1 /* 2 * ARM implementation of KVM hooks 3 * 4 * Copyright Christoffer Dall 2009-2010 5 * 6 * This work is licensed under the terms of the GNU GPL, version 2 or later. 7 * See the COPYING file in the top-level directory. 8 * 9 */ 10 11 #include "qemu/osdep.h" 12 #include <sys/ioctl.h> 13 14 #include <linux/kvm.h> 15 16 #include "qemu/timer.h" 17 #include "qemu/error-report.h" 18 #include "qemu/main-loop.h" 19 #include "qom/object.h" 20 #include "qapi/error.h" 21 #include "sysemu/sysemu.h" 22 #include "sysemu/kvm.h" 23 #include "sysemu/kvm_int.h" 24 #include "kvm_arm.h" 25 #include "cpu.h" 26 #include "trace.h" 27 #include "internals.h" 28 #include "hw/pci/pci.h" 29 #include "exec/memattrs.h" 30 #include "exec/address-spaces.h" 31 #include "hw/boards.h" 32 #include "hw/irq.h" 33 #include "qemu/log.h" 34 35 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 36 KVM_CAP_LAST_INFO 37 }; 38 39 static bool cap_has_mp_state; 40 static bool cap_has_inject_serror_esr; 41 static bool cap_has_inject_ext_dabt; 42 43 static ARMHostCPUFeatures arm_host_cpu_features; 44 45 int kvm_arm_vcpu_init(CPUState *cs) 46 { 47 ARMCPU *cpu = ARM_CPU(cs); 48 struct kvm_vcpu_init init; 49 50 init.target = cpu->kvm_target; 51 memcpy(init.features, cpu->kvm_init_features, sizeof(init.features)); 52 53 return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init); 54 } 55 56 int kvm_arm_vcpu_finalize(CPUState *cs, int feature) 57 { 58 return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_FINALIZE, &feature); 59 } 60 61 void kvm_arm_init_serror_injection(CPUState *cs) 62 { 63 cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state, 64 KVM_CAP_ARM_INJECT_SERROR_ESR); 65 } 66 67 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try, 68 int *fdarray, 69 struct kvm_vcpu_init *init) 70 { 71 int ret = 0, kvmfd = -1, vmfd = -1, cpufd = -1; 72 int max_vm_pa_size; 73 74 kvmfd = qemu_open_old("/dev/kvm", O_RDWR); 75 if (kvmfd < 0) { 76 goto err; 77 } 78 max_vm_pa_size = ioctl(kvmfd, KVM_CHECK_EXTENSION, KVM_CAP_ARM_VM_IPA_SIZE); 79 if (max_vm_pa_size < 0) { 80 max_vm_pa_size = 0; 81 } 82 do { 83 vmfd = ioctl(kvmfd, KVM_CREATE_VM, max_vm_pa_size); 84 } while (vmfd == -1 && errno == EINTR); 85 if (vmfd < 0) { 86 goto err; 87 } 88 cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0); 89 if (cpufd < 0) { 90 goto err; 91 } 92 93 if (!init) { 94 /* Caller doesn't want the VCPU to be initialized, so skip it */ 95 goto finish; 96 } 97 98 if (init->target == -1) { 99 struct kvm_vcpu_init preferred; 100 101 ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, &preferred); 102 if (!ret) { 103 init->target = preferred.target; 104 } 105 } 106 if (ret >= 0) { 107 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init); 108 if (ret < 0) { 109 goto err; 110 } 111 } else if (cpus_to_try) { 112 /* Old kernel which doesn't know about the 113 * PREFERRED_TARGET ioctl: we know it will only support 114 * creating one kind of guest CPU which is its preferred 115 * CPU type. 116 */ 117 struct kvm_vcpu_init try; 118 119 while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) { 120 try.target = *cpus_to_try++; 121 memcpy(try.features, init->features, sizeof(init->features)); 122 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, &try); 123 if (ret >= 0) { 124 break; 125 } 126 } 127 if (ret < 0) { 128 goto err; 129 } 130 init->target = try.target; 131 } else { 132 /* Treat a NULL cpus_to_try argument the same as an empty 133 * list, which means we will fail the call since this must 134 * be an old kernel which doesn't support PREFERRED_TARGET. 135 */ 136 goto err; 137 } 138 139 finish: 140 fdarray[0] = kvmfd; 141 fdarray[1] = vmfd; 142 fdarray[2] = cpufd; 143 144 return true; 145 146 err: 147 if (cpufd >= 0) { 148 close(cpufd); 149 } 150 if (vmfd >= 0) { 151 close(vmfd); 152 } 153 if (kvmfd >= 0) { 154 close(kvmfd); 155 } 156 157 return false; 158 } 159 160 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray) 161 { 162 int i; 163 164 for (i = 2; i >= 0; i--) { 165 close(fdarray[i]); 166 } 167 } 168 169 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu) 170 { 171 CPUARMState *env = &cpu->env; 172 173 if (!arm_host_cpu_features.dtb_compatible) { 174 if (!kvm_enabled() || 175 !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) { 176 /* We can't report this error yet, so flag that we need to 177 * in arm_cpu_realizefn(). 178 */ 179 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE; 180 cpu->host_cpu_probe_failed = true; 181 return; 182 } 183 } 184 185 cpu->kvm_target = arm_host_cpu_features.target; 186 cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible; 187 cpu->isar = arm_host_cpu_features.isar; 188 env->features = arm_host_cpu_features.features; 189 } 190 191 static bool kvm_no_adjvtime_get(Object *obj, Error **errp) 192 { 193 return !ARM_CPU(obj)->kvm_adjvtime; 194 } 195 196 static void kvm_no_adjvtime_set(Object *obj, bool value, Error **errp) 197 { 198 ARM_CPU(obj)->kvm_adjvtime = !value; 199 } 200 201 static bool kvm_steal_time_get(Object *obj, Error **errp) 202 { 203 return ARM_CPU(obj)->kvm_steal_time != ON_OFF_AUTO_OFF; 204 } 205 206 static void kvm_steal_time_set(Object *obj, bool value, Error **errp) 207 { 208 ARM_CPU(obj)->kvm_steal_time = value ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 209 } 210 211 /* KVM VCPU properties should be prefixed with "kvm-". */ 212 void kvm_arm_add_vcpu_properties(Object *obj) 213 { 214 ARMCPU *cpu = ARM_CPU(obj); 215 CPUARMState *env = &cpu->env; 216 217 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 218 cpu->kvm_adjvtime = true; 219 object_property_add_bool(obj, "kvm-no-adjvtime", kvm_no_adjvtime_get, 220 kvm_no_adjvtime_set); 221 object_property_set_description(obj, "kvm-no-adjvtime", 222 "Set on to disable the adjustment of " 223 "the virtual counter. VM stopped time " 224 "will be counted."); 225 } 226 227 cpu->kvm_steal_time = ON_OFF_AUTO_AUTO; 228 object_property_add_bool(obj, "kvm-steal-time", kvm_steal_time_get, 229 kvm_steal_time_set); 230 object_property_set_description(obj, "kvm-steal-time", 231 "Set off to disable KVM steal time."); 232 } 233 234 bool kvm_arm_pmu_supported(void) 235 { 236 return kvm_check_extension(kvm_state, KVM_CAP_ARM_PMU_V3); 237 } 238 239 int kvm_arm_get_max_vm_ipa_size(MachineState *ms, bool *fixed_ipa) 240 { 241 KVMState *s = KVM_STATE(ms->accelerator); 242 int ret; 243 244 ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE); 245 *fixed_ipa = ret <= 0; 246 247 return ret > 0 ? ret : 40; 248 } 249 250 int kvm_arch_init(MachineState *ms, KVMState *s) 251 { 252 int ret = 0; 253 /* For ARM interrupt delivery is always asynchronous, 254 * whether we are using an in-kernel VGIC or not. 255 */ 256 kvm_async_interrupts_allowed = true; 257 258 /* 259 * PSCI wakes up secondary cores, so we always need to 260 * have vCPUs waiting in kernel space 261 */ 262 kvm_halt_in_kernel_allowed = true; 263 264 cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE); 265 266 if (ms->smp.cpus > 256 && 267 !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) { 268 error_report("Using more than 256 vcpus requires a host kernel " 269 "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2"); 270 ret = -EINVAL; 271 } 272 273 if (kvm_check_extension(s, KVM_CAP_ARM_NISV_TO_USER)) { 274 if (kvm_vm_enable_cap(s, KVM_CAP_ARM_NISV_TO_USER, 0)) { 275 error_report("Failed to enable KVM_CAP_ARM_NISV_TO_USER cap"); 276 } else { 277 /* Set status for supporting the external dabt injection */ 278 cap_has_inject_ext_dabt = kvm_check_extension(s, 279 KVM_CAP_ARM_INJECT_EXT_DABT); 280 } 281 } 282 283 return ret; 284 } 285 286 unsigned long kvm_arch_vcpu_id(CPUState *cpu) 287 { 288 return cpu->cpu_index; 289 } 290 291 /* We track all the KVM devices which need their memory addresses 292 * passing to the kernel in a list of these structures. 293 * When board init is complete we run through the list and 294 * tell the kernel the base addresses of the memory regions. 295 * We use a MemoryListener to track mapping and unmapping of 296 * the regions during board creation, so the board models don't 297 * need to do anything special for the KVM case. 298 * 299 * Sometimes the address must be OR'ed with some other fields 300 * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION). 301 * @kda_addr_ormask aims at storing the value of those fields. 302 */ 303 typedef struct KVMDevice { 304 struct kvm_arm_device_addr kda; 305 struct kvm_device_attr kdattr; 306 uint64_t kda_addr_ormask; 307 MemoryRegion *mr; 308 QSLIST_ENTRY(KVMDevice) entries; 309 int dev_fd; 310 } KVMDevice; 311 312 static QSLIST_HEAD(, KVMDevice) kvm_devices_head; 313 314 static void kvm_arm_devlistener_add(MemoryListener *listener, 315 MemoryRegionSection *section) 316 { 317 KVMDevice *kd; 318 319 QSLIST_FOREACH(kd, &kvm_devices_head, entries) { 320 if (section->mr == kd->mr) { 321 kd->kda.addr = section->offset_within_address_space; 322 } 323 } 324 } 325 326 static void kvm_arm_devlistener_del(MemoryListener *listener, 327 MemoryRegionSection *section) 328 { 329 KVMDevice *kd; 330 331 QSLIST_FOREACH(kd, &kvm_devices_head, entries) { 332 if (section->mr == kd->mr) { 333 kd->kda.addr = -1; 334 } 335 } 336 } 337 338 static MemoryListener devlistener = { 339 .name = "kvm-arm", 340 .region_add = kvm_arm_devlistener_add, 341 .region_del = kvm_arm_devlistener_del, 342 }; 343 344 static void kvm_arm_set_device_addr(KVMDevice *kd) 345 { 346 struct kvm_device_attr *attr = &kd->kdattr; 347 int ret; 348 349 /* If the device control API is available and we have a device fd on the 350 * KVMDevice struct, let's use the newer API 351 */ 352 if (kd->dev_fd >= 0) { 353 uint64_t addr = kd->kda.addr; 354 355 addr |= kd->kda_addr_ormask; 356 attr->addr = (uintptr_t)&addr; 357 ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr); 358 } else { 359 ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda); 360 } 361 362 if (ret < 0) { 363 fprintf(stderr, "Failed to set device address: %s\n", 364 strerror(-ret)); 365 abort(); 366 } 367 } 368 369 static void kvm_arm_machine_init_done(Notifier *notifier, void *data) 370 { 371 KVMDevice *kd, *tkd; 372 373 QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) { 374 if (kd->kda.addr != -1) { 375 kvm_arm_set_device_addr(kd); 376 } 377 memory_region_unref(kd->mr); 378 QSLIST_REMOVE_HEAD(&kvm_devices_head, entries); 379 g_free(kd); 380 } 381 memory_listener_unregister(&devlistener); 382 } 383 384 static Notifier notify = { 385 .notify = kvm_arm_machine_init_done, 386 }; 387 388 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group, 389 uint64_t attr, int dev_fd, uint64_t addr_ormask) 390 { 391 KVMDevice *kd; 392 393 if (!kvm_irqchip_in_kernel()) { 394 return; 395 } 396 397 if (QSLIST_EMPTY(&kvm_devices_head)) { 398 memory_listener_register(&devlistener, &address_space_memory); 399 qemu_add_machine_init_done_notifier(¬ify); 400 } 401 kd = g_new0(KVMDevice, 1); 402 kd->mr = mr; 403 kd->kda.id = devid; 404 kd->kda.addr = -1; 405 kd->kdattr.flags = 0; 406 kd->kdattr.group = group; 407 kd->kdattr.attr = attr; 408 kd->dev_fd = dev_fd; 409 kd->kda_addr_ormask = addr_ormask; 410 QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries); 411 memory_region_ref(kd->mr); 412 } 413 414 static int compare_u64(const void *a, const void *b) 415 { 416 if (*(uint64_t *)a > *(uint64_t *)b) { 417 return 1; 418 } 419 if (*(uint64_t *)a < *(uint64_t *)b) { 420 return -1; 421 } 422 return 0; 423 } 424 425 /* 426 * cpreg_values are sorted in ascending order by KVM register ID 427 * (see kvm_arm_init_cpreg_list). This allows us to cheaply find 428 * the storage for a KVM register by ID with a binary search. 429 */ 430 static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx) 431 { 432 uint64_t *res; 433 434 res = bsearch(®idx, cpu->cpreg_indexes, cpu->cpreg_array_len, 435 sizeof(uint64_t), compare_u64); 436 assert(res); 437 438 return &cpu->cpreg_values[res - cpu->cpreg_indexes]; 439 } 440 441 /* Initialize the ARMCPU cpreg list according to the kernel's 442 * definition of what CPU registers it knows about (and throw away 443 * the previous TCG-created cpreg list). 444 */ 445 int kvm_arm_init_cpreg_list(ARMCPU *cpu) 446 { 447 struct kvm_reg_list rl; 448 struct kvm_reg_list *rlp; 449 int i, ret, arraylen; 450 CPUState *cs = CPU(cpu); 451 452 rl.n = 0; 453 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl); 454 if (ret != -E2BIG) { 455 return ret; 456 } 457 rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t)); 458 rlp->n = rl.n; 459 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp); 460 if (ret) { 461 goto out; 462 } 463 /* Sort the list we get back from the kernel, since cpreg_tuples 464 * must be in strictly ascending order. 465 */ 466 qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64); 467 468 for (i = 0, arraylen = 0; i < rlp->n; i++) { 469 if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) { 470 continue; 471 } 472 switch (rlp->reg[i] & KVM_REG_SIZE_MASK) { 473 case KVM_REG_SIZE_U32: 474 case KVM_REG_SIZE_U64: 475 break; 476 default: 477 fprintf(stderr, "Can't handle size of register in kernel list\n"); 478 ret = -EINVAL; 479 goto out; 480 } 481 482 arraylen++; 483 } 484 485 cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen); 486 cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen); 487 cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes, 488 arraylen); 489 cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values, 490 arraylen); 491 cpu->cpreg_array_len = arraylen; 492 cpu->cpreg_vmstate_array_len = arraylen; 493 494 for (i = 0, arraylen = 0; i < rlp->n; i++) { 495 uint64_t regidx = rlp->reg[i]; 496 if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) { 497 continue; 498 } 499 cpu->cpreg_indexes[arraylen] = regidx; 500 arraylen++; 501 } 502 assert(cpu->cpreg_array_len == arraylen); 503 504 if (!write_kvmstate_to_list(cpu)) { 505 /* Shouldn't happen unless kernel is inconsistent about 506 * what registers exist. 507 */ 508 fprintf(stderr, "Initial read of kernel register state failed\n"); 509 ret = -EINVAL; 510 goto out; 511 } 512 513 out: 514 g_free(rlp); 515 return ret; 516 } 517 518 bool write_kvmstate_to_list(ARMCPU *cpu) 519 { 520 CPUState *cs = CPU(cpu); 521 int i; 522 bool ok = true; 523 524 for (i = 0; i < cpu->cpreg_array_len; i++) { 525 struct kvm_one_reg r; 526 uint64_t regidx = cpu->cpreg_indexes[i]; 527 uint32_t v32; 528 int ret; 529 530 r.id = regidx; 531 532 switch (regidx & KVM_REG_SIZE_MASK) { 533 case KVM_REG_SIZE_U32: 534 r.addr = (uintptr_t)&v32; 535 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); 536 if (!ret) { 537 cpu->cpreg_values[i] = v32; 538 } 539 break; 540 case KVM_REG_SIZE_U64: 541 r.addr = (uintptr_t)(cpu->cpreg_values + i); 542 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); 543 break; 544 default: 545 g_assert_not_reached(); 546 } 547 if (ret) { 548 ok = false; 549 } 550 } 551 return ok; 552 } 553 554 bool write_list_to_kvmstate(ARMCPU *cpu, int level) 555 { 556 CPUState *cs = CPU(cpu); 557 int i; 558 bool ok = true; 559 560 for (i = 0; i < cpu->cpreg_array_len; i++) { 561 struct kvm_one_reg r; 562 uint64_t regidx = cpu->cpreg_indexes[i]; 563 uint32_t v32; 564 int ret; 565 566 if (kvm_arm_cpreg_level(regidx) > level) { 567 continue; 568 } 569 570 r.id = regidx; 571 switch (regidx & KVM_REG_SIZE_MASK) { 572 case KVM_REG_SIZE_U32: 573 v32 = cpu->cpreg_values[i]; 574 r.addr = (uintptr_t)&v32; 575 break; 576 case KVM_REG_SIZE_U64: 577 r.addr = (uintptr_t)(cpu->cpreg_values + i); 578 break; 579 default: 580 g_assert_not_reached(); 581 } 582 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); 583 if (ret) { 584 /* We might fail for "unknown register" and also for 585 * "you tried to set a register which is constant with 586 * a different value from what it actually contains". 587 */ 588 ok = false; 589 } 590 } 591 return ok; 592 } 593 594 void kvm_arm_cpu_pre_save(ARMCPU *cpu) 595 { 596 /* KVM virtual time adjustment */ 597 if (cpu->kvm_vtime_dirty) { 598 *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT) = cpu->kvm_vtime; 599 } 600 } 601 602 void kvm_arm_cpu_post_load(ARMCPU *cpu) 603 { 604 /* KVM virtual time adjustment */ 605 if (cpu->kvm_adjvtime) { 606 cpu->kvm_vtime = *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT); 607 cpu->kvm_vtime_dirty = true; 608 } 609 } 610 611 void kvm_arm_reset_vcpu(ARMCPU *cpu) 612 { 613 int ret; 614 615 /* Re-init VCPU so that all registers are set to 616 * their respective reset values. 617 */ 618 ret = kvm_arm_vcpu_init(CPU(cpu)); 619 if (ret < 0) { 620 fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret)); 621 abort(); 622 } 623 if (!write_kvmstate_to_list(cpu)) { 624 fprintf(stderr, "write_kvmstate_to_list failed\n"); 625 abort(); 626 } 627 /* 628 * Sync the reset values also into the CPUState. This is necessary 629 * because the next thing we do will be a kvm_arch_put_registers() 630 * which will update the list values from the CPUState before copying 631 * the list values back to KVM. It's OK to ignore failure returns here 632 * for the same reason we do so in kvm_arch_get_registers(). 633 */ 634 write_list_to_cpustate(cpu); 635 } 636 637 /* 638 * Update KVM's MP_STATE based on what QEMU thinks it is 639 */ 640 int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu) 641 { 642 if (cap_has_mp_state) { 643 struct kvm_mp_state mp_state = { 644 .mp_state = (cpu->power_state == PSCI_OFF) ? 645 KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE 646 }; 647 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); 648 if (ret) { 649 fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n", 650 __func__, ret, strerror(-ret)); 651 return -1; 652 } 653 } 654 655 return 0; 656 } 657 658 /* 659 * Sync the KVM MP_STATE into QEMU 660 */ 661 int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu) 662 { 663 if (cap_has_mp_state) { 664 struct kvm_mp_state mp_state; 665 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state); 666 if (ret) { 667 fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n", 668 __func__, ret, strerror(-ret)); 669 abort(); 670 } 671 cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ? 672 PSCI_OFF : PSCI_ON; 673 } 674 675 return 0; 676 } 677 678 void kvm_arm_get_virtual_time(CPUState *cs) 679 { 680 ARMCPU *cpu = ARM_CPU(cs); 681 struct kvm_one_reg reg = { 682 .id = KVM_REG_ARM_TIMER_CNT, 683 .addr = (uintptr_t)&cpu->kvm_vtime, 684 }; 685 int ret; 686 687 if (cpu->kvm_vtime_dirty) { 688 return; 689 } 690 691 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 692 if (ret) { 693 error_report("Failed to get KVM_REG_ARM_TIMER_CNT"); 694 abort(); 695 } 696 697 cpu->kvm_vtime_dirty = true; 698 } 699 700 void kvm_arm_put_virtual_time(CPUState *cs) 701 { 702 ARMCPU *cpu = ARM_CPU(cs); 703 struct kvm_one_reg reg = { 704 .id = KVM_REG_ARM_TIMER_CNT, 705 .addr = (uintptr_t)&cpu->kvm_vtime, 706 }; 707 int ret; 708 709 if (!cpu->kvm_vtime_dirty) { 710 return; 711 } 712 713 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 714 if (ret) { 715 error_report("Failed to set KVM_REG_ARM_TIMER_CNT"); 716 abort(); 717 } 718 719 cpu->kvm_vtime_dirty = false; 720 } 721 722 int kvm_put_vcpu_events(ARMCPU *cpu) 723 { 724 CPUARMState *env = &cpu->env; 725 struct kvm_vcpu_events events; 726 int ret; 727 728 if (!kvm_has_vcpu_events()) { 729 return 0; 730 } 731 732 memset(&events, 0, sizeof(events)); 733 events.exception.serror_pending = env->serror.pending; 734 735 /* Inject SError to guest with specified syndrome if host kernel 736 * supports it, otherwise inject SError without syndrome. 737 */ 738 if (cap_has_inject_serror_esr) { 739 events.exception.serror_has_esr = env->serror.has_esr; 740 events.exception.serror_esr = env->serror.esr; 741 } 742 743 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); 744 if (ret) { 745 error_report("failed to put vcpu events"); 746 } 747 748 return ret; 749 } 750 751 int kvm_get_vcpu_events(ARMCPU *cpu) 752 { 753 CPUARMState *env = &cpu->env; 754 struct kvm_vcpu_events events; 755 int ret; 756 757 if (!kvm_has_vcpu_events()) { 758 return 0; 759 } 760 761 memset(&events, 0, sizeof(events)); 762 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); 763 if (ret) { 764 error_report("failed to get vcpu events"); 765 return ret; 766 } 767 768 env->serror.pending = events.exception.serror_pending; 769 env->serror.has_esr = events.exception.serror_has_esr; 770 env->serror.esr = events.exception.serror_esr; 771 772 return 0; 773 } 774 775 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run) 776 { 777 ARMCPU *cpu = ARM_CPU(cs); 778 CPUARMState *env = &cpu->env; 779 780 if (unlikely(env->ext_dabt_raised)) { 781 /* 782 * Verifying that the ext DABT has been properly injected, 783 * otherwise risking indefinitely re-running the faulting instruction 784 * Covering a very narrow case for kernels 5.5..5.5.4 785 * when injected abort was misconfigured to be 786 * an IMPLEMENTATION DEFINED exception (for 32-bit EL1) 787 */ 788 if (!arm_feature(env, ARM_FEATURE_AARCH64) && 789 unlikely(!kvm_arm_verify_ext_dabt_pending(cs))) { 790 791 error_report("Data abort exception with no valid ISS generated by " 792 "guest memory access. KVM unable to emulate faulting " 793 "instruction. Failed to inject an external data abort " 794 "into the guest."); 795 abort(); 796 } 797 /* Clear the status */ 798 env->ext_dabt_raised = 0; 799 } 800 } 801 802 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) 803 { 804 ARMCPU *cpu; 805 uint32_t switched_level; 806 807 if (kvm_irqchip_in_kernel()) { 808 /* 809 * We only need to sync timer states with user-space interrupt 810 * controllers, so return early and save cycles if we don't. 811 */ 812 return MEMTXATTRS_UNSPECIFIED; 813 } 814 815 cpu = ARM_CPU(cs); 816 817 /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */ 818 if (run->s.regs.device_irq_level != cpu->device_irq_level) { 819 switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level; 820 821 qemu_mutex_lock_iothread(); 822 823 if (switched_level & KVM_ARM_DEV_EL1_VTIMER) { 824 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT], 825 !!(run->s.regs.device_irq_level & 826 KVM_ARM_DEV_EL1_VTIMER)); 827 switched_level &= ~KVM_ARM_DEV_EL1_VTIMER; 828 } 829 830 if (switched_level & KVM_ARM_DEV_EL1_PTIMER) { 831 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS], 832 !!(run->s.regs.device_irq_level & 833 KVM_ARM_DEV_EL1_PTIMER)); 834 switched_level &= ~KVM_ARM_DEV_EL1_PTIMER; 835 } 836 837 if (switched_level & KVM_ARM_DEV_PMU) { 838 qemu_set_irq(cpu->pmu_interrupt, 839 !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU)); 840 switched_level &= ~KVM_ARM_DEV_PMU; 841 } 842 843 if (switched_level) { 844 qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n", 845 __func__, switched_level); 846 } 847 848 /* We also mark unknown levels as processed to not waste cycles */ 849 cpu->device_irq_level = run->s.regs.device_irq_level; 850 qemu_mutex_unlock_iothread(); 851 } 852 853 return MEMTXATTRS_UNSPECIFIED; 854 } 855 856 void kvm_arm_vm_state_change(void *opaque, bool running, RunState state) 857 { 858 CPUState *cs = opaque; 859 ARMCPU *cpu = ARM_CPU(cs); 860 861 if (running) { 862 if (cpu->kvm_adjvtime) { 863 kvm_arm_put_virtual_time(cs); 864 } 865 } else { 866 if (cpu->kvm_adjvtime) { 867 kvm_arm_get_virtual_time(cs); 868 } 869 } 870 } 871 872 /** 873 * kvm_arm_handle_dabt_nisv: 874 * @cs: CPUState 875 * @esr_iss: ISS encoding (limited) for the exception from Data Abort 876 * ISV bit set to '0b0' -> no valid instruction syndrome 877 * @fault_ipa: faulting address for the synchronous data abort 878 * 879 * Returns: 0 if the exception has been handled, < 0 otherwise 880 */ 881 static int kvm_arm_handle_dabt_nisv(CPUState *cs, uint64_t esr_iss, 882 uint64_t fault_ipa) 883 { 884 ARMCPU *cpu = ARM_CPU(cs); 885 CPUARMState *env = &cpu->env; 886 /* 887 * Request KVM to inject the external data abort into the guest 888 */ 889 if (cap_has_inject_ext_dabt) { 890 struct kvm_vcpu_events events = { }; 891 /* 892 * The external data abort event will be handled immediately by KVM 893 * using the address fault that triggered the exit on given VCPU. 894 * Requesting injection of the external data abort does not rely 895 * on any other VCPU state. Therefore, in this particular case, the VCPU 896 * synchronization can be exceptionally skipped. 897 */ 898 events.exception.ext_dabt_pending = 1; 899 /* KVM_CAP_ARM_INJECT_EXT_DABT implies KVM_CAP_VCPU_EVENTS */ 900 if (!kvm_vcpu_ioctl(cs, KVM_SET_VCPU_EVENTS, &events)) { 901 env->ext_dabt_raised = 1; 902 return 0; 903 } 904 } else { 905 error_report("Data abort exception triggered by guest memory access " 906 "at physical address: 0x" TARGET_FMT_lx, 907 (target_ulong)fault_ipa); 908 error_printf("KVM unable to emulate faulting instruction.\n"); 909 } 910 return -1; 911 } 912 913 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 914 { 915 int ret = 0; 916 917 switch (run->exit_reason) { 918 case KVM_EXIT_DEBUG: 919 if (kvm_arm_handle_debug(cs, &run->debug.arch)) { 920 ret = EXCP_DEBUG; 921 } /* otherwise return to guest */ 922 break; 923 case KVM_EXIT_ARM_NISV: 924 /* External DABT with no valid iss to decode */ 925 ret = kvm_arm_handle_dabt_nisv(cs, run->arm_nisv.esr_iss, 926 run->arm_nisv.fault_ipa); 927 break; 928 default: 929 qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n", 930 __func__, run->exit_reason); 931 break; 932 } 933 return ret; 934 } 935 936 bool kvm_arch_stop_on_emulation_error(CPUState *cs) 937 { 938 return true; 939 } 940 941 int kvm_arch_process_async_events(CPUState *cs) 942 { 943 return 0; 944 } 945 946 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg) 947 { 948 if (kvm_sw_breakpoints_active(cs)) { 949 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; 950 } 951 if (kvm_arm_hw_debug_active(cs)) { 952 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW; 953 kvm_arm_copy_hw_debug_data(&dbg->arch); 954 } 955 } 956 957 void kvm_arch_init_irq_routing(KVMState *s) 958 { 959 } 960 961 int kvm_arch_irqchip_create(KVMState *s) 962 { 963 if (kvm_kernel_irqchip_split()) { 964 error_report("-machine kernel_irqchip=split is not supported on ARM."); 965 exit(1); 966 } 967 968 /* If we can create the VGIC using the newer device control API, we 969 * let the device do this when it initializes itself, otherwise we 970 * fall back to the old API */ 971 return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL); 972 } 973 974 int kvm_arm_vgic_probe(void) 975 { 976 int val = 0; 977 978 if (kvm_create_device(kvm_state, 979 KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) { 980 val |= KVM_ARM_VGIC_V3; 981 } 982 if (kvm_create_device(kvm_state, 983 KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) { 984 val |= KVM_ARM_VGIC_V2; 985 } 986 return val; 987 } 988 989 int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level) 990 { 991 int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq; 992 int cpu_idx1 = cpu % 256; 993 int cpu_idx2 = cpu / 256; 994 995 kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) | 996 (cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT); 997 998 return kvm_set_irq(kvm_state, kvm_irq, !!level); 999 } 1000 1001 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 1002 uint64_t address, uint32_t data, PCIDevice *dev) 1003 { 1004 AddressSpace *as = pci_device_iommu_address_space(dev); 1005 hwaddr xlat, len, doorbell_gpa; 1006 MemoryRegionSection mrs; 1007 MemoryRegion *mr; 1008 1009 if (as == &address_space_memory) { 1010 return 0; 1011 } 1012 1013 /* MSI doorbell address is translated by an IOMMU */ 1014 1015 RCU_READ_LOCK_GUARD(); 1016 1017 mr = address_space_translate(as, address, &xlat, &len, true, 1018 MEMTXATTRS_UNSPECIFIED); 1019 1020 if (!mr) { 1021 return 1; 1022 } 1023 1024 mrs = memory_region_find(mr, xlat, 1); 1025 1026 if (!mrs.mr) { 1027 return 1; 1028 } 1029 1030 doorbell_gpa = mrs.offset_within_address_space; 1031 memory_region_unref(mrs.mr); 1032 1033 route->u.msi.address_lo = doorbell_gpa; 1034 route->u.msi.address_hi = doorbell_gpa >> 32; 1035 1036 trace_kvm_arm_fixup_msi_route(address, doorbell_gpa); 1037 1038 return 0; 1039 } 1040 1041 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 1042 int vector, PCIDevice *dev) 1043 { 1044 return 0; 1045 } 1046 1047 int kvm_arch_release_virq_post(int virq) 1048 { 1049 return 0; 1050 } 1051 1052 int kvm_arch_msi_data_to_gsi(uint32_t data) 1053 { 1054 return (data - 32) & 0xffff; 1055 } 1056 1057 bool kvm_arch_cpu_check_are_resettable(void) 1058 { 1059 return true; 1060 } 1061 1062 void kvm_arch_accel_class_init(ObjectClass *oc) 1063 { 1064 } 1065