1 /* 2 * ARM implementation of KVM hooks 3 * 4 * Copyright Christoffer Dall 2009-2010 5 * 6 * This work is licensed under the terms of the GNU GPL, version 2 or later. 7 * See the COPYING file in the top-level directory. 8 * 9 */ 10 11 #include "qemu/osdep.h" 12 #include <sys/ioctl.h> 13 14 #include <linux/kvm.h> 15 16 #include "qemu-common.h" 17 #include "qemu/timer.h" 18 #include "qemu/error-report.h" 19 #include "qemu/main-loop.h" 20 #include "qom/object.h" 21 #include "qapi/error.h" 22 #include "sysemu/sysemu.h" 23 #include "sysemu/kvm.h" 24 #include "sysemu/kvm_int.h" 25 #include "kvm_arm.h" 26 #include "cpu.h" 27 #include "trace.h" 28 #include "internals.h" 29 #include "hw/pci/pci.h" 30 #include "exec/memattrs.h" 31 #include "exec/address-spaces.h" 32 #include "hw/boards.h" 33 #include "hw/irq.h" 34 #include "qemu/log.h" 35 36 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 37 KVM_CAP_LAST_INFO 38 }; 39 40 static bool cap_has_mp_state; 41 static bool cap_has_inject_serror_esr; 42 static bool cap_has_inject_ext_dabt; 43 44 static ARMHostCPUFeatures arm_host_cpu_features; 45 46 int kvm_arm_vcpu_init(CPUState *cs) 47 { 48 ARMCPU *cpu = ARM_CPU(cs); 49 struct kvm_vcpu_init init; 50 51 init.target = cpu->kvm_target; 52 memcpy(init.features, cpu->kvm_init_features, sizeof(init.features)); 53 54 return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init); 55 } 56 57 int kvm_arm_vcpu_finalize(CPUState *cs, int feature) 58 { 59 return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_FINALIZE, &feature); 60 } 61 62 void kvm_arm_init_serror_injection(CPUState *cs) 63 { 64 cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state, 65 KVM_CAP_ARM_INJECT_SERROR_ESR); 66 } 67 68 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try, 69 int *fdarray, 70 struct kvm_vcpu_init *init) 71 { 72 int ret = 0, kvmfd = -1, vmfd = -1, cpufd = -1; 73 74 kvmfd = qemu_open_old("/dev/kvm", O_RDWR); 75 if (kvmfd < 0) { 76 goto err; 77 } 78 vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0); 79 if (vmfd < 0) { 80 goto err; 81 } 82 cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0); 83 if (cpufd < 0) { 84 goto err; 85 } 86 87 if (!init) { 88 /* Caller doesn't want the VCPU to be initialized, so skip it */ 89 goto finish; 90 } 91 92 if (init->target == -1) { 93 struct kvm_vcpu_init preferred; 94 95 ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, &preferred); 96 if (!ret) { 97 init->target = preferred.target; 98 } 99 } 100 if (ret >= 0) { 101 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init); 102 if (ret < 0) { 103 goto err; 104 } 105 } else if (cpus_to_try) { 106 /* Old kernel which doesn't know about the 107 * PREFERRED_TARGET ioctl: we know it will only support 108 * creating one kind of guest CPU which is its preferred 109 * CPU type. 110 */ 111 struct kvm_vcpu_init try; 112 113 while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) { 114 try.target = *cpus_to_try++; 115 memcpy(try.features, init->features, sizeof(init->features)); 116 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, &try); 117 if (ret >= 0) { 118 break; 119 } 120 } 121 if (ret < 0) { 122 goto err; 123 } 124 init->target = try.target; 125 } else { 126 /* Treat a NULL cpus_to_try argument the same as an empty 127 * list, which means we will fail the call since this must 128 * be an old kernel which doesn't support PREFERRED_TARGET. 129 */ 130 goto err; 131 } 132 133 finish: 134 fdarray[0] = kvmfd; 135 fdarray[1] = vmfd; 136 fdarray[2] = cpufd; 137 138 return true; 139 140 err: 141 if (cpufd >= 0) { 142 close(cpufd); 143 } 144 if (vmfd >= 0) { 145 close(vmfd); 146 } 147 if (kvmfd >= 0) { 148 close(kvmfd); 149 } 150 151 return false; 152 } 153 154 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray) 155 { 156 int i; 157 158 for (i = 2; i >= 0; i--) { 159 close(fdarray[i]); 160 } 161 } 162 163 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu) 164 { 165 CPUARMState *env = &cpu->env; 166 167 if (!arm_host_cpu_features.dtb_compatible) { 168 if (!kvm_enabled() || 169 !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) { 170 /* We can't report this error yet, so flag that we need to 171 * in arm_cpu_realizefn(). 172 */ 173 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE; 174 cpu->host_cpu_probe_failed = true; 175 return; 176 } 177 } 178 179 cpu->kvm_target = arm_host_cpu_features.target; 180 cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible; 181 cpu->isar = arm_host_cpu_features.isar; 182 env->features = arm_host_cpu_features.features; 183 } 184 185 static bool kvm_no_adjvtime_get(Object *obj, Error **errp) 186 { 187 return !ARM_CPU(obj)->kvm_adjvtime; 188 } 189 190 static void kvm_no_adjvtime_set(Object *obj, bool value, Error **errp) 191 { 192 ARM_CPU(obj)->kvm_adjvtime = !value; 193 } 194 195 static bool kvm_steal_time_get(Object *obj, Error **errp) 196 { 197 return ARM_CPU(obj)->kvm_steal_time != ON_OFF_AUTO_OFF; 198 } 199 200 static void kvm_steal_time_set(Object *obj, bool value, Error **errp) 201 { 202 ARM_CPU(obj)->kvm_steal_time = value ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 203 } 204 205 /* KVM VCPU properties should be prefixed with "kvm-". */ 206 void kvm_arm_add_vcpu_properties(Object *obj) 207 { 208 ARMCPU *cpu = ARM_CPU(obj); 209 CPUARMState *env = &cpu->env; 210 211 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 212 cpu->kvm_adjvtime = true; 213 object_property_add_bool(obj, "kvm-no-adjvtime", kvm_no_adjvtime_get, 214 kvm_no_adjvtime_set); 215 object_property_set_description(obj, "kvm-no-adjvtime", 216 "Set on to disable the adjustment of " 217 "the virtual counter. VM stopped time " 218 "will be counted."); 219 } 220 221 cpu->kvm_steal_time = ON_OFF_AUTO_AUTO; 222 object_property_add_bool(obj, "kvm-steal-time", kvm_steal_time_get, 223 kvm_steal_time_set); 224 object_property_set_description(obj, "kvm-steal-time", 225 "Set off to disable KVM steal time."); 226 } 227 228 bool kvm_arm_pmu_supported(void) 229 { 230 return kvm_check_extension(kvm_state, KVM_CAP_ARM_PMU_V3); 231 } 232 233 int kvm_arm_get_max_vm_ipa_size(MachineState *ms, bool *fixed_ipa) 234 { 235 KVMState *s = KVM_STATE(ms->accelerator); 236 int ret; 237 238 ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE); 239 *fixed_ipa = ret <= 0; 240 241 return ret > 0 ? ret : 40; 242 } 243 244 int kvm_arch_init(MachineState *ms, KVMState *s) 245 { 246 int ret = 0; 247 /* For ARM interrupt delivery is always asynchronous, 248 * whether we are using an in-kernel VGIC or not. 249 */ 250 kvm_async_interrupts_allowed = true; 251 252 /* 253 * PSCI wakes up secondary cores, so we always need to 254 * have vCPUs waiting in kernel space 255 */ 256 kvm_halt_in_kernel_allowed = true; 257 258 cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE); 259 260 if (ms->smp.cpus > 256 && 261 !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) { 262 error_report("Using more than 256 vcpus requires a host kernel " 263 "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2"); 264 ret = -EINVAL; 265 } 266 267 if (kvm_check_extension(s, KVM_CAP_ARM_NISV_TO_USER)) { 268 if (kvm_vm_enable_cap(s, KVM_CAP_ARM_NISV_TO_USER, 0)) { 269 error_report("Failed to enable KVM_CAP_ARM_NISV_TO_USER cap"); 270 } else { 271 /* Set status for supporting the external dabt injection */ 272 cap_has_inject_ext_dabt = kvm_check_extension(s, 273 KVM_CAP_ARM_INJECT_EXT_DABT); 274 } 275 } 276 277 return ret; 278 } 279 280 unsigned long kvm_arch_vcpu_id(CPUState *cpu) 281 { 282 return cpu->cpu_index; 283 } 284 285 /* We track all the KVM devices which need their memory addresses 286 * passing to the kernel in a list of these structures. 287 * When board init is complete we run through the list and 288 * tell the kernel the base addresses of the memory regions. 289 * We use a MemoryListener to track mapping and unmapping of 290 * the regions during board creation, so the board models don't 291 * need to do anything special for the KVM case. 292 * 293 * Sometimes the address must be OR'ed with some other fields 294 * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION). 295 * @kda_addr_ormask aims at storing the value of those fields. 296 */ 297 typedef struct KVMDevice { 298 struct kvm_arm_device_addr kda; 299 struct kvm_device_attr kdattr; 300 uint64_t kda_addr_ormask; 301 MemoryRegion *mr; 302 QSLIST_ENTRY(KVMDevice) entries; 303 int dev_fd; 304 } KVMDevice; 305 306 static QSLIST_HEAD(, KVMDevice) kvm_devices_head; 307 308 static void kvm_arm_devlistener_add(MemoryListener *listener, 309 MemoryRegionSection *section) 310 { 311 KVMDevice *kd; 312 313 QSLIST_FOREACH(kd, &kvm_devices_head, entries) { 314 if (section->mr == kd->mr) { 315 kd->kda.addr = section->offset_within_address_space; 316 } 317 } 318 } 319 320 static void kvm_arm_devlistener_del(MemoryListener *listener, 321 MemoryRegionSection *section) 322 { 323 KVMDevice *kd; 324 325 QSLIST_FOREACH(kd, &kvm_devices_head, entries) { 326 if (section->mr == kd->mr) { 327 kd->kda.addr = -1; 328 } 329 } 330 } 331 332 static MemoryListener devlistener = { 333 .region_add = kvm_arm_devlistener_add, 334 .region_del = kvm_arm_devlistener_del, 335 }; 336 337 static void kvm_arm_set_device_addr(KVMDevice *kd) 338 { 339 struct kvm_device_attr *attr = &kd->kdattr; 340 int ret; 341 342 /* If the device control API is available and we have a device fd on the 343 * KVMDevice struct, let's use the newer API 344 */ 345 if (kd->dev_fd >= 0) { 346 uint64_t addr = kd->kda.addr; 347 348 addr |= kd->kda_addr_ormask; 349 attr->addr = (uintptr_t)&addr; 350 ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr); 351 } else { 352 ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda); 353 } 354 355 if (ret < 0) { 356 fprintf(stderr, "Failed to set device address: %s\n", 357 strerror(-ret)); 358 abort(); 359 } 360 } 361 362 static void kvm_arm_machine_init_done(Notifier *notifier, void *data) 363 { 364 KVMDevice *kd, *tkd; 365 366 QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) { 367 if (kd->kda.addr != -1) { 368 kvm_arm_set_device_addr(kd); 369 } 370 memory_region_unref(kd->mr); 371 QSLIST_REMOVE_HEAD(&kvm_devices_head, entries); 372 g_free(kd); 373 } 374 memory_listener_unregister(&devlistener); 375 } 376 377 static Notifier notify = { 378 .notify = kvm_arm_machine_init_done, 379 }; 380 381 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group, 382 uint64_t attr, int dev_fd, uint64_t addr_ormask) 383 { 384 KVMDevice *kd; 385 386 if (!kvm_irqchip_in_kernel()) { 387 return; 388 } 389 390 if (QSLIST_EMPTY(&kvm_devices_head)) { 391 memory_listener_register(&devlistener, &address_space_memory); 392 qemu_add_machine_init_done_notifier(¬ify); 393 } 394 kd = g_new0(KVMDevice, 1); 395 kd->mr = mr; 396 kd->kda.id = devid; 397 kd->kda.addr = -1; 398 kd->kdattr.flags = 0; 399 kd->kdattr.group = group; 400 kd->kdattr.attr = attr; 401 kd->dev_fd = dev_fd; 402 kd->kda_addr_ormask = addr_ormask; 403 QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries); 404 memory_region_ref(kd->mr); 405 } 406 407 static int compare_u64(const void *a, const void *b) 408 { 409 if (*(uint64_t *)a > *(uint64_t *)b) { 410 return 1; 411 } 412 if (*(uint64_t *)a < *(uint64_t *)b) { 413 return -1; 414 } 415 return 0; 416 } 417 418 /* 419 * cpreg_values are sorted in ascending order by KVM register ID 420 * (see kvm_arm_init_cpreg_list). This allows us to cheaply find 421 * the storage for a KVM register by ID with a binary search. 422 */ 423 static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx) 424 { 425 uint64_t *res; 426 427 res = bsearch(®idx, cpu->cpreg_indexes, cpu->cpreg_array_len, 428 sizeof(uint64_t), compare_u64); 429 assert(res); 430 431 return &cpu->cpreg_values[res - cpu->cpreg_indexes]; 432 } 433 434 /* Initialize the ARMCPU cpreg list according to the kernel's 435 * definition of what CPU registers it knows about (and throw away 436 * the previous TCG-created cpreg list). 437 */ 438 int kvm_arm_init_cpreg_list(ARMCPU *cpu) 439 { 440 struct kvm_reg_list rl; 441 struct kvm_reg_list *rlp; 442 int i, ret, arraylen; 443 CPUState *cs = CPU(cpu); 444 445 rl.n = 0; 446 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl); 447 if (ret != -E2BIG) { 448 return ret; 449 } 450 rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t)); 451 rlp->n = rl.n; 452 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp); 453 if (ret) { 454 goto out; 455 } 456 /* Sort the list we get back from the kernel, since cpreg_tuples 457 * must be in strictly ascending order. 458 */ 459 qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64); 460 461 for (i = 0, arraylen = 0; i < rlp->n; i++) { 462 if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) { 463 continue; 464 } 465 switch (rlp->reg[i] & KVM_REG_SIZE_MASK) { 466 case KVM_REG_SIZE_U32: 467 case KVM_REG_SIZE_U64: 468 break; 469 default: 470 fprintf(stderr, "Can't handle size of register in kernel list\n"); 471 ret = -EINVAL; 472 goto out; 473 } 474 475 arraylen++; 476 } 477 478 cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen); 479 cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen); 480 cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes, 481 arraylen); 482 cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values, 483 arraylen); 484 cpu->cpreg_array_len = arraylen; 485 cpu->cpreg_vmstate_array_len = arraylen; 486 487 for (i = 0, arraylen = 0; i < rlp->n; i++) { 488 uint64_t regidx = rlp->reg[i]; 489 if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) { 490 continue; 491 } 492 cpu->cpreg_indexes[arraylen] = regidx; 493 arraylen++; 494 } 495 assert(cpu->cpreg_array_len == arraylen); 496 497 if (!write_kvmstate_to_list(cpu)) { 498 /* Shouldn't happen unless kernel is inconsistent about 499 * what registers exist. 500 */ 501 fprintf(stderr, "Initial read of kernel register state failed\n"); 502 ret = -EINVAL; 503 goto out; 504 } 505 506 out: 507 g_free(rlp); 508 return ret; 509 } 510 511 bool write_kvmstate_to_list(ARMCPU *cpu) 512 { 513 CPUState *cs = CPU(cpu); 514 int i; 515 bool ok = true; 516 517 for (i = 0; i < cpu->cpreg_array_len; i++) { 518 struct kvm_one_reg r; 519 uint64_t regidx = cpu->cpreg_indexes[i]; 520 uint32_t v32; 521 int ret; 522 523 r.id = regidx; 524 525 switch (regidx & KVM_REG_SIZE_MASK) { 526 case KVM_REG_SIZE_U32: 527 r.addr = (uintptr_t)&v32; 528 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); 529 if (!ret) { 530 cpu->cpreg_values[i] = v32; 531 } 532 break; 533 case KVM_REG_SIZE_U64: 534 r.addr = (uintptr_t)(cpu->cpreg_values + i); 535 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); 536 break; 537 default: 538 abort(); 539 } 540 if (ret) { 541 ok = false; 542 } 543 } 544 return ok; 545 } 546 547 bool write_list_to_kvmstate(ARMCPU *cpu, int level) 548 { 549 CPUState *cs = CPU(cpu); 550 int i; 551 bool ok = true; 552 553 for (i = 0; i < cpu->cpreg_array_len; i++) { 554 struct kvm_one_reg r; 555 uint64_t regidx = cpu->cpreg_indexes[i]; 556 uint32_t v32; 557 int ret; 558 559 if (kvm_arm_cpreg_level(regidx) > level) { 560 continue; 561 } 562 563 r.id = regidx; 564 switch (regidx & KVM_REG_SIZE_MASK) { 565 case KVM_REG_SIZE_U32: 566 v32 = cpu->cpreg_values[i]; 567 r.addr = (uintptr_t)&v32; 568 break; 569 case KVM_REG_SIZE_U64: 570 r.addr = (uintptr_t)(cpu->cpreg_values + i); 571 break; 572 default: 573 abort(); 574 } 575 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); 576 if (ret) { 577 /* We might fail for "unknown register" and also for 578 * "you tried to set a register which is constant with 579 * a different value from what it actually contains". 580 */ 581 ok = false; 582 } 583 } 584 return ok; 585 } 586 587 void kvm_arm_cpu_pre_save(ARMCPU *cpu) 588 { 589 /* KVM virtual time adjustment */ 590 if (cpu->kvm_vtime_dirty) { 591 *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT) = cpu->kvm_vtime; 592 } 593 } 594 595 void kvm_arm_cpu_post_load(ARMCPU *cpu) 596 { 597 /* KVM virtual time adjustment */ 598 if (cpu->kvm_adjvtime) { 599 cpu->kvm_vtime = *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT); 600 cpu->kvm_vtime_dirty = true; 601 } 602 } 603 604 void kvm_arm_reset_vcpu(ARMCPU *cpu) 605 { 606 int ret; 607 608 /* Re-init VCPU so that all registers are set to 609 * their respective reset values. 610 */ 611 ret = kvm_arm_vcpu_init(CPU(cpu)); 612 if (ret < 0) { 613 fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret)); 614 abort(); 615 } 616 if (!write_kvmstate_to_list(cpu)) { 617 fprintf(stderr, "write_kvmstate_to_list failed\n"); 618 abort(); 619 } 620 /* 621 * Sync the reset values also into the CPUState. This is necessary 622 * because the next thing we do will be a kvm_arch_put_registers() 623 * which will update the list values from the CPUState before copying 624 * the list values back to KVM. It's OK to ignore failure returns here 625 * for the same reason we do so in kvm_arch_get_registers(). 626 */ 627 write_list_to_cpustate(cpu); 628 } 629 630 /* 631 * Update KVM's MP_STATE based on what QEMU thinks it is 632 */ 633 int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu) 634 { 635 if (cap_has_mp_state) { 636 struct kvm_mp_state mp_state = { 637 .mp_state = (cpu->power_state == PSCI_OFF) ? 638 KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE 639 }; 640 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); 641 if (ret) { 642 fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n", 643 __func__, ret, strerror(-ret)); 644 return -1; 645 } 646 } 647 648 return 0; 649 } 650 651 /* 652 * Sync the KVM MP_STATE into QEMU 653 */ 654 int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu) 655 { 656 if (cap_has_mp_state) { 657 struct kvm_mp_state mp_state; 658 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state); 659 if (ret) { 660 fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n", 661 __func__, ret, strerror(-ret)); 662 abort(); 663 } 664 cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ? 665 PSCI_OFF : PSCI_ON; 666 } 667 668 return 0; 669 } 670 671 void kvm_arm_get_virtual_time(CPUState *cs) 672 { 673 ARMCPU *cpu = ARM_CPU(cs); 674 struct kvm_one_reg reg = { 675 .id = KVM_REG_ARM_TIMER_CNT, 676 .addr = (uintptr_t)&cpu->kvm_vtime, 677 }; 678 int ret; 679 680 if (cpu->kvm_vtime_dirty) { 681 return; 682 } 683 684 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 685 if (ret) { 686 error_report("Failed to get KVM_REG_ARM_TIMER_CNT"); 687 abort(); 688 } 689 690 cpu->kvm_vtime_dirty = true; 691 } 692 693 void kvm_arm_put_virtual_time(CPUState *cs) 694 { 695 ARMCPU *cpu = ARM_CPU(cs); 696 struct kvm_one_reg reg = { 697 .id = KVM_REG_ARM_TIMER_CNT, 698 .addr = (uintptr_t)&cpu->kvm_vtime, 699 }; 700 int ret; 701 702 if (!cpu->kvm_vtime_dirty) { 703 return; 704 } 705 706 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 707 if (ret) { 708 error_report("Failed to set KVM_REG_ARM_TIMER_CNT"); 709 abort(); 710 } 711 712 cpu->kvm_vtime_dirty = false; 713 } 714 715 int kvm_put_vcpu_events(ARMCPU *cpu) 716 { 717 CPUARMState *env = &cpu->env; 718 struct kvm_vcpu_events events; 719 int ret; 720 721 if (!kvm_has_vcpu_events()) { 722 return 0; 723 } 724 725 memset(&events, 0, sizeof(events)); 726 events.exception.serror_pending = env->serror.pending; 727 728 /* Inject SError to guest with specified syndrome if host kernel 729 * supports it, otherwise inject SError without syndrome. 730 */ 731 if (cap_has_inject_serror_esr) { 732 events.exception.serror_has_esr = env->serror.has_esr; 733 events.exception.serror_esr = env->serror.esr; 734 } 735 736 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); 737 if (ret) { 738 error_report("failed to put vcpu events"); 739 } 740 741 return ret; 742 } 743 744 int kvm_get_vcpu_events(ARMCPU *cpu) 745 { 746 CPUARMState *env = &cpu->env; 747 struct kvm_vcpu_events events; 748 int ret; 749 750 if (!kvm_has_vcpu_events()) { 751 return 0; 752 } 753 754 memset(&events, 0, sizeof(events)); 755 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); 756 if (ret) { 757 error_report("failed to get vcpu events"); 758 return ret; 759 } 760 761 env->serror.pending = events.exception.serror_pending; 762 env->serror.has_esr = events.exception.serror_has_esr; 763 env->serror.esr = events.exception.serror_esr; 764 765 return 0; 766 } 767 768 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run) 769 { 770 ARMCPU *cpu = ARM_CPU(cs); 771 CPUARMState *env = &cpu->env; 772 773 if (unlikely(env->ext_dabt_raised)) { 774 /* 775 * Verifying that the ext DABT has been properly injected, 776 * otherwise risking indefinitely re-running the faulting instruction 777 * Covering a very narrow case for kernels 5.5..5.5.4 778 * when injected abort was misconfigured to be 779 * an IMPLEMENTATION DEFINED exception (for 32-bit EL1) 780 */ 781 if (!arm_feature(env, ARM_FEATURE_AARCH64) && 782 unlikely(!kvm_arm_verify_ext_dabt_pending(cs))) { 783 784 error_report("Data abort exception with no valid ISS generated by " 785 "guest memory access. KVM unable to emulate faulting " 786 "instruction. Failed to inject an external data abort " 787 "into the guest."); 788 abort(); 789 } 790 /* Clear the status */ 791 env->ext_dabt_raised = 0; 792 } 793 } 794 795 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) 796 { 797 ARMCPU *cpu; 798 uint32_t switched_level; 799 800 if (kvm_irqchip_in_kernel()) { 801 /* 802 * We only need to sync timer states with user-space interrupt 803 * controllers, so return early and save cycles if we don't. 804 */ 805 return MEMTXATTRS_UNSPECIFIED; 806 } 807 808 cpu = ARM_CPU(cs); 809 810 /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */ 811 if (run->s.regs.device_irq_level != cpu->device_irq_level) { 812 switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level; 813 814 qemu_mutex_lock_iothread(); 815 816 if (switched_level & KVM_ARM_DEV_EL1_VTIMER) { 817 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT], 818 !!(run->s.regs.device_irq_level & 819 KVM_ARM_DEV_EL1_VTIMER)); 820 switched_level &= ~KVM_ARM_DEV_EL1_VTIMER; 821 } 822 823 if (switched_level & KVM_ARM_DEV_EL1_PTIMER) { 824 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS], 825 !!(run->s.regs.device_irq_level & 826 KVM_ARM_DEV_EL1_PTIMER)); 827 switched_level &= ~KVM_ARM_DEV_EL1_PTIMER; 828 } 829 830 if (switched_level & KVM_ARM_DEV_PMU) { 831 qemu_set_irq(cpu->pmu_interrupt, 832 !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU)); 833 switched_level &= ~KVM_ARM_DEV_PMU; 834 } 835 836 if (switched_level) { 837 qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n", 838 __func__, switched_level); 839 } 840 841 /* We also mark unknown levels as processed to not waste cycles */ 842 cpu->device_irq_level = run->s.regs.device_irq_level; 843 qemu_mutex_unlock_iothread(); 844 } 845 846 return MEMTXATTRS_UNSPECIFIED; 847 } 848 849 void kvm_arm_vm_state_change(void *opaque, bool running, RunState state) 850 { 851 CPUState *cs = opaque; 852 ARMCPU *cpu = ARM_CPU(cs); 853 854 if (running) { 855 if (cpu->kvm_adjvtime) { 856 kvm_arm_put_virtual_time(cs); 857 } 858 } else { 859 if (cpu->kvm_adjvtime) { 860 kvm_arm_get_virtual_time(cs); 861 } 862 } 863 } 864 865 /** 866 * kvm_arm_handle_dabt_nisv: 867 * @cs: CPUState 868 * @esr_iss: ISS encoding (limited) for the exception from Data Abort 869 * ISV bit set to '0b0' -> no valid instruction syndrome 870 * @fault_ipa: faulting address for the synchronous data abort 871 * 872 * Returns: 0 if the exception has been handled, < 0 otherwise 873 */ 874 static int kvm_arm_handle_dabt_nisv(CPUState *cs, uint64_t esr_iss, 875 uint64_t fault_ipa) 876 { 877 ARMCPU *cpu = ARM_CPU(cs); 878 CPUARMState *env = &cpu->env; 879 /* 880 * Request KVM to inject the external data abort into the guest 881 */ 882 if (cap_has_inject_ext_dabt) { 883 struct kvm_vcpu_events events = { }; 884 /* 885 * The external data abort event will be handled immediately by KVM 886 * using the address fault that triggered the exit on given VCPU. 887 * Requesting injection of the external data abort does not rely 888 * on any other VCPU state. Therefore, in this particular case, the VCPU 889 * synchronization can be exceptionally skipped. 890 */ 891 events.exception.ext_dabt_pending = 1; 892 /* KVM_CAP_ARM_INJECT_EXT_DABT implies KVM_CAP_VCPU_EVENTS */ 893 if (!kvm_vcpu_ioctl(cs, KVM_SET_VCPU_EVENTS, &events)) { 894 env->ext_dabt_raised = 1; 895 return 0; 896 } 897 } else { 898 error_report("Data abort exception triggered by guest memory access " 899 "at physical address: 0x" TARGET_FMT_lx, 900 (target_ulong)fault_ipa); 901 error_printf("KVM unable to emulate faulting instruction.\n"); 902 } 903 return -1; 904 } 905 906 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 907 { 908 int ret = 0; 909 910 switch (run->exit_reason) { 911 case KVM_EXIT_DEBUG: 912 if (kvm_arm_handle_debug(cs, &run->debug.arch)) { 913 ret = EXCP_DEBUG; 914 } /* otherwise return to guest */ 915 break; 916 case KVM_EXIT_ARM_NISV: 917 /* External DABT with no valid iss to decode */ 918 ret = kvm_arm_handle_dabt_nisv(cs, run->arm_nisv.esr_iss, 919 run->arm_nisv.fault_ipa); 920 break; 921 default: 922 qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n", 923 __func__, run->exit_reason); 924 break; 925 } 926 return ret; 927 } 928 929 bool kvm_arch_stop_on_emulation_error(CPUState *cs) 930 { 931 return true; 932 } 933 934 int kvm_arch_process_async_events(CPUState *cs) 935 { 936 return 0; 937 } 938 939 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg) 940 { 941 if (kvm_sw_breakpoints_active(cs)) { 942 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; 943 } 944 if (kvm_arm_hw_debug_active(cs)) { 945 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW; 946 kvm_arm_copy_hw_debug_data(&dbg->arch); 947 } 948 } 949 950 void kvm_arch_init_irq_routing(KVMState *s) 951 { 952 } 953 954 int kvm_arch_irqchip_create(KVMState *s) 955 { 956 if (kvm_kernel_irqchip_split()) { 957 perror("-machine kernel_irqchip=split is not supported on ARM."); 958 exit(1); 959 } 960 961 /* If we can create the VGIC using the newer device control API, we 962 * let the device do this when it initializes itself, otherwise we 963 * fall back to the old API */ 964 return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL); 965 } 966 967 int kvm_arm_vgic_probe(void) 968 { 969 int val = 0; 970 971 if (kvm_create_device(kvm_state, 972 KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) { 973 val |= KVM_ARM_VGIC_V3; 974 } 975 if (kvm_create_device(kvm_state, 976 KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) { 977 val |= KVM_ARM_VGIC_V2; 978 } 979 return val; 980 } 981 982 int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level) 983 { 984 int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq; 985 int cpu_idx1 = cpu % 256; 986 int cpu_idx2 = cpu / 256; 987 988 kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) | 989 (cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT); 990 991 return kvm_set_irq(kvm_state, kvm_irq, !!level); 992 } 993 994 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 995 uint64_t address, uint32_t data, PCIDevice *dev) 996 { 997 AddressSpace *as = pci_device_iommu_address_space(dev); 998 hwaddr xlat, len, doorbell_gpa; 999 MemoryRegionSection mrs; 1000 MemoryRegion *mr; 1001 int ret = 1; 1002 1003 if (as == &address_space_memory) { 1004 return 0; 1005 } 1006 1007 /* MSI doorbell address is translated by an IOMMU */ 1008 1009 rcu_read_lock(); 1010 mr = address_space_translate(as, address, &xlat, &len, true, 1011 MEMTXATTRS_UNSPECIFIED); 1012 if (!mr) { 1013 goto unlock; 1014 } 1015 mrs = memory_region_find(mr, xlat, 1); 1016 if (!mrs.mr) { 1017 goto unlock; 1018 } 1019 1020 doorbell_gpa = mrs.offset_within_address_space; 1021 memory_region_unref(mrs.mr); 1022 1023 route->u.msi.address_lo = doorbell_gpa; 1024 route->u.msi.address_hi = doorbell_gpa >> 32; 1025 1026 trace_kvm_arm_fixup_msi_route(address, doorbell_gpa); 1027 1028 ret = 0; 1029 1030 unlock: 1031 rcu_read_unlock(); 1032 return ret; 1033 } 1034 1035 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 1036 int vector, PCIDevice *dev) 1037 { 1038 return 0; 1039 } 1040 1041 int kvm_arch_release_virq_post(int virq) 1042 { 1043 return 0; 1044 } 1045 1046 int kvm_arch_msi_data_to_gsi(uint32_t data) 1047 { 1048 return (data - 32) & 0xffff; 1049 } 1050 1051 bool kvm_arch_cpu_check_are_resettable(void) 1052 { 1053 return true; 1054 } 1055