be 785 * an IMPLEMENTATION DEFINED exception (for 32-bit EL1) 786 */ 787 if (!arm_feature(env, ARM_FEATURE_AARCH64) && 788 unlikely(!kvm_arm_verify_ext_dabt_pending(cs))) { 789 790 error_report("Data abort exception with no valid ISS generated by " 791 "guest memory access. KVM unable to emulate faulting " 792 "instruction. Failed to inject an external data abort " 793 "into the guest."); 794 abort(); 795 } 796 /* Clear the status */ 797 env->ext_dabt_raised = 0; 798 } 799 } 800 801 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) 802 { 803 ARMCPU *cpu; 804 uint32_t switched_level; 805 806 if (kvm_irqchip_in_kernel()) { 807 /* 808 * We only need to sync timer states with user-space interrupt 809 * controllers, so return early and save cycles if we don't. 810 */ 811 return MEMTXATTRS_UNSPECIFIED; 812 } 813 814 cpu = ARM_CPU(cs); 815 816 /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */ 817 if (run->s.regs.device_irq_level != cpu->device_irq_level) { 818 switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level; 819 820 qemu_mutex_lock_iothread(); 821 822 if (switched_level & KVM_ARM_DEV_EL1_VTIMER) { 823 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT], 824 !!(run->s.regs.device_irq_level & 825 KVM_ARM_DEV_EL1_VTIMER)); 826 switched_level &= ~KVM_ARM_DEV_EL1_VTIMER; 827 } 828 829 if (switched_level & KVM_ARM_DEV_EL1_PTIMER) { 830 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS], 831 !!(run->s.regs.device_irq_level & 832 KVM_ARM_DEV_EL1_PTIMER)); 833 switched_level &= ~KVM_ARM_DEV_EL1_PTIMER; 834 } 835 836 if (switched_level & KVM_ARM_DEV_PMU) { 837 qemu_set_irq(cpu->pmu_interrupt, 838 !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU)); 839 switched_level &= ~KVM_ARM_DEV_PMU; 840 } 841 842 if (switched_level) { 843 qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n", 844 __func__, switched_level); 845 } 846 847 /* We also mark unknown levels as processed to not waste cycles */ 848 cpu->device_irq_level = run->s.regs.device_irq_level; 849 qemu_mutex_unlock_iothread(); 850 } 851 852 return MEMTXATTRS_UNSPECIFIED; 853 } 854 855 void kvm_arm_vm_state_change(void *opaque, bool running, RunState state) 856 { 857 CPUState *cs = opaque; 858 ARMCPU *cpu = ARM_CPU(cs); 859 860 if (running) { 861 if (cpu->kvm_adjvtime) { 862 kvm_arm_put_virtual_time(cs); 863 } 864 } else { 865 if (cpu->kvm_adjvtime) { 866 kvm_arm_get_virtual_time(cs); 867 } 868 } 869 } 870 871 /** 872 * kvm_arm_handle_dabt_nisv: 873 * @cs: CPUState 874 * @esr_iss: ISS encoding (limited) for the exception from Data Abort 875 * ISV bit set to '0b0' -> no valid instruction syndrome 876 * @fault_ipa: faulting address for the synchronous data abort 877 * 878 * Returns: 0 if the exception has been handled, < 0 otherwise 879 */ 880 static int kvm_arm_handle_dabt_nisv(CPUState *cs, uint64_t esr_iss, 881 uint64_t fault_ipa) 882 { 883 ARMCPU *cpu = ARM_CPU(cs); 884 CPUARMState *env = &cpu->env; 885 /* 886 * Request KVM to inject the external data abort into the guest 887 */ 888 if (cap_has_inject_ext_dabt) { 889 struct kvm_vcpu_events events = { }; 890 /* 891 * The external data abort event will be handled immediately by KVM 892 * using the address fault that triggered the exit on given VCPU. 893 * Requesting injection of the external data abort does not rely 894 * on any other VCPU state. Therefore, in this particular case, the VCPU 895 * synchronization can be exceptionally skipped. 896 */ 897 events.exception.ext_dabt_pending = 1; 898 /* KVM_CAP_ARM_INJECT_EXT_DABT implies KVM_CAP_VCPU_EVENTS */ 899 if (!kvm_vcpu_ioctl(cs, KVM_SET_VCPU_EVENTS, &events)) { 900 env->ext_dabt_raised = 1; 901 return 0; 902 } 903 } else { 904 error_report("Data abort exception triggered by guest memory access " 905 "at physical address: 0x" TARGET_FMT_lx, 906 (target_ulong)fault_ipa); 907 error_printf("KVM unable to emulate faulting instruction.\n"); 908 } 909 return -1; 910 } 911 912 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 913 { 914 int ret = 0; 915 916 switch (run->exit_reason) { 917 case KVM_EXIT_DEBUG: 918 if (kvm_arm_handle_debug(cs, &run->debug.arch)) { 919 ret = EXCP_DEBUG; 920 } /* otherwise return to guest */ 921 break; 922 case KVM_EXIT_ARM_NISV: 923 /* External DABT with no valid iss to decode */ 924 ret = kvm_arm_handle_dabt_nisv(cs, run->arm_nisv.esr_iss, 925 run->arm_nisv.fault_ipa); 926 break; 927 default: 928 qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n", 929 __func__, run->exit_reason); 930 break; 931 } 932 return ret; 933 } 934 935 bool kvm_arch_stop_on_emulation_error(CPUState *cs) 936 { 937 return true; 938 } 939 940 int kvm_arch_process_async_events(CPUState *cs) 941 { 942 return 0; 943 } 944 945 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg) 946 { 947 if (kvm_sw_breakpoints_active(cs)) { 948 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; 949 } 950 if (kvm_arm_hw_debug_active(cs)) { 951 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW; 952 kvm_arm_copy_hw_debug_data(&dbg->arch); 953 } 954 } 955 956 void kvm_arch_init_irq_routing(KVMState *s) 957 { 958 } 959 960 int kvm_arch_irqchip_create(KVMState *s) 961 { 962 if (kvm_kernel_irqchip_split()) { 963 perror("-machine kernel_irqchip=split is not supported on ARM."); 964 exit(1); 965 } 966 967 /* If we can create the VGIC using the newer device control API, we 968 * let the device do this when it initializes itself, otherwise we 969 * fall back to the old API */ 970 return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL); 971 } 972 973 int kvm_arm_vgic_probe(void) 974 { 975 int val = 0; 976 977 if (kvm_create_device(kvm_state, 978 KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) { 979 val |= KVM_ARM_VGIC_V3; 980 } 981 if (kvm_create_device(kvm_state, 982 KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) { 983 val |= KVM_ARM_VGIC_V2; 984 } 985 return val; 986 } 987 988 int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level) 989 { 990 int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq; 991 int cpu_idx1 = cpu % 256; 992 int cpu_idx2 = cpu / 256; 993 994 kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) | 995 (cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT); 996 997 return kvm_set_irq(kvm_state, kvm_irq, !!level); 998 } 999 1000 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 1001 uint64_t address, uint32_t data, PCIDevice *dev) 1002 { 1003 AddressSpace *as = pci_device_iommu_address_space(dev); 1004 hwaddr xlat, len, doorbell_gpa; 1005 MemoryRegionSection mrs; 1006 MemoryRegion *mr; 1007 1008 if (as == &address_space_memory) { 1009 return 0; 1010 } 1011 1012 /* MSI doorbell address is translated by an IOMMU */ 1013 1014 RCU_READ_LOCK_GUARD(); 1015 1016 mr = address_space_translate(as, address, &xlat, &len, true, 1017 MEMTXATTRS_UNSPECIFIED); 1018 1019 if (!mr) { 1020 return 1; 1021 } 1022 1023 mrs = memory_region_find(mr, xlat, 1); 1024 1025 if (!mrs.mr) { 1026 return 1; 1027 } 1028 1029 doorbell_gpa = mrs.offset_within_address_space; 1030 memory_region_unref(mrs.mr); 1031 1032 route->u.msi.address_lo = doorbell_gpa; 1033 route->u.msi.address_hi = doorbell_gpa >> 32; 1034 1035 trace_kvm_arm_fixup_msi_route(address, doorbell_gpa); 1036 1037 return 0; 1038 } 1039 1040 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 1041 int vector, PCIDevice *dev) 1042 { 1043 return 0; 1044 } 1045 1046 int kvm_arch_release_virq_post(int virq) 1047 { 1048 return 0; 1049 } 1050 1051 int kvm_arch_msi_data_to_gsi(uint32_t data) 1052 { 1053 return (data - 32) & 0xffff; 1054 } 1055 1056 bool kvm_arch_cpu_check_are_resettable(void) 1057 { 1058 return true; 1059 } 1060