1 /* 2 * ARM implementation of KVM hooks 3 * 4 * Copyright Christoffer Dall 2009-2010 5 * 6 * This work is licensed under the terms of the GNU GPL, version 2 or later. 7 * See the COPYING file in the top-level directory. 8 * 9 */ 10 11 #include "qemu/osdep.h" 12 #include <sys/ioctl.h> 13 14 #include <linux/kvm.h> 15 16 #include "qemu-common.h" 17 #include "qemu/timer.h" 18 #include "qemu/error-report.h" 19 #include "sysemu/sysemu.h" 20 #include "sysemu/kvm.h" 21 #include "kvm_arm.h" 22 #include "cpu.h" 23 #include "trace.h" 24 #include "internals.h" 25 #include "hw/arm/arm.h" 26 #include "hw/pci/pci.h" 27 #include "exec/memattrs.h" 28 #include "exec/address-spaces.h" 29 #include "hw/boards.h" 30 #include "qemu/log.h" 31 32 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 33 KVM_CAP_LAST_INFO 34 }; 35 36 static bool cap_has_mp_state; 37 38 static ARMHostCPUFeatures arm_host_cpu_features; 39 40 int kvm_arm_vcpu_init(CPUState *cs) 41 { 42 ARMCPU *cpu = ARM_CPU(cs); 43 struct kvm_vcpu_init init; 44 45 init.target = cpu->kvm_target; 46 memcpy(init.features, cpu->kvm_init_features, sizeof(init.features)); 47 48 return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init); 49 } 50 51 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try, 52 int *fdarray, 53 struct kvm_vcpu_init *init) 54 { 55 int ret, kvmfd = -1, vmfd = -1, cpufd = -1; 56 57 kvmfd = qemu_open("/dev/kvm", O_RDWR); 58 if (kvmfd < 0) { 59 goto err; 60 } 61 vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0); 62 if (vmfd < 0) { 63 goto err; 64 } 65 cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0); 66 if (cpufd < 0) { 67 goto err; 68 } 69 70 if (!init) { 71 /* Caller doesn't want the VCPU to be initialized, so skip it */ 72 goto finish; 73 } 74 75 ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, init); 76 if (ret >= 0) { 77 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init); 78 if (ret < 0) { 79 goto err; 80 } 81 } else if (cpus_to_try) { 82 /* Old kernel which doesn't know about the 83 * PREFERRED_TARGET ioctl: we know it will only support 84 * creating one kind of guest CPU which is its preferred 85 * CPU type. 86 */ 87 while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) { 88 init->target = *cpus_to_try++; 89 memset(init->features, 0, sizeof(init->features)); 90 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init); 91 if (ret >= 0) { 92 break; 93 } 94 } 95 if (ret < 0) { 96 goto err; 97 } 98 } else { 99 /* Treat a NULL cpus_to_try argument the same as an empty 100 * list, which means we will fail the call since this must 101 * be an old kernel which doesn't support PREFERRED_TARGET. 102 */ 103 goto err; 104 } 105 106 finish: 107 fdarray[0] = kvmfd; 108 fdarray[1] = vmfd; 109 fdarray[2] = cpufd; 110 111 return true; 112 113 err: 114 if (cpufd >= 0) { 115 close(cpufd); 116 } 117 if (vmfd >= 0) { 118 close(vmfd); 119 } 120 if (kvmfd >= 0) { 121 close(kvmfd); 122 } 123 124 return false; 125 } 126 127 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray) 128 { 129 int i; 130 131 for (i = 2; i >= 0; i--) { 132 close(fdarray[i]); 133 } 134 } 135 136 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu) 137 { 138 CPUARMState *env = &cpu->env; 139 140 if (!arm_host_cpu_features.dtb_compatible) { 141 if (!kvm_enabled() || 142 !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) { 143 /* We can't report this error yet, so flag that we need to 144 * in arm_cpu_realizefn(). 145 */ 146 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE; 147 cpu->host_cpu_probe_failed = true; 148 return; 149 } 150 } 151 152 cpu->kvm_target = arm_host_cpu_features.target; 153 cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible; 154 env->features = arm_host_cpu_features.features; 155 } 156 157 int kvm_arch_init(MachineState *ms, KVMState *s) 158 { 159 /* For ARM interrupt delivery is always asynchronous, 160 * whether we are using an in-kernel VGIC or not. 161 */ 162 kvm_async_interrupts_allowed = true; 163 164 /* 165 * PSCI wakes up secondary cores, so we always need to 166 * have vCPUs waiting in kernel space 167 */ 168 kvm_halt_in_kernel_allowed = true; 169 170 cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE); 171 172 return 0; 173 } 174 175 unsigned long kvm_arch_vcpu_id(CPUState *cpu) 176 { 177 return cpu->cpu_index; 178 } 179 180 /* We track all the KVM devices which need their memory addresses 181 * passing to the kernel in a list of these structures. 182 * When board init is complete we run through the list and 183 * tell the kernel the base addresses of the memory regions. 184 * We use a MemoryListener to track mapping and unmapping of 185 * the regions during board creation, so the board models don't 186 * need to do anything special for the KVM case. 187 */ 188 typedef struct KVMDevice { 189 struct kvm_arm_device_addr kda; 190 struct kvm_device_attr kdattr; 191 MemoryRegion *mr; 192 QSLIST_ENTRY(KVMDevice) entries; 193 int dev_fd; 194 } KVMDevice; 195 196 static QSLIST_HEAD(kvm_devices_head, KVMDevice) kvm_devices_head; 197 198 static void kvm_arm_devlistener_add(MemoryListener *listener, 199 MemoryRegionSection *section) 200 { 201 KVMDevice *kd; 202 203 QSLIST_FOREACH(kd, &kvm_devices_head, entries) { 204 if (section->mr == kd->mr) { 205 kd->kda.addr = section->offset_within_address_space; 206 } 207 } 208 } 209 210 static void kvm_arm_devlistener_del(MemoryListener *listener, 211 MemoryRegionSection *section) 212 { 213 KVMDevice *kd; 214 215 QSLIST_FOREACH(kd, &kvm_devices_head, entries) { 216 if (section->mr == kd->mr) { 217 kd->kda.addr = -1; 218 } 219 } 220 } 221 222 static MemoryListener devlistener = { 223 .region_add = kvm_arm_devlistener_add, 224 .region_del = kvm_arm_devlistener_del, 225 }; 226 227 static void kvm_arm_set_device_addr(KVMDevice *kd) 228 { 229 struct kvm_device_attr *attr = &kd->kdattr; 230 int ret; 231 232 /* If the device control API is available and we have a device fd on the 233 * KVMDevice struct, let's use the newer API 234 */ 235 if (kd->dev_fd >= 0) { 236 uint64_t addr = kd->kda.addr; 237 attr->addr = (uintptr_t)&addr; 238 ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr); 239 } else { 240 ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda); 241 } 242 243 if (ret < 0) { 244 fprintf(stderr, "Failed to set device address: %s\n", 245 strerror(-ret)); 246 abort(); 247 } 248 } 249 250 static void kvm_arm_machine_init_done(Notifier *notifier, void *data) 251 { 252 KVMDevice *kd, *tkd; 253 254 QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) { 255 if (kd->kda.addr != -1) { 256 kvm_arm_set_device_addr(kd); 257 } 258 memory_region_unref(kd->mr); 259 g_free(kd); 260 } 261 memory_listener_unregister(&devlistener); 262 } 263 264 static Notifier notify = { 265 .notify = kvm_arm_machine_init_done, 266 }; 267 268 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group, 269 uint64_t attr, int dev_fd) 270 { 271 KVMDevice *kd; 272 273 if (!kvm_irqchip_in_kernel()) { 274 return; 275 } 276 277 if (QSLIST_EMPTY(&kvm_devices_head)) { 278 memory_listener_register(&devlistener, &address_space_memory); 279 qemu_add_machine_init_done_notifier(¬ify); 280 } 281 kd = g_new0(KVMDevice, 1); 282 kd->mr = mr; 283 kd->kda.id = devid; 284 kd->kda.addr = -1; 285 kd->kdattr.flags = 0; 286 kd->kdattr.group = group; 287 kd->kdattr.attr = attr; 288 kd->dev_fd = dev_fd; 289 QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries); 290 memory_region_ref(kd->mr); 291 } 292 293 static int compare_u64(const void *a, const void *b) 294 { 295 if (*(uint64_t *)a > *(uint64_t *)b) { 296 return 1; 297 } 298 if (*(uint64_t *)a < *(uint64_t *)b) { 299 return -1; 300 } 301 return 0; 302 } 303 304 /* Initialize the CPUState's cpreg list according to the kernel's 305 * definition of what CPU registers it knows about (and throw away 306 * the previous TCG-created cpreg list). 307 */ 308 int kvm_arm_init_cpreg_list(ARMCPU *cpu) 309 { 310 struct kvm_reg_list rl; 311 struct kvm_reg_list *rlp; 312 int i, ret, arraylen; 313 CPUState *cs = CPU(cpu); 314 315 rl.n = 0; 316 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl); 317 if (ret != -E2BIG) { 318 return ret; 319 } 320 rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t)); 321 rlp->n = rl.n; 322 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp); 323 if (ret) { 324 goto out; 325 } 326 /* Sort the list we get back from the kernel, since cpreg_tuples 327 * must be in strictly ascending order. 328 */ 329 qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64); 330 331 for (i = 0, arraylen = 0; i < rlp->n; i++) { 332 if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) { 333 continue; 334 } 335 switch (rlp->reg[i] & KVM_REG_SIZE_MASK) { 336 case KVM_REG_SIZE_U32: 337 case KVM_REG_SIZE_U64: 338 break; 339 default: 340 fprintf(stderr, "Can't handle size of register in kernel list\n"); 341 ret = -EINVAL; 342 goto out; 343 } 344 345 arraylen++; 346 } 347 348 cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen); 349 cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen); 350 cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes, 351 arraylen); 352 cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values, 353 arraylen); 354 cpu->cpreg_array_len = arraylen; 355 cpu->cpreg_vmstate_array_len = arraylen; 356 357 for (i = 0, arraylen = 0; i < rlp->n; i++) { 358 uint64_t regidx = rlp->reg[i]; 359 if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) { 360 continue; 361 } 362 cpu->cpreg_indexes[arraylen] = regidx; 363 arraylen++; 364 } 365 assert(cpu->cpreg_array_len == arraylen); 366 367 if (!write_kvmstate_to_list(cpu)) { 368 /* Shouldn't happen unless kernel is inconsistent about 369 * what registers exist. 370 */ 371 fprintf(stderr, "Initial read of kernel register state failed\n"); 372 ret = -EINVAL; 373 goto out; 374 } 375 376 out: 377 g_free(rlp); 378 return ret; 379 } 380 381 bool write_kvmstate_to_list(ARMCPU *cpu) 382 { 383 CPUState *cs = CPU(cpu); 384 int i; 385 bool ok = true; 386 387 for (i = 0; i < cpu->cpreg_array_len; i++) { 388 struct kvm_one_reg r; 389 uint64_t regidx = cpu->cpreg_indexes[i]; 390 uint32_t v32; 391 int ret; 392 393 r.id = regidx; 394 395 switch (regidx & KVM_REG_SIZE_MASK) { 396 case KVM_REG_SIZE_U32: 397 r.addr = (uintptr_t)&v32; 398 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); 399 if (!ret) { 400 cpu->cpreg_values[i] = v32; 401 } 402 break; 403 case KVM_REG_SIZE_U64: 404 r.addr = (uintptr_t)(cpu->cpreg_values + i); 405 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); 406 break; 407 default: 408 abort(); 409 } 410 if (ret) { 411 ok = false; 412 } 413 } 414 return ok; 415 } 416 417 bool write_list_to_kvmstate(ARMCPU *cpu, int level) 418 { 419 CPUState *cs = CPU(cpu); 420 int i; 421 bool ok = true; 422 423 for (i = 0; i < cpu->cpreg_array_len; i++) { 424 struct kvm_one_reg r; 425 uint64_t regidx = cpu->cpreg_indexes[i]; 426 uint32_t v32; 427 int ret; 428 429 if (kvm_arm_cpreg_level(regidx) > level) { 430 continue; 431 } 432 433 r.id = regidx; 434 switch (regidx & KVM_REG_SIZE_MASK) { 435 case KVM_REG_SIZE_U32: 436 v32 = cpu->cpreg_values[i]; 437 r.addr = (uintptr_t)&v32; 438 break; 439 case KVM_REG_SIZE_U64: 440 r.addr = (uintptr_t)(cpu->cpreg_values + i); 441 break; 442 default: 443 abort(); 444 } 445 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); 446 if (ret) { 447 /* We might fail for "unknown register" and also for 448 * "you tried to set a register which is constant with 449 * a different value from what it actually contains". 450 */ 451 ok = false; 452 } 453 } 454 return ok; 455 } 456 457 void kvm_arm_reset_vcpu(ARMCPU *cpu) 458 { 459 int ret; 460 461 /* Re-init VCPU so that all registers are set to 462 * their respective reset values. 463 */ 464 ret = kvm_arm_vcpu_init(CPU(cpu)); 465 if (ret < 0) { 466 fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret)); 467 abort(); 468 } 469 if (!write_kvmstate_to_list(cpu)) { 470 fprintf(stderr, "write_kvmstate_to_list failed\n"); 471 abort(); 472 } 473 } 474 475 /* 476 * Update KVM's MP_STATE based on what QEMU thinks it is 477 */ 478 int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu) 479 { 480 if (cap_has_mp_state) { 481 struct kvm_mp_state mp_state = { 482 .mp_state = (cpu->power_state == PSCI_OFF) ? 483 KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE 484 }; 485 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); 486 if (ret) { 487 fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n", 488 __func__, ret, strerror(-ret)); 489 return -1; 490 } 491 } 492 493 return 0; 494 } 495 496 /* 497 * Sync the KVM MP_STATE into QEMU 498 */ 499 int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu) 500 { 501 if (cap_has_mp_state) { 502 struct kvm_mp_state mp_state; 503 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state); 504 if (ret) { 505 fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n", 506 __func__, ret, strerror(-ret)); 507 abort(); 508 } 509 cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ? 510 PSCI_OFF : PSCI_ON; 511 } 512 513 return 0; 514 } 515 516 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run) 517 { 518 } 519 520 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) 521 { 522 ARMCPU *cpu; 523 uint32_t switched_level; 524 525 if (kvm_irqchip_in_kernel()) { 526 /* 527 * We only need to sync timer states with user-space interrupt 528 * controllers, so return early and save cycles if we don't. 529 */ 530 return MEMTXATTRS_UNSPECIFIED; 531 } 532 533 cpu = ARM_CPU(cs); 534 535 /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */ 536 if (run->s.regs.device_irq_level != cpu->device_irq_level) { 537 switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level; 538 539 qemu_mutex_lock_iothread(); 540 541 if (switched_level & KVM_ARM_DEV_EL1_VTIMER) { 542 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT], 543 !!(run->s.regs.device_irq_level & 544 KVM_ARM_DEV_EL1_VTIMER)); 545 switched_level &= ~KVM_ARM_DEV_EL1_VTIMER; 546 } 547 548 if (switched_level & KVM_ARM_DEV_EL1_PTIMER) { 549 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS], 550 !!(run->s.regs.device_irq_level & 551 KVM_ARM_DEV_EL1_PTIMER)); 552 switched_level &= ~KVM_ARM_DEV_EL1_PTIMER; 553 } 554 555 if (switched_level & KVM_ARM_DEV_PMU) { 556 qemu_set_irq(cpu->pmu_interrupt, 557 !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU)); 558 switched_level &= ~KVM_ARM_DEV_PMU; 559 } 560 561 if (switched_level) { 562 qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n", 563 __func__, switched_level); 564 } 565 566 /* We also mark unknown levels as processed to not waste cycles */ 567 cpu->device_irq_level = run->s.regs.device_irq_level; 568 qemu_mutex_unlock_iothread(); 569 } 570 571 return MEMTXATTRS_UNSPECIFIED; 572 } 573 574 575 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 576 { 577 int ret = 0; 578 579 switch (run->exit_reason) { 580 case KVM_EXIT_DEBUG: 581 if (kvm_arm_handle_debug(cs, &run->debug.arch)) { 582 ret = EXCP_DEBUG; 583 } /* otherwise return to guest */ 584 break; 585 default: 586 qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n", 587 __func__, run->exit_reason); 588 break; 589 } 590 return ret; 591 } 592 593 bool kvm_arch_stop_on_emulation_error(CPUState *cs) 594 { 595 return true; 596 } 597 598 int kvm_arch_process_async_events(CPUState *cs) 599 { 600 return 0; 601 } 602 603 /* The #ifdef protections are until 32bit headers are imported and can 604 * be removed once both 32 and 64 bit reach feature parity. 605 */ 606 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg) 607 { 608 #ifdef KVM_GUESTDBG_USE_SW_BP 609 if (kvm_sw_breakpoints_active(cs)) { 610 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; 611 } 612 #endif 613 #ifdef KVM_GUESTDBG_USE_HW 614 if (kvm_arm_hw_debug_active(cs)) { 615 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW; 616 kvm_arm_copy_hw_debug_data(&dbg->arch); 617 } 618 #endif 619 } 620 621 void kvm_arch_init_irq_routing(KVMState *s) 622 { 623 } 624 625 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s) 626 { 627 if (machine_kernel_irqchip_split(ms)) { 628 perror("-machine kernel_irqchip=split is not supported on ARM."); 629 exit(1); 630 } 631 632 /* If we can create the VGIC using the newer device control API, we 633 * let the device do this when it initializes itself, otherwise we 634 * fall back to the old API */ 635 return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL); 636 } 637 638 int kvm_arm_vgic_probe(void) 639 { 640 if (kvm_create_device(kvm_state, 641 KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) { 642 return 3; 643 } else if (kvm_create_device(kvm_state, 644 KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) { 645 return 2; 646 } else { 647 return 0; 648 } 649 } 650 651 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 652 uint64_t address, uint32_t data, PCIDevice *dev) 653 { 654 AddressSpace *as = pci_device_iommu_address_space(dev); 655 hwaddr xlat, len, doorbell_gpa; 656 MemoryRegionSection mrs; 657 MemoryRegion *mr; 658 int ret = 1; 659 660 if (as == &address_space_memory) { 661 return 0; 662 } 663 664 /* MSI doorbell address is translated by an IOMMU */ 665 666 rcu_read_lock(); 667 mr = address_space_translate(as, address, &xlat, &len, true, 668 MEMTXATTRS_UNSPECIFIED); 669 if (!mr) { 670 goto unlock; 671 } 672 mrs = memory_region_find(mr, xlat, 1); 673 if (!mrs.mr) { 674 goto unlock; 675 } 676 677 doorbell_gpa = mrs.offset_within_address_space; 678 memory_region_unref(mrs.mr); 679 680 route->u.msi.address_lo = doorbell_gpa; 681 route->u.msi.address_hi = doorbell_gpa >> 32; 682 683 trace_kvm_arm_fixup_msi_route(address, doorbell_gpa); 684 685 ret = 0; 686 687 unlock: 688 rcu_read_unlock(); 689 return ret; 690 } 691 692 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 693 int vector, PCIDevice *dev) 694 { 695 return 0; 696 } 697 698 int kvm_arch_release_virq_post(int virq) 699 { 700 return 0; 701 } 702 703 int kvm_arch_msi_data_to_gsi(uint32_t data) 704 { 705 return (data - 32) & 0xffff; 706 } 707