1 /* 2 * ARM implementation of KVM hooks 3 * 4 * Copyright Christoffer Dall 2009-2010 5 * 6 * This work is licensed under the terms of the GNU GPL, version 2 or later. 7 * See the COPYING file in the top-level directory. 8 * 9 */ 10 11 #include "qemu/osdep.h" 12 #include <sys/ioctl.h> 13 14 #include <linux/kvm.h> 15 16 #include "qemu-common.h" 17 #include "qemu/timer.h" 18 #include "qemu/error-report.h" 19 #include "sysemu/sysemu.h" 20 #include "sysemu/kvm.h" 21 #include "sysemu/kvm_int.h" 22 #include "kvm_arm.h" 23 #include "cpu.h" 24 #include "trace.h" 25 #include "internals.h" 26 #include "hw/pci/pci.h" 27 #include "exec/memattrs.h" 28 #include "exec/address-spaces.h" 29 #include "hw/boards.h" 30 #include "qemu/log.h" 31 32 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 33 KVM_CAP_LAST_INFO 34 }; 35 36 static bool cap_has_mp_state; 37 static bool cap_has_inject_serror_esr; 38 39 static ARMHostCPUFeatures arm_host_cpu_features; 40 41 int kvm_arm_vcpu_init(CPUState *cs) 42 { 43 ARMCPU *cpu = ARM_CPU(cs); 44 struct kvm_vcpu_init init; 45 46 init.target = cpu->kvm_target; 47 memcpy(init.features, cpu->kvm_init_features, sizeof(init.features)); 48 49 return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init); 50 } 51 52 void kvm_arm_init_serror_injection(CPUState *cs) 53 { 54 cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state, 55 KVM_CAP_ARM_INJECT_SERROR_ESR); 56 } 57 58 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try, 59 int *fdarray, 60 struct kvm_vcpu_init *init) 61 { 62 int ret, kvmfd = -1, vmfd = -1, cpufd = -1; 63 64 kvmfd = qemu_open("/dev/kvm", O_RDWR); 65 if (kvmfd < 0) { 66 goto err; 67 } 68 vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0); 69 if (vmfd < 0) { 70 goto err; 71 } 72 cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0); 73 if (cpufd < 0) { 74 goto err; 75 } 76 77 if (!init) { 78 /* Caller doesn't want the VCPU to be initialized, so skip it */ 79 goto finish; 80 } 81 82 ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, init); 83 if (ret >= 0) { 84 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init); 85 if (ret < 0) { 86 goto err; 87 } 88 } else if (cpus_to_try) { 89 /* Old kernel which doesn't know about the 90 * PREFERRED_TARGET ioctl: we know it will only support 91 * creating one kind of guest CPU which is its preferred 92 * CPU type. 93 */ 94 while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) { 95 init->target = *cpus_to_try++; 96 memset(init->features, 0, sizeof(init->features)); 97 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init); 98 if (ret >= 0) { 99 break; 100 } 101 } 102 if (ret < 0) { 103 goto err; 104 } 105 } else { 106 /* Treat a NULL cpus_to_try argument the same as an empty 107 * list, which means we will fail the call since this must 108 * be an old kernel which doesn't support PREFERRED_TARGET. 109 */ 110 goto err; 111 } 112 113 finish: 114 fdarray[0] = kvmfd; 115 fdarray[1] = vmfd; 116 fdarray[2] = cpufd; 117 118 return true; 119 120 err: 121 if (cpufd >= 0) { 122 close(cpufd); 123 } 124 if (vmfd >= 0) { 125 close(vmfd); 126 } 127 if (kvmfd >= 0) { 128 close(kvmfd); 129 } 130 131 return false; 132 } 133 134 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray) 135 { 136 int i; 137 138 for (i = 2; i >= 0; i--) { 139 close(fdarray[i]); 140 } 141 } 142 143 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu) 144 { 145 CPUARMState *env = &cpu->env; 146 147 if (!arm_host_cpu_features.dtb_compatible) { 148 if (!kvm_enabled() || 149 !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) { 150 /* We can't report this error yet, so flag that we need to 151 * in arm_cpu_realizefn(). 152 */ 153 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE; 154 cpu->host_cpu_probe_failed = true; 155 return; 156 } 157 } 158 159 cpu->kvm_target = arm_host_cpu_features.target; 160 cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible; 161 cpu->isar = arm_host_cpu_features.isar; 162 env->features = arm_host_cpu_features.features; 163 } 164 165 int kvm_arm_get_max_vm_ipa_size(MachineState *ms) 166 { 167 KVMState *s = KVM_STATE(ms->accelerator); 168 int ret; 169 170 ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE); 171 return ret > 0 ? ret : 40; 172 } 173 174 int kvm_arch_init(MachineState *ms, KVMState *s) 175 { 176 /* For ARM interrupt delivery is always asynchronous, 177 * whether we are using an in-kernel VGIC or not. 178 */ 179 kvm_async_interrupts_allowed = true; 180 181 /* 182 * PSCI wakes up secondary cores, so we always need to 183 * have vCPUs waiting in kernel space 184 */ 185 kvm_halt_in_kernel_allowed = true; 186 187 cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE); 188 189 return 0; 190 } 191 192 unsigned long kvm_arch_vcpu_id(CPUState *cpu) 193 { 194 return cpu->cpu_index; 195 } 196 197 /* We track all the KVM devices which need their memory addresses 198 * passing to the kernel in a list of these structures. 199 * When board init is complete we run through the list and 200 * tell the kernel the base addresses of the memory regions. 201 * We use a MemoryListener to track mapping and unmapping of 202 * the regions during board creation, so the board models don't 203 * need to do anything special for the KVM case. 204 * 205 * Sometimes the address must be OR'ed with some other fields 206 * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION). 207 * @kda_addr_ormask aims at storing the value of those fields. 208 */ 209 typedef struct KVMDevice { 210 struct kvm_arm_device_addr kda; 211 struct kvm_device_attr kdattr; 212 uint64_t kda_addr_ormask; 213 MemoryRegion *mr; 214 QSLIST_ENTRY(KVMDevice) entries; 215 int dev_fd; 216 } KVMDevice; 217 218 static QSLIST_HEAD(, KVMDevice) kvm_devices_head; 219 220 static void kvm_arm_devlistener_add(MemoryListener *listener, 221 MemoryRegionSection *section) 222 { 223 KVMDevice *kd; 224 225 QSLIST_FOREACH(kd, &kvm_devices_head, entries) { 226 if (section->mr == kd->mr) { 227 kd->kda.addr = section->offset_within_address_space; 228 } 229 } 230 } 231 232 static void kvm_arm_devlistener_del(MemoryListener *listener, 233 MemoryRegionSection *section) 234 { 235 KVMDevice *kd; 236 237 QSLIST_FOREACH(kd, &kvm_devices_head, entries) { 238 if (section->mr == kd->mr) { 239 kd->kda.addr = -1; 240 } 241 } 242 } 243 244 static MemoryListener devlistener = { 245 .region_add = kvm_arm_devlistener_add, 246 .region_del = kvm_arm_devlistener_del, 247 }; 248 249 static void kvm_arm_set_device_addr(KVMDevice *kd) 250 { 251 struct kvm_device_attr *attr = &kd->kdattr; 252 int ret; 253 254 /* If the device control API is available and we have a device fd on the 255 * KVMDevice struct, let's use the newer API 256 */ 257 if (kd->dev_fd >= 0) { 258 uint64_t addr = kd->kda.addr; 259 260 addr |= kd->kda_addr_ormask; 261 attr->addr = (uintptr_t)&addr; 262 ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr); 263 } else { 264 ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda); 265 } 266 267 if (ret < 0) { 268 fprintf(stderr, "Failed to set device address: %s\n", 269 strerror(-ret)); 270 abort(); 271 } 272 } 273 274 static void kvm_arm_machine_init_done(Notifier *notifier, void *data) 275 { 276 KVMDevice *kd, *tkd; 277 278 QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) { 279 if (kd->kda.addr != -1) { 280 kvm_arm_set_device_addr(kd); 281 } 282 memory_region_unref(kd->mr); 283 QSLIST_REMOVE_HEAD(&kvm_devices_head, entries); 284 g_free(kd); 285 } 286 memory_listener_unregister(&devlistener); 287 } 288 289 static Notifier notify = { 290 .notify = kvm_arm_machine_init_done, 291 }; 292 293 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group, 294 uint64_t attr, int dev_fd, uint64_t addr_ormask) 295 { 296 KVMDevice *kd; 297 298 if (!kvm_irqchip_in_kernel()) { 299 return; 300 } 301 302 if (QSLIST_EMPTY(&kvm_devices_head)) { 303 memory_listener_register(&devlistener, &address_space_memory); 304 qemu_add_machine_init_done_notifier(¬ify); 305 } 306 kd = g_new0(KVMDevice, 1); 307 kd->mr = mr; 308 kd->kda.id = devid; 309 kd->kda.addr = -1; 310 kd->kdattr.flags = 0; 311 kd->kdattr.group = group; 312 kd->kdattr.attr = attr; 313 kd->dev_fd = dev_fd; 314 kd->kda_addr_ormask = addr_ormask; 315 QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries); 316 memory_region_ref(kd->mr); 317 } 318 319 static int compare_u64(const void *a, const void *b) 320 { 321 if (*(uint64_t *)a > *(uint64_t *)b) { 322 return 1; 323 } 324 if (*(uint64_t *)a < *(uint64_t *)b) { 325 return -1; 326 } 327 return 0; 328 } 329 330 /* Initialize the ARMCPU cpreg list according to the kernel's 331 * definition of what CPU registers it knows about (and throw away 332 * the previous TCG-created cpreg list). 333 */ 334 int kvm_arm_init_cpreg_list(ARMCPU *cpu) 335 { 336 struct kvm_reg_list rl; 337 struct kvm_reg_list *rlp; 338 int i, ret, arraylen; 339 CPUState *cs = CPU(cpu); 340 341 rl.n = 0; 342 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl); 343 if (ret != -E2BIG) { 344 return ret; 345 } 346 rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t)); 347 rlp->n = rl.n; 348 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp); 349 if (ret) { 350 goto out; 351 } 352 /* Sort the list we get back from the kernel, since cpreg_tuples 353 * must be in strictly ascending order. 354 */ 355 qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64); 356 357 for (i = 0, arraylen = 0; i < rlp->n; i++) { 358 if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) { 359 continue; 360 } 361 switch (rlp->reg[i] & KVM_REG_SIZE_MASK) { 362 case KVM_REG_SIZE_U32: 363 case KVM_REG_SIZE_U64: 364 break; 365 default: 366 fprintf(stderr, "Can't handle size of register in kernel list\n"); 367 ret = -EINVAL; 368 goto out; 369 } 370 371 arraylen++; 372 } 373 374 cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen); 375 cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen); 376 cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes, 377 arraylen); 378 cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values, 379 arraylen); 380 cpu->cpreg_array_len = arraylen; 381 cpu->cpreg_vmstate_array_len = arraylen; 382 383 for (i = 0, arraylen = 0; i < rlp->n; i++) { 384 uint64_t regidx = rlp->reg[i]; 385 if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) { 386 continue; 387 } 388 cpu->cpreg_indexes[arraylen] = regidx; 389 arraylen++; 390 } 391 assert(cpu->cpreg_array_len == arraylen); 392 393 if (!write_kvmstate_to_list(cpu)) { 394 /* Shouldn't happen unless kernel is inconsistent about 395 * what registers exist. 396 */ 397 fprintf(stderr, "Initial read of kernel register state failed\n"); 398 ret = -EINVAL; 399 goto out; 400 } 401 402 out: 403 g_free(rlp); 404 return ret; 405 } 406 407 bool write_kvmstate_to_list(ARMCPU *cpu) 408 { 409 CPUState *cs = CPU(cpu); 410 int i; 411 bool ok = true; 412 413 for (i = 0; i < cpu->cpreg_array_len; i++) { 414 struct kvm_one_reg r; 415 uint64_t regidx = cpu->cpreg_indexes[i]; 416 uint32_t v32; 417 int ret; 418 419 r.id = regidx; 420 421 switch (regidx & KVM_REG_SIZE_MASK) { 422 case KVM_REG_SIZE_U32: 423 r.addr = (uintptr_t)&v32; 424 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); 425 if (!ret) { 426 cpu->cpreg_values[i] = v32; 427 } 428 break; 429 case KVM_REG_SIZE_U64: 430 r.addr = (uintptr_t)(cpu->cpreg_values + i); 431 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); 432 break; 433 default: 434 abort(); 435 } 436 if (ret) { 437 ok = false; 438 } 439 } 440 return ok; 441 } 442 443 bool write_list_to_kvmstate(ARMCPU *cpu, int level) 444 { 445 CPUState *cs = CPU(cpu); 446 int i; 447 bool ok = true; 448 449 for (i = 0; i < cpu->cpreg_array_len; i++) { 450 struct kvm_one_reg r; 451 uint64_t regidx = cpu->cpreg_indexes[i]; 452 uint32_t v32; 453 int ret; 454 455 if (kvm_arm_cpreg_level(regidx) > level) { 456 continue; 457 } 458 459 r.id = regidx; 460 switch (regidx & KVM_REG_SIZE_MASK) { 461 case KVM_REG_SIZE_U32: 462 v32 = cpu->cpreg_values[i]; 463 r.addr = (uintptr_t)&v32; 464 break; 465 case KVM_REG_SIZE_U64: 466 r.addr = (uintptr_t)(cpu->cpreg_values + i); 467 break; 468 default: 469 abort(); 470 } 471 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); 472 if (ret) { 473 /* We might fail for "unknown register" and also for 474 * "you tried to set a register which is constant with 475 * a different value from what it actually contains". 476 */ 477 ok = false; 478 } 479 } 480 return ok; 481 } 482 483 void kvm_arm_reset_vcpu(ARMCPU *cpu) 484 { 485 int ret; 486 487 /* Re-init VCPU so that all registers are set to 488 * their respective reset values. 489 */ 490 ret = kvm_arm_vcpu_init(CPU(cpu)); 491 if (ret < 0) { 492 fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret)); 493 abort(); 494 } 495 if (!write_kvmstate_to_list(cpu)) { 496 fprintf(stderr, "write_kvmstate_to_list failed\n"); 497 abort(); 498 } 499 /* 500 * Sync the reset values also into the CPUState. This is necessary 501 * because the next thing we do will be a kvm_arch_put_registers() 502 * which will update the list values from the CPUState before copying 503 * the list values back to KVM. It's OK to ignore failure returns here 504 * for the same reason we do so in kvm_arch_get_registers(). 505 */ 506 write_list_to_cpustate(cpu); 507 } 508 509 /* 510 * Update KVM's MP_STATE based on what QEMU thinks it is 511 */ 512 int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu) 513 { 514 if (cap_has_mp_state) { 515 struct kvm_mp_state mp_state = { 516 .mp_state = (cpu->power_state == PSCI_OFF) ? 517 KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE 518 }; 519 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); 520 if (ret) { 521 fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n", 522 __func__, ret, strerror(-ret)); 523 return -1; 524 } 525 } 526 527 return 0; 528 } 529 530 /* 531 * Sync the KVM MP_STATE into QEMU 532 */ 533 int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu) 534 { 535 if (cap_has_mp_state) { 536 struct kvm_mp_state mp_state; 537 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state); 538 if (ret) { 539 fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n", 540 __func__, ret, strerror(-ret)); 541 abort(); 542 } 543 cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ? 544 PSCI_OFF : PSCI_ON; 545 } 546 547 return 0; 548 } 549 550 int kvm_put_vcpu_events(ARMCPU *cpu) 551 { 552 CPUARMState *env = &cpu->env; 553 struct kvm_vcpu_events events; 554 int ret; 555 556 if (!kvm_has_vcpu_events()) { 557 return 0; 558 } 559 560 memset(&events, 0, sizeof(events)); 561 events.exception.serror_pending = env->serror.pending; 562 563 /* Inject SError to guest with specified syndrome if host kernel 564 * supports it, otherwise inject SError without syndrome. 565 */ 566 if (cap_has_inject_serror_esr) { 567 events.exception.serror_has_esr = env->serror.has_esr; 568 events.exception.serror_esr = env->serror.esr; 569 } 570 571 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); 572 if (ret) { 573 error_report("failed to put vcpu events"); 574 } 575 576 return ret; 577 } 578 579 int kvm_get_vcpu_events(ARMCPU *cpu) 580 { 581 CPUARMState *env = &cpu->env; 582 struct kvm_vcpu_events events; 583 int ret; 584 585 if (!kvm_has_vcpu_events()) { 586 return 0; 587 } 588 589 memset(&events, 0, sizeof(events)); 590 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); 591 if (ret) { 592 error_report("failed to get vcpu events"); 593 return ret; 594 } 595 596 env->serror.pending = events.exception.serror_pending; 597 env->serror.has_esr = events.exception.serror_has_esr; 598 env->serror.esr = events.exception.serror_esr; 599 600 return 0; 601 } 602 603 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run) 604 { 605 } 606 607 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) 608 { 609 ARMCPU *cpu; 610 uint32_t switched_level; 611 612 if (kvm_irqchip_in_kernel()) { 613 /* 614 * We only need to sync timer states with user-space interrupt 615 * controllers, so return early and save cycles if we don't. 616 */ 617 return MEMTXATTRS_UNSPECIFIED; 618 } 619 620 cpu = ARM_CPU(cs); 621 622 /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */ 623 if (run->s.regs.device_irq_level != cpu->device_irq_level) { 624 switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level; 625 626 qemu_mutex_lock_iothread(); 627 628 if (switched_level & KVM_ARM_DEV_EL1_VTIMER) { 629 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT], 630 !!(run->s.regs.device_irq_level & 631 KVM_ARM_DEV_EL1_VTIMER)); 632 switched_level &= ~KVM_ARM_DEV_EL1_VTIMER; 633 } 634 635 if (switched_level & KVM_ARM_DEV_EL1_PTIMER) { 636 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS], 637 !!(run->s.regs.device_irq_level & 638 KVM_ARM_DEV_EL1_PTIMER)); 639 switched_level &= ~KVM_ARM_DEV_EL1_PTIMER; 640 } 641 642 if (switched_level & KVM_ARM_DEV_PMU) { 643 qemu_set_irq(cpu->pmu_interrupt, 644 !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU)); 645 switched_level &= ~KVM_ARM_DEV_PMU; 646 } 647 648 if (switched_level) { 649 qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n", 650 __func__, switched_level); 651 } 652 653 /* We also mark unknown levels as processed to not waste cycles */ 654 cpu->device_irq_level = run->s.regs.device_irq_level; 655 qemu_mutex_unlock_iothread(); 656 } 657 658 return MEMTXATTRS_UNSPECIFIED; 659 } 660 661 662 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 663 { 664 int ret = 0; 665 666 switch (run->exit_reason) { 667 case KVM_EXIT_DEBUG: 668 if (kvm_arm_handle_debug(cs, &run->debug.arch)) { 669 ret = EXCP_DEBUG; 670 } /* otherwise return to guest */ 671 break; 672 default: 673 qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n", 674 __func__, run->exit_reason); 675 break; 676 } 677 return ret; 678 } 679 680 bool kvm_arch_stop_on_emulation_error(CPUState *cs) 681 { 682 return true; 683 } 684 685 int kvm_arch_process_async_events(CPUState *cs) 686 { 687 return 0; 688 } 689 690 /* The #ifdef protections are until 32bit headers are imported and can 691 * be removed once both 32 and 64 bit reach feature parity. 692 */ 693 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg) 694 { 695 #ifdef KVM_GUESTDBG_USE_SW_BP 696 if (kvm_sw_breakpoints_active(cs)) { 697 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; 698 } 699 #endif 700 #ifdef KVM_GUESTDBG_USE_HW 701 if (kvm_arm_hw_debug_active(cs)) { 702 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW; 703 kvm_arm_copy_hw_debug_data(&dbg->arch); 704 } 705 #endif 706 } 707 708 void kvm_arch_init_irq_routing(KVMState *s) 709 { 710 } 711 712 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s) 713 { 714 if (machine_kernel_irqchip_split(ms)) { 715 perror("-machine kernel_irqchip=split is not supported on ARM."); 716 exit(1); 717 } 718 719 /* If we can create the VGIC using the newer device control API, we 720 * let the device do this when it initializes itself, otherwise we 721 * fall back to the old API */ 722 return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL); 723 } 724 725 int kvm_arm_vgic_probe(void) 726 { 727 if (kvm_create_device(kvm_state, 728 KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) { 729 return 3; 730 } else if (kvm_create_device(kvm_state, 731 KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) { 732 return 2; 733 } else { 734 return 0; 735 } 736 } 737 738 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 739 uint64_t address, uint32_t data, PCIDevice *dev) 740 { 741 AddressSpace *as = pci_device_iommu_address_space(dev); 742 hwaddr xlat, len, doorbell_gpa; 743 MemoryRegionSection mrs; 744 MemoryRegion *mr; 745 int ret = 1; 746 747 if (as == &address_space_memory) { 748 return 0; 749 } 750 751 /* MSI doorbell address is translated by an IOMMU */ 752 753 rcu_read_lock(); 754 mr = address_space_translate(as, address, &xlat, &len, true, 755 MEMTXATTRS_UNSPECIFIED); 756 if (!mr) { 757 goto unlock; 758 } 759 mrs = memory_region_find(mr, xlat, 1); 760 if (!mrs.mr) { 761 goto unlock; 762 } 763 764 doorbell_gpa = mrs.offset_within_address_space; 765 memory_region_unref(mrs.mr); 766 767 route->u.msi.address_lo = doorbell_gpa; 768 route->u.msi.address_hi = doorbell_gpa >> 32; 769 770 trace_kvm_arm_fixup_msi_route(address, doorbell_gpa); 771 772 ret = 0; 773 774 unlock: 775 rcu_read_unlock(); 776 return ret; 777 } 778 779 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 780 int vector, PCIDevice *dev) 781 { 782 return 0; 783 } 784 785 int kvm_arch_release_virq_post(int virq) 786 { 787 return 0; 788 } 789 790 int kvm_arch_msi_data_to_gsi(uint32_t data) 791 { 792 return (data - 32) & 0xffff; 793 } 794