xref: /openbmc/qemu/target/arm/kvm.c (revision 3dba0a33)
1 /*
2  * ARM implementation of KVM hooks
3  *
4  * Copyright Christoffer Dall 2009-2010
5  *
6  * This work is licensed under the terms of the GNU GPL, version 2 or later.
7  * See the COPYING file in the top-level directory.
8  *
9  */
10 
11 #include "qemu/osdep.h"
12 #include <sys/ioctl.h>
13 
14 #include <linux/kvm.h>
15 
16 #include "qemu/timer.h"
17 #include "qemu/error-report.h"
18 #include "qemu/main-loop.h"
19 #include "qom/object.h"
20 #include "qapi/error.h"
21 #include "sysemu/sysemu.h"
22 #include "sysemu/kvm.h"
23 #include "sysemu/kvm_int.h"
24 #include "kvm_arm.h"
25 #include "cpu.h"
26 #include "trace.h"
27 #include "internals.h"
28 #include "hw/pci/pci.h"
29 #include "exec/memattrs.h"
30 #include "exec/address-spaces.h"
31 #include "hw/boards.h"
32 #include "hw/irq.h"
33 #include "qemu/log.h"
34 
35 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
36     KVM_CAP_LAST_INFO
37 };
38 
39 static bool cap_has_mp_state;
40 static bool cap_has_inject_serror_esr;
41 static bool cap_has_inject_ext_dabt;
42 
43 static ARMHostCPUFeatures arm_host_cpu_features;
44 
45 int kvm_arm_vcpu_init(CPUState *cs)
46 {
47     ARMCPU *cpu = ARM_CPU(cs);
48     struct kvm_vcpu_init init;
49 
50     init.target = cpu->kvm_target;
51     memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
52 
53     return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
54 }
55 
56 int kvm_arm_vcpu_finalize(CPUState *cs, int feature)
57 {
58     return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_FINALIZE, &feature);
59 }
60 
61 void kvm_arm_init_serror_injection(CPUState *cs)
62 {
63     cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state,
64                                     KVM_CAP_ARM_INJECT_SERROR_ESR);
65 }
66 
67 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
68                                       int *fdarray,
69                                       struct kvm_vcpu_init *init)
70 {
71     int ret = 0, kvmfd = -1, vmfd = -1, cpufd = -1;
72     int max_vm_pa_size;
73 
74     kvmfd = qemu_open_old("/dev/kvm", O_RDWR);
75     if (kvmfd < 0) {
76         goto err;
77     }
78     max_vm_pa_size = ioctl(kvmfd, KVM_CHECK_EXTENSION, KVM_CAP_ARM_VM_IPA_SIZE);
79     if (max_vm_pa_size < 0) {
80         max_vm_pa_size = 0;
81     }
82     vmfd = ioctl(kvmfd, KVM_CREATE_VM, max_vm_pa_size);
83     if (vmfd < 0) {
84         goto err;
85     }
86     cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
87     if (cpufd < 0) {
88         goto err;
89     }
90 
91     if (!init) {
92         /* Caller doesn't want the VCPU to be initialized, so skip it */
93         goto finish;
94     }
95 
96     if (init->target == -1) {
97         struct kvm_vcpu_init preferred;
98 
99         ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, &preferred);
100         if (!ret) {
101             init->target = preferred.target;
102         }
103     }
104     if (ret >= 0) {
105         ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
106         if (ret < 0) {
107             goto err;
108         }
109     } else if (cpus_to_try) {
110         /* Old kernel which doesn't know about the
111          * PREFERRED_TARGET ioctl: we know it will only support
112          * creating one kind of guest CPU which is its preferred
113          * CPU type.
114          */
115         struct kvm_vcpu_init try;
116 
117         while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
118             try.target = *cpus_to_try++;
119             memcpy(try.features, init->features, sizeof(init->features));
120             ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, &try);
121             if (ret >= 0) {
122                 break;
123             }
124         }
125         if (ret < 0) {
126             goto err;
127         }
128         init->target = try.target;
129     } else {
130         /* Treat a NULL cpus_to_try argument the same as an empty
131          * list, which means we will fail the call since this must
132          * be an old kernel which doesn't support PREFERRED_TARGET.
133          */
134         goto err;
135     }
136 
137 finish:
138     fdarray[0] = kvmfd;
139     fdarray[1] = vmfd;
140     fdarray[2] = cpufd;
141 
142     return true;
143 
144 err:
145     if (cpufd >= 0) {
146         close(cpufd);
147     }
148     if (vmfd >= 0) {
149         close(vmfd);
150     }
151     if (kvmfd >= 0) {
152         close(kvmfd);
153     }
154 
155     return false;
156 }
157 
158 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
159 {
160     int i;
161 
162     for (i = 2; i >= 0; i--) {
163         close(fdarray[i]);
164     }
165 }
166 
167 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
168 {
169     CPUARMState *env = &cpu->env;
170 
171     if (!arm_host_cpu_features.dtb_compatible) {
172         if (!kvm_enabled() ||
173             !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) {
174             /* We can't report this error yet, so flag that we need to
175              * in arm_cpu_realizefn().
176              */
177             cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
178             cpu->host_cpu_probe_failed = true;
179             return;
180         }
181     }
182 
183     cpu->kvm_target = arm_host_cpu_features.target;
184     cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
185     cpu->isar = arm_host_cpu_features.isar;
186     env->features = arm_host_cpu_features.features;
187 }
188 
189 static bool kvm_no_adjvtime_get(Object *obj, Error **errp)
190 {
191     return !ARM_CPU(obj)->kvm_adjvtime;
192 }
193 
194 static void kvm_no_adjvtime_set(Object *obj, bool value, Error **errp)
195 {
196     ARM_CPU(obj)->kvm_adjvtime = !value;
197 }
198 
199 static bool kvm_steal_time_get(Object *obj, Error **errp)
200 {
201     return ARM_CPU(obj)->kvm_steal_time != ON_OFF_AUTO_OFF;
202 }
203 
204 static void kvm_steal_time_set(Object *obj, bool value, Error **errp)
205 {
206     ARM_CPU(obj)->kvm_steal_time = value ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
207 }
208 
209 /* KVM VCPU properties should be prefixed with "kvm-". */
210 void kvm_arm_add_vcpu_properties(Object *obj)
211 {
212     ARMCPU *cpu = ARM_CPU(obj);
213     CPUARMState *env = &cpu->env;
214 
215     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
216         cpu->kvm_adjvtime = true;
217         object_property_add_bool(obj, "kvm-no-adjvtime", kvm_no_adjvtime_get,
218                                  kvm_no_adjvtime_set);
219         object_property_set_description(obj, "kvm-no-adjvtime",
220                                         "Set on to disable the adjustment of "
221                                         "the virtual counter. VM stopped time "
222                                         "will be counted.");
223     }
224 
225     cpu->kvm_steal_time = ON_OFF_AUTO_AUTO;
226     object_property_add_bool(obj, "kvm-steal-time", kvm_steal_time_get,
227                              kvm_steal_time_set);
228     object_property_set_description(obj, "kvm-steal-time",
229                                     "Set off to disable KVM steal time.");
230 }
231 
232 bool kvm_arm_pmu_supported(void)
233 {
234     return kvm_check_extension(kvm_state, KVM_CAP_ARM_PMU_V3);
235 }
236 
237 int kvm_arm_get_max_vm_ipa_size(MachineState *ms, bool *fixed_ipa)
238 {
239     KVMState *s = KVM_STATE(ms->accelerator);
240     int ret;
241 
242     ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE);
243     *fixed_ipa = ret <= 0;
244 
245     return ret > 0 ? ret : 40;
246 }
247 
248 int kvm_arch_init(MachineState *ms, KVMState *s)
249 {
250     int ret = 0;
251     /* For ARM interrupt delivery is always asynchronous,
252      * whether we are using an in-kernel VGIC or not.
253      */
254     kvm_async_interrupts_allowed = true;
255 
256     /*
257      * PSCI wakes up secondary cores, so we always need to
258      * have vCPUs waiting in kernel space
259      */
260     kvm_halt_in_kernel_allowed = true;
261 
262     cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
263 
264     if (ms->smp.cpus > 256 &&
265         !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) {
266         error_report("Using more than 256 vcpus requires a host kernel "
267                      "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2");
268         ret = -EINVAL;
269     }
270 
271     if (kvm_check_extension(s, KVM_CAP_ARM_NISV_TO_USER)) {
272         if (kvm_vm_enable_cap(s, KVM_CAP_ARM_NISV_TO_USER, 0)) {
273             error_report("Failed to enable KVM_CAP_ARM_NISV_TO_USER cap");
274         } else {
275             /* Set status for supporting the external dabt injection */
276             cap_has_inject_ext_dabt = kvm_check_extension(s,
277                                     KVM_CAP_ARM_INJECT_EXT_DABT);
278         }
279     }
280 
281     return ret;
282 }
283 
284 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
285 {
286     return cpu->cpu_index;
287 }
288 
289 /* We track all the KVM devices which need their memory addresses
290  * passing to the kernel in a list of these structures.
291  * When board init is complete we run through the list and
292  * tell the kernel the base addresses of the memory regions.
293  * We use a MemoryListener to track mapping and unmapping of
294  * the regions during board creation, so the board models don't
295  * need to do anything special for the KVM case.
296  *
297  * Sometimes the address must be OR'ed with some other fields
298  * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
299  * @kda_addr_ormask aims at storing the value of those fields.
300  */
301 typedef struct KVMDevice {
302     struct kvm_arm_device_addr kda;
303     struct kvm_device_attr kdattr;
304     uint64_t kda_addr_ormask;
305     MemoryRegion *mr;
306     QSLIST_ENTRY(KVMDevice) entries;
307     int dev_fd;
308 } KVMDevice;
309 
310 static QSLIST_HEAD(, KVMDevice) kvm_devices_head;
311 
312 static void kvm_arm_devlistener_add(MemoryListener *listener,
313                                     MemoryRegionSection *section)
314 {
315     KVMDevice *kd;
316 
317     QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
318         if (section->mr == kd->mr) {
319             kd->kda.addr = section->offset_within_address_space;
320         }
321     }
322 }
323 
324 static void kvm_arm_devlistener_del(MemoryListener *listener,
325                                     MemoryRegionSection *section)
326 {
327     KVMDevice *kd;
328 
329     QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
330         if (section->mr == kd->mr) {
331             kd->kda.addr = -1;
332         }
333     }
334 }
335 
336 static MemoryListener devlistener = {
337     .name = "kvm-arm",
338     .region_add = kvm_arm_devlistener_add,
339     .region_del = kvm_arm_devlistener_del,
340 };
341 
342 static void kvm_arm_set_device_addr(KVMDevice *kd)
343 {
344     struct kvm_device_attr *attr = &kd->kdattr;
345     int ret;
346 
347     /* If the device control API is available and we have a device fd on the
348      * KVMDevice struct, let's use the newer API
349      */
350     if (kd->dev_fd >= 0) {
351         uint64_t addr = kd->kda.addr;
352 
353         addr |= kd->kda_addr_ormask;
354         attr->addr = (uintptr_t)&addr;
355         ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
356     } else {
357         ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
358     }
359 
360     if (ret < 0) {
361         fprintf(stderr, "Failed to set device address: %s\n",
362                 strerror(-ret));
363         abort();
364     }
365 }
366 
367 static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
368 {
369     KVMDevice *kd, *tkd;
370 
371     QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
372         if (kd->kda.addr != -1) {
373             kvm_arm_set_device_addr(kd);
374         }
375         memory_region_unref(kd->mr);
376         QSLIST_REMOVE_HEAD(&kvm_devices_head, entries);
377         g_free(kd);
378     }
379     memory_listener_unregister(&devlistener);
380 }
381 
382 static Notifier notify = {
383     .notify = kvm_arm_machine_init_done,
384 };
385 
386 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
387                              uint64_t attr, int dev_fd, uint64_t addr_ormask)
388 {
389     KVMDevice *kd;
390 
391     if (!kvm_irqchip_in_kernel()) {
392         return;
393     }
394 
395     if (QSLIST_EMPTY(&kvm_devices_head)) {
396         memory_listener_register(&devlistener, &address_space_memory);
397         qemu_add_machine_init_done_notifier(&notify);
398     }
399     kd = g_new0(KVMDevice, 1);
400     kd->mr = mr;
401     kd->kda.id = devid;
402     kd->kda.addr = -1;
403     kd->kdattr.flags = 0;
404     kd->kdattr.group = group;
405     kd->kdattr.attr = attr;
406     kd->dev_fd = dev_fd;
407     kd->kda_addr_ormask = addr_ormask;
408     QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
409     memory_region_ref(kd->mr);
410 }
411 
412 static int compare_u64(const void *a, const void *b)
413 {
414     if (*(uint64_t *)a > *(uint64_t *)b) {
415         return 1;
416     }
417     if (*(uint64_t *)a < *(uint64_t *)b) {
418         return -1;
419     }
420     return 0;
421 }
422 
423 /*
424  * cpreg_values are sorted in ascending order by KVM register ID
425  * (see kvm_arm_init_cpreg_list). This allows us to cheaply find
426  * the storage for a KVM register by ID with a binary search.
427  */
428 static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx)
429 {
430     uint64_t *res;
431 
432     res = bsearch(&regidx, cpu->cpreg_indexes, cpu->cpreg_array_len,
433                   sizeof(uint64_t), compare_u64);
434     assert(res);
435 
436     return &cpu->cpreg_values[res - cpu->cpreg_indexes];
437 }
438 
439 /* Initialize the ARMCPU cpreg list according to the kernel's
440  * definition of what CPU registers it knows about (and throw away
441  * the previous TCG-created cpreg list).
442  */
443 int kvm_arm_init_cpreg_list(ARMCPU *cpu)
444 {
445     struct kvm_reg_list rl;
446     struct kvm_reg_list *rlp;
447     int i, ret, arraylen;
448     CPUState *cs = CPU(cpu);
449 
450     rl.n = 0;
451     ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
452     if (ret != -E2BIG) {
453         return ret;
454     }
455     rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
456     rlp->n = rl.n;
457     ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
458     if (ret) {
459         goto out;
460     }
461     /* Sort the list we get back from the kernel, since cpreg_tuples
462      * must be in strictly ascending order.
463      */
464     qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
465 
466     for (i = 0, arraylen = 0; i < rlp->n; i++) {
467         if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
468             continue;
469         }
470         switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
471         case KVM_REG_SIZE_U32:
472         case KVM_REG_SIZE_U64:
473             break;
474         default:
475             fprintf(stderr, "Can't handle size of register in kernel list\n");
476             ret = -EINVAL;
477             goto out;
478         }
479 
480         arraylen++;
481     }
482 
483     cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
484     cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
485     cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
486                                          arraylen);
487     cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
488                                         arraylen);
489     cpu->cpreg_array_len = arraylen;
490     cpu->cpreg_vmstate_array_len = arraylen;
491 
492     for (i = 0, arraylen = 0; i < rlp->n; i++) {
493         uint64_t regidx = rlp->reg[i];
494         if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
495             continue;
496         }
497         cpu->cpreg_indexes[arraylen] = regidx;
498         arraylen++;
499     }
500     assert(cpu->cpreg_array_len == arraylen);
501 
502     if (!write_kvmstate_to_list(cpu)) {
503         /* Shouldn't happen unless kernel is inconsistent about
504          * what registers exist.
505          */
506         fprintf(stderr, "Initial read of kernel register state failed\n");
507         ret = -EINVAL;
508         goto out;
509     }
510 
511 out:
512     g_free(rlp);
513     return ret;
514 }
515 
516 bool write_kvmstate_to_list(ARMCPU *cpu)
517 {
518     CPUState *cs = CPU(cpu);
519     int i;
520     bool ok = true;
521 
522     for (i = 0; i < cpu->cpreg_array_len; i++) {
523         struct kvm_one_reg r;
524         uint64_t regidx = cpu->cpreg_indexes[i];
525         uint32_t v32;
526         int ret;
527 
528         r.id = regidx;
529 
530         switch (regidx & KVM_REG_SIZE_MASK) {
531         case KVM_REG_SIZE_U32:
532             r.addr = (uintptr_t)&v32;
533             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
534             if (!ret) {
535                 cpu->cpreg_values[i] = v32;
536             }
537             break;
538         case KVM_REG_SIZE_U64:
539             r.addr = (uintptr_t)(cpu->cpreg_values + i);
540             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
541             break;
542         default:
543             g_assert_not_reached();
544         }
545         if (ret) {
546             ok = false;
547         }
548     }
549     return ok;
550 }
551 
552 bool write_list_to_kvmstate(ARMCPU *cpu, int level)
553 {
554     CPUState *cs = CPU(cpu);
555     int i;
556     bool ok = true;
557 
558     for (i = 0; i < cpu->cpreg_array_len; i++) {
559         struct kvm_one_reg r;
560         uint64_t regidx = cpu->cpreg_indexes[i];
561         uint32_t v32;
562         int ret;
563 
564         if (kvm_arm_cpreg_level(regidx) > level) {
565             continue;
566         }
567 
568         r.id = regidx;
569         switch (regidx & KVM_REG_SIZE_MASK) {
570         case KVM_REG_SIZE_U32:
571             v32 = cpu->cpreg_values[i];
572             r.addr = (uintptr_t)&v32;
573             break;
574         case KVM_REG_SIZE_U64:
575             r.addr = (uintptr_t)(cpu->cpreg_values + i);
576             break;
577         default:
578             g_assert_not_reached();
579         }
580         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
581         if (ret) {
582             /* We might fail for "unknown register" and also for
583              * "you tried to set a register which is constant with
584              * a different value from what it actually contains".
585              */
586             ok = false;
587         }
588     }
589     return ok;
590 }
591 
592 void kvm_arm_cpu_pre_save(ARMCPU *cpu)
593 {
594     /* KVM virtual time adjustment */
595     if (cpu->kvm_vtime_dirty) {
596         *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT) = cpu->kvm_vtime;
597     }
598 }
599 
600 void kvm_arm_cpu_post_load(ARMCPU *cpu)
601 {
602     /* KVM virtual time adjustment */
603     if (cpu->kvm_adjvtime) {
604         cpu->kvm_vtime = *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT);
605         cpu->kvm_vtime_dirty = true;
606     }
607 }
608 
609 void kvm_arm_reset_vcpu(ARMCPU *cpu)
610 {
611     int ret;
612 
613     /* Re-init VCPU so that all registers are set to
614      * their respective reset values.
615      */
616     ret = kvm_arm_vcpu_init(CPU(cpu));
617     if (ret < 0) {
618         fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
619         abort();
620     }
621     if (!write_kvmstate_to_list(cpu)) {
622         fprintf(stderr, "write_kvmstate_to_list failed\n");
623         abort();
624     }
625     /*
626      * Sync the reset values also into the CPUState. This is necessary
627      * because the next thing we do will be a kvm_arch_put_registers()
628      * which will update the list values from the CPUState before copying
629      * the list values back to KVM. It's OK to ignore failure returns here
630      * for the same reason we do so in kvm_arch_get_registers().
631      */
632     write_list_to_cpustate(cpu);
633 }
634 
635 /*
636  * Update KVM's MP_STATE based on what QEMU thinks it is
637  */
638 int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
639 {
640     if (cap_has_mp_state) {
641         struct kvm_mp_state mp_state = {
642             .mp_state = (cpu->power_state == PSCI_OFF) ?
643             KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
644         };
645         int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
646         if (ret) {
647             fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n",
648                     __func__, ret, strerror(-ret));
649             return -1;
650         }
651     }
652 
653     return 0;
654 }
655 
656 /*
657  * Sync the KVM MP_STATE into QEMU
658  */
659 int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
660 {
661     if (cap_has_mp_state) {
662         struct kvm_mp_state mp_state;
663         int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
664         if (ret) {
665             fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n",
666                     __func__, ret, strerror(-ret));
667             abort();
668         }
669         cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
670             PSCI_OFF : PSCI_ON;
671     }
672 
673     return 0;
674 }
675 
676 void kvm_arm_get_virtual_time(CPUState *cs)
677 {
678     ARMCPU *cpu = ARM_CPU(cs);
679     struct kvm_one_reg reg = {
680         .id = KVM_REG_ARM_TIMER_CNT,
681         .addr = (uintptr_t)&cpu->kvm_vtime,
682     };
683     int ret;
684 
685     if (cpu->kvm_vtime_dirty) {
686         return;
687     }
688 
689     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
690     if (ret) {
691         error_report("Failed to get KVM_REG_ARM_TIMER_CNT");
692         abort();
693     }
694 
695     cpu->kvm_vtime_dirty = true;
696 }
697 
698 void kvm_arm_put_virtual_time(CPUState *cs)
699 {
700     ARMCPU *cpu = ARM_CPU(cs);
701     struct kvm_one_reg reg = {
702         .id = KVM_REG_ARM_TIMER_CNT,
703         .addr = (uintptr_t)&cpu->kvm_vtime,
704     };
705     int ret;
706 
707     if (!cpu->kvm_vtime_dirty) {
708         return;
709     }
710 
711     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
712     if (ret) {
713         error_report("Failed to set KVM_REG_ARM_TIMER_CNT");
714         abort();
715     }
716 
717     cpu->kvm_vtime_dirty = false;
718 }
719 
720 int kvm_put_vcpu_events(ARMCPU *cpu)
721 {
722     CPUARMState *env = &cpu->env;
723     struct kvm_vcpu_events events;
724     int ret;
725 
726     if (!kvm_has_vcpu_events()) {
727         return 0;
728     }
729 
730     memset(&events, 0, sizeof(events));
731     events.exception.serror_pending = env->serror.pending;
732 
733     /* Inject SError to guest with specified syndrome if host kernel
734      * supports it, otherwise inject SError without syndrome.
735      */
736     if (cap_has_inject_serror_esr) {
737         events.exception.serror_has_esr = env->serror.has_esr;
738         events.exception.serror_esr = env->serror.esr;
739     }
740 
741     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
742     if (ret) {
743         error_report("failed to put vcpu events");
744     }
745 
746     return ret;
747 }
748 
749 int kvm_get_vcpu_events(ARMCPU *cpu)
750 {
751     CPUARMState *env = &cpu->env;
752     struct kvm_vcpu_events events;
753     int ret;
754 
755     if (!kvm_has_vcpu_events()) {
756         return 0;
757     }
758 
759     memset(&events, 0, sizeof(events));
760     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
761     if (ret) {
762         error_report("failed to get vcpu events");
763         return ret;
764     }
765 
766     env->serror.pending = events.exception.serror_pending;
767     env->serror.has_esr = events.exception.serror_has_esr;
768     env->serror.esr = events.exception.serror_esr;
769 
770     return 0;
771 }
772 
773 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
774 {
775     ARMCPU *cpu = ARM_CPU(cs);
776     CPUARMState *env = &cpu->env;
777 
778     if (unlikely(env->ext_dabt_raised)) {
779         /*
780          * Verifying that the ext DABT has been properly injected,
781          * otherwise risking indefinitely re-running the faulting instruction
782          * Covering a very narrow case for kernels 5.5..5.5.4
783          * when injected abort was misconfigured to be
784          * an IMPLEMENTATION DEFINED exception (for 32-bit EL1)
785          */
786         if (!arm_feature(env, ARM_FEATURE_AARCH64) &&
787             unlikely(!kvm_arm_verify_ext_dabt_pending(cs))) {
788 
789             error_report("Data abort exception with no valid ISS generated by "
790                    "guest memory access. KVM unable to emulate faulting "
791                    "instruction. Failed to inject an external data abort "
792                    "into the guest.");
793             abort();
794        }
795        /* Clear the status */
796        env->ext_dabt_raised = 0;
797     }
798 }
799 
800 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
801 {
802     ARMCPU *cpu;
803     uint32_t switched_level;
804 
805     if (kvm_irqchip_in_kernel()) {
806         /*
807          * We only need to sync timer states with user-space interrupt
808          * controllers, so return early and save cycles if we don't.
809          */
810         return MEMTXATTRS_UNSPECIFIED;
811     }
812 
813     cpu = ARM_CPU(cs);
814 
815     /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
816     if (run->s.regs.device_irq_level != cpu->device_irq_level) {
817         switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
818 
819         qemu_mutex_lock_iothread();
820 
821         if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
822             qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
823                          !!(run->s.regs.device_irq_level &
824                             KVM_ARM_DEV_EL1_VTIMER));
825             switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
826         }
827 
828         if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
829             qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
830                          !!(run->s.regs.device_irq_level &
831                             KVM_ARM_DEV_EL1_PTIMER));
832             switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
833         }
834 
835         if (switched_level & KVM_ARM_DEV_PMU) {
836             qemu_set_irq(cpu->pmu_interrupt,
837                          !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
838             switched_level &= ~KVM_ARM_DEV_PMU;
839         }
840 
841         if (switched_level) {
842             qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
843                           __func__, switched_level);
844         }
845 
846         /* We also mark unknown levels as processed to not waste cycles */
847         cpu->device_irq_level = run->s.regs.device_irq_level;
848         qemu_mutex_unlock_iothread();
849     }
850 
851     return MEMTXATTRS_UNSPECIFIED;
852 }
853 
854 void kvm_arm_vm_state_change(void *opaque, bool running, RunState state)
855 {
856     CPUState *cs = opaque;
857     ARMCPU *cpu = ARM_CPU(cs);
858 
859     if (running) {
860         if (cpu->kvm_adjvtime) {
861             kvm_arm_put_virtual_time(cs);
862         }
863     } else {
864         if (cpu->kvm_adjvtime) {
865             kvm_arm_get_virtual_time(cs);
866         }
867     }
868 }
869 
870 /**
871  * kvm_arm_handle_dabt_nisv:
872  * @cs: CPUState
873  * @esr_iss: ISS encoding (limited) for the exception from Data Abort
874  *           ISV bit set to '0b0' -> no valid instruction syndrome
875  * @fault_ipa: faulting address for the synchronous data abort
876  *
877  * Returns: 0 if the exception has been handled, < 0 otherwise
878  */
879 static int kvm_arm_handle_dabt_nisv(CPUState *cs, uint64_t esr_iss,
880                                     uint64_t fault_ipa)
881 {
882     ARMCPU *cpu = ARM_CPU(cs);
883     CPUARMState *env = &cpu->env;
884     /*
885      * Request KVM to inject the external data abort into the guest
886      */
887     if (cap_has_inject_ext_dabt) {
888         struct kvm_vcpu_events events = { };
889         /*
890          * The external data abort event will be handled immediately by KVM
891          * using the address fault that triggered the exit on given VCPU.
892          * Requesting injection of the external data abort does not rely
893          * on any other VCPU state. Therefore, in this particular case, the VCPU
894          * synchronization can be exceptionally skipped.
895          */
896         events.exception.ext_dabt_pending = 1;
897         /* KVM_CAP_ARM_INJECT_EXT_DABT implies KVM_CAP_VCPU_EVENTS */
898         if (!kvm_vcpu_ioctl(cs, KVM_SET_VCPU_EVENTS, &events)) {
899             env->ext_dabt_raised = 1;
900             return 0;
901         }
902     } else {
903         error_report("Data abort exception triggered by guest memory access "
904                      "at physical address: 0x"  TARGET_FMT_lx,
905                      (target_ulong)fault_ipa);
906         error_printf("KVM unable to emulate faulting instruction.\n");
907     }
908     return -1;
909 }
910 
911 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
912 {
913     int ret = 0;
914 
915     switch (run->exit_reason) {
916     case KVM_EXIT_DEBUG:
917         if (kvm_arm_handle_debug(cs, &run->debug.arch)) {
918             ret = EXCP_DEBUG;
919         } /* otherwise return to guest */
920         break;
921     case KVM_EXIT_ARM_NISV:
922         /* External DABT with no valid iss to decode */
923         ret = kvm_arm_handle_dabt_nisv(cs, run->arm_nisv.esr_iss,
924                                        run->arm_nisv.fault_ipa);
925         break;
926     default:
927         qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
928                       __func__, run->exit_reason);
929         break;
930     }
931     return ret;
932 }
933 
934 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
935 {
936     return true;
937 }
938 
939 int kvm_arch_process_async_events(CPUState *cs)
940 {
941     return 0;
942 }
943 
944 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
945 {
946     if (kvm_sw_breakpoints_active(cs)) {
947         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
948     }
949     if (kvm_arm_hw_debug_active(cs)) {
950         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
951         kvm_arm_copy_hw_debug_data(&dbg->arch);
952     }
953 }
954 
955 void kvm_arch_init_irq_routing(KVMState *s)
956 {
957 }
958 
959 int kvm_arch_irqchip_create(KVMState *s)
960 {
961     if (kvm_kernel_irqchip_split()) {
962         error_report("-machine kernel_irqchip=split is not supported on ARM.");
963         exit(1);
964     }
965 
966     /* If we can create the VGIC using the newer device control API, we
967      * let the device do this when it initializes itself, otherwise we
968      * fall back to the old API */
969     return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
970 }
971 
972 int kvm_arm_vgic_probe(void)
973 {
974     int val = 0;
975 
976     if (kvm_create_device(kvm_state,
977                           KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
978         val |= KVM_ARM_VGIC_V3;
979     }
980     if (kvm_create_device(kvm_state,
981                           KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
982         val |= KVM_ARM_VGIC_V2;
983     }
984     return val;
985 }
986 
987 int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level)
988 {
989     int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq;
990     int cpu_idx1 = cpu % 256;
991     int cpu_idx2 = cpu / 256;
992 
993     kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) |
994                (cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT);
995 
996     return kvm_set_irq(kvm_state, kvm_irq, !!level);
997 }
998 
999 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
1000                              uint64_t address, uint32_t data, PCIDevice *dev)
1001 {
1002     AddressSpace *as = pci_device_iommu_address_space(dev);
1003     hwaddr xlat, len, doorbell_gpa;
1004     MemoryRegionSection mrs;
1005     MemoryRegion *mr;
1006 
1007     if (as == &address_space_memory) {
1008         return 0;
1009     }
1010 
1011     /* MSI doorbell address is translated by an IOMMU */
1012 
1013     RCU_READ_LOCK_GUARD();
1014 
1015     mr = address_space_translate(as, address, &xlat, &len, true,
1016                                  MEMTXATTRS_UNSPECIFIED);
1017 
1018     if (!mr) {
1019         return 1;
1020     }
1021 
1022     mrs = memory_region_find(mr, xlat, 1);
1023 
1024     if (!mrs.mr) {
1025         return 1;
1026     }
1027 
1028     doorbell_gpa = mrs.offset_within_address_space;
1029     memory_region_unref(mrs.mr);
1030 
1031     route->u.msi.address_lo = doorbell_gpa;
1032     route->u.msi.address_hi = doorbell_gpa >> 32;
1033 
1034     trace_kvm_arm_fixup_msi_route(address, doorbell_gpa);
1035 
1036     return 0;
1037 }
1038 
1039 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
1040                                 int vector, PCIDevice *dev)
1041 {
1042     return 0;
1043 }
1044 
1045 int kvm_arch_release_virq_post(int virq)
1046 {
1047     return 0;
1048 }
1049 
1050 int kvm_arch_msi_data_to_gsi(uint32_t data)
1051 {
1052     return (data - 32) & 0xffff;
1053 }
1054 
1055 bool kvm_arch_cpu_check_are_resettable(void)
1056 {
1057     return true;
1058 }
1059 
1060 void kvm_arch_accel_class_init(ObjectClass *oc)
1061 {
1062 }
1063