1 /* 2 * QEMU ARM CPU -- internal functions and types 3 * 4 * Copyright (c) 2014 Linaro Ltd 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 * 20 * This header defines functions, types, etc which need to be shared 21 * between different source files within target/arm/ but which are 22 * private to it and not required by the rest of QEMU. 23 */ 24 25 #ifndef TARGET_ARM_INTERNALS_H 26 #define TARGET_ARM_INTERNALS_H 27 28 #include "hw/registerfields.h" 29 30 /* register banks for CPU modes */ 31 #define BANK_USRSYS 0 32 #define BANK_SVC 1 33 #define BANK_ABT 2 34 #define BANK_UND 3 35 #define BANK_IRQ 4 36 #define BANK_FIQ 5 37 #define BANK_HYP 6 38 #define BANK_MON 7 39 40 static inline bool excp_is_internal(int excp) 41 { 42 /* Return true if this exception number represents a QEMU-internal 43 * exception that will not be passed to the guest. 44 */ 45 return excp == EXCP_INTERRUPT 46 || excp == EXCP_HLT 47 || excp == EXCP_DEBUG 48 || excp == EXCP_HALTED 49 || excp == EXCP_EXCEPTION_EXIT 50 || excp == EXCP_KERNEL_TRAP 51 || excp == EXCP_SEMIHOST; 52 } 53 54 /* Scale factor for generic timers, ie number of ns per tick. 55 * This gives a 62.5MHz timer. 56 */ 57 #define GTIMER_SCALE 16 58 59 /* Bit definitions for the v7M CONTROL register */ 60 FIELD(V7M_CONTROL, NPRIV, 0, 1) 61 FIELD(V7M_CONTROL, SPSEL, 1, 1) 62 FIELD(V7M_CONTROL, FPCA, 2, 1) 63 FIELD(V7M_CONTROL, SFPA, 3, 1) 64 65 /* Bit definitions for v7M exception return payload */ 66 FIELD(V7M_EXCRET, ES, 0, 1) 67 FIELD(V7M_EXCRET, RES0, 1, 1) 68 FIELD(V7M_EXCRET, SPSEL, 2, 1) 69 FIELD(V7M_EXCRET, MODE, 3, 1) 70 FIELD(V7M_EXCRET, FTYPE, 4, 1) 71 FIELD(V7M_EXCRET, DCRS, 5, 1) 72 FIELD(V7M_EXCRET, S, 6, 1) 73 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */ 74 75 /* Minimum value which is a magic number for exception return */ 76 #define EXC_RETURN_MIN_MAGIC 0xff000000 77 /* Minimum number which is a magic number for function or exception return 78 * when using v8M security extension 79 */ 80 #define FNC_RETURN_MIN_MAGIC 0xfefffffe 81 82 /* We use a few fake FSR values for internal purposes in M profile. 83 * M profile cores don't have A/R format FSRs, but currently our 84 * get_phys_addr() code assumes A/R profile and reports failures via 85 * an A/R format FSR value. We then translate that into the proper 86 * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt(). 87 * Mostly the FSR values we use for this are those defined for v7PMSA, 88 * since we share some of that codepath. A few kinds of fault are 89 * only for M profile and have no A/R equivalent, though, so we have 90 * to pick a value from the reserved range (which we never otherwise 91 * generate) to use for these. 92 * These values will never be visible to the guest. 93 */ 94 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */ 95 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */ 96 97 /** 98 * raise_exception: Raise the specified exception. 99 * Raise a guest exception with the specified value, syndrome register 100 * and target exception level. This should be called from helper functions, 101 * and never returns because we will longjump back up to the CPU main loop. 102 */ 103 void QEMU_NORETURN raise_exception(CPUARMState *env, uint32_t excp, 104 uint32_t syndrome, uint32_t target_el); 105 106 /* 107 * Similarly, but also use unwinding to restore cpu state. 108 */ 109 void QEMU_NORETURN raise_exception_ra(CPUARMState *env, uint32_t excp, 110 uint32_t syndrome, uint32_t target_el, 111 uintptr_t ra); 112 113 /* 114 * For AArch64, map a given EL to an index in the banked_spsr array. 115 * Note that this mapping and the AArch32 mapping defined in bank_number() 116 * must agree such that the AArch64<->AArch32 SPSRs have the architecturally 117 * mandated mapping between each other. 118 */ 119 static inline unsigned int aarch64_banked_spsr_index(unsigned int el) 120 { 121 static const unsigned int map[4] = { 122 [1] = BANK_SVC, /* EL1. */ 123 [2] = BANK_HYP, /* EL2. */ 124 [3] = BANK_MON, /* EL3. */ 125 }; 126 assert(el >= 1 && el <= 3); 127 return map[el]; 128 } 129 130 /* Map CPU modes onto saved register banks. */ 131 static inline int bank_number(int mode) 132 { 133 switch (mode) { 134 case ARM_CPU_MODE_USR: 135 case ARM_CPU_MODE_SYS: 136 return BANK_USRSYS; 137 case ARM_CPU_MODE_SVC: 138 return BANK_SVC; 139 case ARM_CPU_MODE_ABT: 140 return BANK_ABT; 141 case ARM_CPU_MODE_UND: 142 return BANK_UND; 143 case ARM_CPU_MODE_IRQ: 144 return BANK_IRQ; 145 case ARM_CPU_MODE_FIQ: 146 return BANK_FIQ; 147 case ARM_CPU_MODE_HYP: 148 return BANK_HYP; 149 case ARM_CPU_MODE_MON: 150 return BANK_MON; 151 } 152 g_assert_not_reached(); 153 } 154 155 /** 156 * r14_bank_number: Map CPU mode onto register bank for r14 157 * 158 * Given an AArch32 CPU mode, return the index into the saved register 159 * banks to use for the R14 (LR) in that mode. This is the same as 160 * bank_number(), except for the special case of Hyp mode, where 161 * R14 is shared with USR and SYS, unlike its R13 and SPSR. 162 * This should be used as the index into env->banked_r14[], and 163 * bank_number() used for the index into env->banked_r13[] and 164 * env->banked_spsr[]. 165 */ 166 static inline int r14_bank_number(int mode) 167 { 168 return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode); 169 } 170 171 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu); 172 void arm_translate_init(void); 173 174 enum arm_fprounding { 175 FPROUNDING_TIEEVEN, 176 FPROUNDING_POSINF, 177 FPROUNDING_NEGINF, 178 FPROUNDING_ZERO, 179 FPROUNDING_TIEAWAY, 180 FPROUNDING_ODD 181 }; 182 183 int arm_rmode_to_sf(int rmode); 184 185 static inline void aarch64_save_sp(CPUARMState *env, int el) 186 { 187 if (env->pstate & PSTATE_SP) { 188 env->sp_el[el] = env->xregs[31]; 189 } else { 190 env->sp_el[0] = env->xregs[31]; 191 } 192 } 193 194 static inline void aarch64_restore_sp(CPUARMState *env, int el) 195 { 196 if (env->pstate & PSTATE_SP) { 197 env->xregs[31] = env->sp_el[el]; 198 } else { 199 env->xregs[31] = env->sp_el[0]; 200 } 201 } 202 203 static inline void update_spsel(CPUARMState *env, uint32_t imm) 204 { 205 unsigned int cur_el = arm_current_el(env); 206 /* Update PSTATE SPSel bit; this requires us to update the 207 * working stack pointer in xregs[31]. 208 */ 209 if (!((imm ^ env->pstate) & PSTATE_SP)) { 210 return; 211 } 212 aarch64_save_sp(env, cur_el); 213 env->pstate = deposit32(env->pstate, 0, 1, imm); 214 215 /* We rely on illegal updates to SPsel from EL0 to get trapped 216 * at translation time. 217 */ 218 assert(cur_el >= 1 && cur_el <= 3); 219 aarch64_restore_sp(env, cur_el); 220 } 221 222 /* 223 * arm_pamax 224 * @cpu: ARMCPU 225 * 226 * Returns the implementation defined bit-width of physical addresses. 227 * The ARMv8 reference manuals refer to this as PAMax(). 228 */ 229 static inline unsigned int arm_pamax(ARMCPU *cpu) 230 { 231 static const unsigned int pamax_map[] = { 232 [0] = 32, 233 [1] = 36, 234 [2] = 40, 235 [3] = 42, 236 [4] = 44, 237 [5] = 48, 238 }; 239 unsigned int parange = 240 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 241 242 /* id_aa64mmfr0 is a read-only register so values outside of the 243 * supported mappings can be considered an implementation error. */ 244 assert(parange < ARRAY_SIZE(pamax_map)); 245 return pamax_map[parange]; 246 } 247 248 /* Return true if extended addresses are enabled. 249 * This is always the case if our translation regime is 64 bit, 250 * but depends on TTBCR.EAE for 32 bit. 251 */ 252 static inline bool extended_addresses_enabled(CPUARMState *env) 253 { 254 TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1]; 255 return arm_el_is_aa64(env, 1) || 256 (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE)); 257 } 258 259 /* Valid Syndrome Register EC field values */ 260 enum arm_exception_class { 261 EC_UNCATEGORIZED = 0x00, 262 EC_WFX_TRAP = 0x01, 263 EC_CP15RTTRAP = 0x03, 264 EC_CP15RRTTRAP = 0x04, 265 EC_CP14RTTRAP = 0x05, 266 EC_CP14DTTRAP = 0x06, 267 EC_ADVSIMDFPACCESSTRAP = 0x07, 268 EC_FPIDTRAP = 0x08, 269 EC_PACTRAP = 0x09, 270 EC_CP14RRTTRAP = 0x0c, 271 EC_BTITRAP = 0x0d, 272 EC_ILLEGALSTATE = 0x0e, 273 EC_AA32_SVC = 0x11, 274 EC_AA32_HVC = 0x12, 275 EC_AA32_SMC = 0x13, 276 EC_AA64_SVC = 0x15, 277 EC_AA64_HVC = 0x16, 278 EC_AA64_SMC = 0x17, 279 EC_SYSTEMREGISTERTRAP = 0x18, 280 EC_SVEACCESSTRAP = 0x19, 281 EC_INSNABORT = 0x20, 282 EC_INSNABORT_SAME_EL = 0x21, 283 EC_PCALIGNMENT = 0x22, 284 EC_DATAABORT = 0x24, 285 EC_DATAABORT_SAME_EL = 0x25, 286 EC_SPALIGNMENT = 0x26, 287 EC_AA32_FPTRAP = 0x28, 288 EC_AA64_FPTRAP = 0x2c, 289 EC_SERROR = 0x2f, 290 EC_BREAKPOINT = 0x30, 291 EC_BREAKPOINT_SAME_EL = 0x31, 292 EC_SOFTWARESTEP = 0x32, 293 EC_SOFTWARESTEP_SAME_EL = 0x33, 294 EC_WATCHPOINT = 0x34, 295 EC_WATCHPOINT_SAME_EL = 0x35, 296 EC_AA32_BKPT = 0x38, 297 EC_VECTORCATCH = 0x3a, 298 EC_AA64_BKPT = 0x3c, 299 }; 300 301 #define ARM_EL_EC_SHIFT 26 302 #define ARM_EL_IL_SHIFT 25 303 #define ARM_EL_ISV_SHIFT 24 304 #define ARM_EL_IL (1 << ARM_EL_IL_SHIFT) 305 #define ARM_EL_ISV (1 << ARM_EL_ISV_SHIFT) 306 307 static inline uint32_t syn_get_ec(uint32_t syn) 308 { 309 return syn >> ARM_EL_EC_SHIFT; 310 } 311 312 /* Utility functions for constructing various kinds of syndrome value. 313 * Note that in general we follow the AArch64 syndrome values; in a 314 * few cases the value in HSR for exceptions taken to AArch32 Hyp 315 * mode differs slightly, and we fix this up when populating HSR in 316 * arm_cpu_do_interrupt_aarch32_hyp(). 317 * The exception is FP/SIMD access traps -- these report extra information 318 * when taking an exception to AArch32. For those we include the extra coproc 319 * and TA fields, and mask them out when taking the exception to AArch64. 320 */ 321 static inline uint32_t syn_uncategorized(void) 322 { 323 return (EC_UNCATEGORIZED << ARM_EL_EC_SHIFT) | ARM_EL_IL; 324 } 325 326 static inline uint32_t syn_aa64_svc(uint32_t imm16) 327 { 328 return (EC_AA64_SVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff); 329 } 330 331 static inline uint32_t syn_aa64_hvc(uint32_t imm16) 332 { 333 return (EC_AA64_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff); 334 } 335 336 static inline uint32_t syn_aa64_smc(uint32_t imm16) 337 { 338 return (EC_AA64_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff); 339 } 340 341 static inline uint32_t syn_aa32_svc(uint32_t imm16, bool is_16bit) 342 { 343 return (EC_AA32_SVC << ARM_EL_EC_SHIFT) | (imm16 & 0xffff) 344 | (is_16bit ? 0 : ARM_EL_IL); 345 } 346 347 static inline uint32_t syn_aa32_hvc(uint32_t imm16) 348 { 349 return (EC_AA32_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff); 350 } 351 352 static inline uint32_t syn_aa32_smc(void) 353 { 354 return (EC_AA32_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL; 355 } 356 357 static inline uint32_t syn_aa64_bkpt(uint32_t imm16) 358 { 359 return (EC_AA64_BKPT << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff); 360 } 361 362 static inline uint32_t syn_aa32_bkpt(uint32_t imm16, bool is_16bit) 363 { 364 return (EC_AA32_BKPT << ARM_EL_EC_SHIFT) | (imm16 & 0xffff) 365 | (is_16bit ? 0 : ARM_EL_IL); 366 } 367 368 static inline uint32_t syn_aa64_sysregtrap(int op0, int op1, int op2, 369 int crn, int crm, int rt, 370 int isread) 371 { 372 return (EC_SYSTEMREGISTERTRAP << ARM_EL_EC_SHIFT) | ARM_EL_IL 373 | (op0 << 20) | (op2 << 17) | (op1 << 14) | (crn << 10) | (rt << 5) 374 | (crm << 1) | isread; 375 } 376 377 static inline uint32_t syn_cp14_rt_trap(int cv, int cond, int opc1, int opc2, 378 int crn, int crm, int rt, int isread, 379 bool is_16bit) 380 { 381 return (EC_CP14RTTRAP << ARM_EL_EC_SHIFT) 382 | (is_16bit ? 0 : ARM_EL_IL) 383 | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14) 384 | (crn << 10) | (rt << 5) | (crm << 1) | isread; 385 } 386 387 static inline uint32_t syn_cp15_rt_trap(int cv, int cond, int opc1, int opc2, 388 int crn, int crm, int rt, int isread, 389 bool is_16bit) 390 { 391 return (EC_CP15RTTRAP << ARM_EL_EC_SHIFT) 392 | (is_16bit ? 0 : ARM_EL_IL) 393 | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14) 394 | (crn << 10) | (rt << 5) | (crm << 1) | isread; 395 } 396 397 static inline uint32_t syn_cp14_rrt_trap(int cv, int cond, int opc1, int crm, 398 int rt, int rt2, int isread, 399 bool is_16bit) 400 { 401 return (EC_CP14RRTTRAP << ARM_EL_EC_SHIFT) 402 | (is_16bit ? 0 : ARM_EL_IL) 403 | (cv << 24) | (cond << 20) | (opc1 << 16) 404 | (rt2 << 10) | (rt << 5) | (crm << 1) | isread; 405 } 406 407 static inline uint32_t syn_cp15_rrt_trap(int cv, int cond, int opc1, int crm, 408 int rt, int rt2, int isread, 409 bool is_16bit) 410 { 411 return (EC_CP15RRTTRAP << ARM_EL_EC_SHIFT) 412 | (is_16bit ? 0 : ARM_EL_IL) 413 | (cv << 24) | (cond << 20) | (opc1 << 16) 414 | (rt2 << 10) | (rt << 5) | (crm << 1) | isread; 415 } 416 417 static inline uint32_t syn_fp_access_trap(int cv, int cond, bool is_16bit) 418 { 419 /* AArch32 FP trap or any AArch64 FP/SIMD trap: TA == 0 coproc == 0xa */ 420 return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT) 421 | (is_16bit ? 0 : ARM_EL_IL) 422 | (cv << 24) | (cond << 20) | 0xa; 423 } 424 425 static inline uint32_t syn_simd_access_trap(int cv, int cond, bool is_16bit) 426 { 427 /* AArch32 SIMD trap: TA == 1 coproc == 0 */ 428 return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT) 429 | (is_16bit ? 0 : ARM_EL_IL) 430 | (cv << 24) | (cond << 20) | (1 << 5); 431 } 432 433 static inline uint32_t syn_sve_access_trap(void) 434 { 435 return EC_SVEACCESSTRAP << ARM_EL_EC_SHIFT; 436 } 437 438 static inline uint32_t syn_pactrap(void) 439 { 440 return EC_PACTRAP << ARM_EL_EC_SHIFT; 441 } 442 443 static inline uint32_t syn_btitrap(int btype) 444 { 445 return (EC_BTITRAP << ARM_EL_EC_SHIFT) | btype; 446 } 447 448 static inline uint32_t syn_insn_abort(int same_el, int ea, int s1ptw, int fsc) 449 { 450 return (EC_INSNABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT) 451 | ARM_EL_IL | (ea << 9) | (s1ptw << 7) | fsc; 452 } 453 454 static inline uint32_t syn_data_abort_no_iss(int same_el, 455 int ea, int cm, int s1ptw, 456 int wnr, int fsc) 457 { 458 return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT) 459 | ARM_EL_IL 460 | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc; 461 } 462 463 static inline uint32_t syn_data_abort_with_iss(int same_el, 464 int sas, int sse, int srt, 465 int sf, int ar, 466 int ea, int cm, int s1ptw, 467 int wnr, int fsc, 468 bool is_16bit) 469 { 470 return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT) 471 | (is_16bit ? 0 : ARM_EL_IL) 472 | ARM_EL_ISV | (sas << 22) | (sse << 21) | (srt << 16) 473 | (sf << 15) | (ar << 14) 474 | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc; 475 } 476 477 static inline uint32_t syn_swstep(int same_el, int isv, int ex) 478 { 479 return (EC_SOFTWARESTEP << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT) 480 | ARM_EL_IL | (isv << 24) | (ex << 6) | 0x22; 481 } 482 483 static inline uint32_t syn_watchpoint(int same_el, int cm, int wnr) 484 { 485 return (EC_WATCHPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT) 486 | ARM_EL_IL | (cm << 8) | (wnr << 6) | 0x22; 487 } 488 489 static inline uint32_t syn_breakpoint(int same_el) 490 { 491 return (EC_BREAKPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT) 492 | ARM_EL_IL | 0x22; 493 } 494 495 static inline uint32_t syn_wfx(int cv, int cond, int ti, bool is_16bit) 496 { 497 return (EC_WFX_TRAP << ARM_EL_EC_SHIFT) | 498 (is_16bit ? 0 : (1 << ARM_EL_IL_SHIFT)) | 499 (cv << 24) | (cond << 20) | ti; 500 } 501 502 /* Update a QEMU watchpoint based on the information the guest has set in the 503 * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers. 504 */ 505 void hw_watchpoint_update(ARMCPU *cpu, int n); 506 /* Update the QEMU watchpoints for every guest watchpoint. This does a 507 * complete delete-and-reinstate of the QEMU watchpoint list and so is 508 * suitable for use after migration or on reset. 509 */ 510 void hw_watchpoint_update_all(ARMCPU *cpu); 511 /* Update a QEMU breakpoint based on the information the guest has set in the 512 * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers. 513 */ 514 void hw_breakpoint_update(ARMCPU *cpu, int n); 515 /* Update the QEMU breakpoints for every guest breakpoint. This does a 516 * complete delete-and-reinstate of the QEMU breakpoint list and so is 517 * suitable for use after migration or on reset. 518 */ 519 void hw_breakpoint_update_all(ARMCPU *cpu); 520 521 /* Callback function for checking if a watchpoint should trigger. */ 522 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp); 523 524 /* Adjust addresses (in BE32 mode) before testing against watchpoint 525 * addresses. 526 */ 527 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len); 528 529 /* Callback function for when a watchpoint or breakpoint triggers. */ 530 void arm_debug_excp_handler(CPUState *cs); 531 532 #if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG) 533 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type) 534 { 535 return false; 536 } 537 static inline void arm_handle_psci_call(ARMCPU *cpu) 538 { 539 g_assert_not_reached(); 540 } 541 #else 542 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */ 543 bool arm_is_psci_call(ARMCPU *cpu, int excp_type); 544 /* Actually handle a PSCI call */ 545 void arm_handle_psci_call(ARMCPU *cpu); 546 #endif 547 548 /** 549 * arm_clear_exclusive: clear the exclusive monitor 550 * @env: CPU env 551 * Clear the CPU's exclusive monitor, like the guest CLREX instruction. 552 */ 553 static inline void arm_clear_exclusive(CPUARMState *env) 554 { 555 env->exclusive_addr = -1; 556 } 557 558 /** 559 * ARMFaultType: type of an ARM MMU fault 560 * This corresponds to the v8A pseudocode's Fault enumeration, 561 * with extensions for QEMU internal conditions. 562 */ 563 typedef enum ARMFaultType { 564 ARMFault_None, 565 ARMFault_AccessFlag, 566 ARMFault_Alignment, 567 ARMFault_Background, 568 ARMFault_Domain, 569 ARMFault_Permission, 570 ARMFault_Translation, 571 ARMFault_AddressSize, 572 ARMFault_SyncExternal, 573 ARMFault_SyncExternalOnWalk, 574 ARMFault_SyncParity, 575 ARMFault_SyncParityOnWalk, 576 ARMFault_AsyncParity, 577 ARMFault_AsyncExternal, 578 ARMFault_Debug, 579 ARMFault_TLBConflict, 580 ARMFault_Lockdown, 581 ARMFault_Exclusive, 582 ARMFault_ICacheMaint, 583 ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */ 584 ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */ 585 } ARMFaultType; 586 587 /** 588 * ARMMMUFaultInfo: Information describing an ARM MMU Fault 589 * @type: Type of fault 590 * @level: Table walk level (for translation, access flag and permission faults) 591 * @domain: Domain of the fault address (for non-LPAE CPUs only) 592 * @s2addr: Address that caused a fault at stage 2 593 * @stage2: True if we faulted at stage 2 594 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk 595 * @ea: True if we should set the EA (external abort type) bit in syndrome 596 */ 597 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo; 598 struct ARMMMUFaultInfo { 599 ARMFaultType type; 600 target_ulong s2addr; 601 int level; 602 int domain; 603 bool stage2; 604 bool s1ptw; 605 bool ea; 606 }; 607 608 /** 609 * arm_fi_to_sfsc: Convert fault info struct to short-format FSC 610 * Compare pseudocode EncodeSDFSC(), though unlike that function 611 * we set up a whole FSR-format code including domain field and 612 * putting the high bit of the FSC into bit 10. 613 */ 614 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi) 615 { 616 uint32_t fsc; 617 618 switch (fi->type) { 619 case ARMFault_None: 620 return 0; 621 case ARMFault_AccessFlag: 622 fsc = fi->level == 1 ? 0x3 : 0x6; 623 break; 624 case ARMFault_Alignment: 625 fsc = 0x1; 626 break; 627 case ARMFault_Permission: 628 fsc = fi->level == 1 ? 0xd : 0xf; 629 break; 630 case ARMFault_Domain: 631 fsc = fi->level == 1 ? 0x9 : 0xb; 632 break; 633 case ARMFault_Translation: 634 fsc = fi->level == 1 ? 0x5 : 0x7; 635 break; 636 case ARMFault_SyncExternal: 637 fsc = 0x8 | (fi->ea << 12); 638 break; 639 case ARMFault_SyncExternalOnWalk: 640 fsc = fi->level == 1 ? 0xc : 0xe; 641 fsc |= (fi->ea << 12); 642 break; 643 case ARMFault_SyncParity: 644 fsc = 0x409; 645 break; 646 case ARMFault_SyncParityOnWalk: 647 fsc = fi->level == 1 ? 0x40c : 0x40e; 648 break; 649 case ARMFault_AsyncParity: 650 fsc = 0x408; 651 break; 652 case ARMFault_AsyncExternal: 653 fsc = 0x406 | (fi->ea << 12); 654 break; 655 case ARMFault_Debug: 656 fsc = 0x2; 657 break; 658 case ARMFault_TLBConflict: 659 fsc = 0x400; 660 break; 661 case ARMFault_Lockdown: 662 fsc = 0x404; 663 break; 664 case ARMFault_Exclusive: 665 fsc = 0x405; 666 break; 667 case ARMFault_ICacheMaint: 668 fsc = 0x4; 669 break; 670 case ARMFault_Background: 671 fsc = 0x0; 672 break; 673 case ARMFault_QEMU_NSCExec: 674 fsc = M_FAKE_FSR_NSC_EXEC; 675 break; 676 case ARMFault_QEMU_SFault: 677 fsc = M_FAKE_FSR_SFAULT; 678 break; 679 default: 680 /* Other faults can't occur in a context that requires a 681 * short-format status code. 682 */ 683 g_assert_not_reached(); 684 } 685 686 fsc |= (fi->domain << 4); 687 return fsc; 688 } 689 690 /** 691 * arm_fi_to_lfsc: Convert fault info struct to long-format FSC 692 * Compare pseudocode EncodeLDFSC(), though unlike that function 693 * we fill in also the LPAE bit 9 of a DFSR format. 694 */ 695 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi) 696 { 697 uint32_t fsc; 698 699 switch (fi->type) { 700 case ARMFault_None: 701 return 0; 702 case ARMFault_AddressSize: 703 fsc = fi->level & 3; 704 break; 705 case ARMFault_AccessFlag: 706 fsc = (fi->level & 3) | (0x2 << 2); 707 break; 708 case ARMFault_Permission: 709 fsc = (fi->level & 3) | (0x3 << 2); 710 break; 711 case ARMFault_Translation: 712 fsc = (fi->level & 3) | (0x1 << 2); 713 break; 714 case ARMFault_SyncExternal: 715 fsc = 0x10 | (fi->ea << 12); 716 break; 717 case ARMFault_SyncExternalOnWalk: 718 fsc = (fi->level & 3) | (0x5 << 2) | (fi->ea << 12); 719 break; 720 case ARMFault_SyncParity: 721 fsc = 0x18; 722 break; 723 case ARMFault_SyncParityOnWalk: 724 fsc = (fi->level & 3) | (0x7 << 2); 725 break; 726 case ARMFault_AsyncParity: 727 fsc = 0x19; 728 break; 729 case ARMFault_AsyncExternal: 730 fsc = 0x11 | (fi->ea << 12); 731 break; 732 case ARMFault_Alignment: 733 fsc = 0x21; 734 break; 735 case ARMFault_Debug: 736 fsc = 0x22; 737 break; 738 case ARMFault_TLBConflict: 739 fsc = 0x30; 740 break; 741 case ARMFault_Lockdown: 742 fsc = 0x34; 743 break; 744 case ARMFault_Exclusive: 745 fsc = 0x35; 746 break; 747 default: 748 /* Other faults can't occur in a context that requires a 749 * long-format status code. 750 */ 751 g_assert_not_reached(); 752 } 753 754 fsc |= 1 << 9; 755 return fsc; 756 } 757 758 static inline bool arm_extabort_type(MemTxResult result) 759 { 760 /* The EA bit in syndromes and fault status registers is an 761 * IMPDEF classification of external aborts. ARM implementations 762 * usually use this to indicate AXI bus Decode error (0) or 763 * Slave error (1); in QEMU we follow that. 764 */ 765 return result != MEMTX_DECODE_ERROR; 766 } 767 768 bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size, 769 MMUAccessType access_type, int mmu_idx, 770 bool probe, uintptr_t retaddr); 771 772 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx) 773 { 774 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK; 775 } 776 777 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx) 778 { 779 if (arm_feature(env, ARM_FEATURE_M)) { 780 return mmu_idx | ARM_MMU_IDX_M; 781 } else { 782 return mmu_idx | ARM_MMU_IDX_A; 783 } 784 } 785 786 static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx) 787 { 788 /* AArch64 is always a-profile. */ 789 return mmu_idx | ARM_MMU_IDX_A; 790 } 791 792 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx); 793 794 /* 795 * Return the MMU index for a v7M CPU with all relevant information 796 * manually specified. 797 */ 798 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env, 799 bool secstate, bool priv, bool negpri); 800 801 /* 802 * Return the MMU index for a v7M CPU in the specified security and 803 * privilege state. 804 */ 805 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env, 806 bool secstate, bool priv); 807 808 /* Return the MMU index for a v7M CPU in the specified security state */ 809 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate); 810 811 /* Return true if the stage 1 translation regime is using LPAE format page 812 * tables */ 813 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx); 814 815 /* Raise a data fault alignment exception for the specified virtual address */ 816 void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr, 817 MMUAccessType access_type, 818 int mmu_idx, uintptr_t retaddr); 819 820 /* arm_cpu_do_transaction_failed: handle a memory system error response 821 * (eg "no device/memory present at address") by raising an external abort 822 * exception 823 */ 824 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, 825 vaddr addr, unsigned size, 826 MMUAccessType access_type, 827 int mmu_idx, MemTxAttrs attrs, 828 MemTxResult response, uintptr_t retaddr); 829 830 /* Call any registered EL change hooks */ 831 static inline void arm_call_pre_el_change_hook(ARMCPU *cpu) 832 { 833 ARMELChangeHook *hook, *next; 834 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) { 835 hook->hook(cpu, hook->opaque); 836 } 837 } 838 static inline void arm_call_el_change_hook(ARMCPU *cpu) 839 { 840 ARMELChangeHook *hook, *next; 841 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) { 842 hook->hook(cpu, hook->opaque); 843 } 844 } 845 846 /* Return true if this address translation regime has two ranges. */ 847 static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx) 848 { 849 switch (mmu_idx) { 850 case ARMMMUIdx_Stage1_E0: 851 case ARMMMUIdx_Stage1_E1: 852 case ARMMMUIdx_Stage1_E1_PAN: 853 case ARMMMUIdx_E10_0: 854 case ARMMMUIdx_E10_1: 855 case ARMMMUIdx_E10_1_PAN: 856 case ARMMMUIdx_E20_0: 857 case ARMMMUIdx_E20_2: 858 case ARMMMUIdx_E20_2_PAN: 859 case ARMMMUIdx_SE10_0: 860 case ARMMMUIdx_SE10_1: 861 case ARMMMUIdx_SE10_1_PAN: 862 return true; 863 default: 864 return false; 865 } 866 } 867 868 /* Return true if this address translation regime is secure */ 869 static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx) 870 { 871 switch (mmu_idx) { 872 case ARMMMUIdx_E10_0: 873 case ARMMMUIdx_E10_1: 874 case ARMMMUIdx_E10_1_PAN: 875 case ARMMMUIdx_E20_0: 876 case ARMMMUIdx_E20_2: 877 case ARMMMUIdx_E20_2_PAN: 878 case ARMMMUIdx_Stage1_E0: 879 case ARMMMUIdx_Stage1_E1: 880 case ARMMMUIdx_Stage1_E1_PAN: 881 case ARMMMUIdx_E2: 882 case ARMMMUIdx_Stage2: 883 case ARMMMUIdx_MPrivNegPri: 884 case ARMMMUIdx_MUserNegPri: 885 case ARMMMUIdx_MPriv: 886 case ARMMMUIdx_MUser: 887 return false; 888 case ARMMMUIdx_SE3: 889 case ARMMMUIdx_SE10_0: 890 case ARMMMUIdx_SE10_1: 891 case ARMMMUIdx_SE10_1_PAN: 892 case ARMMMUIdx_MSPrivNegPri: 893 case ARMMMUIdx_MSUserNegPri: 894 case ARMMMUIdx_MSPriv: 895 case ARMMMUIdx_MSUser: 896 return true; 897 default: 898 g_assert_not_reached(); 899 } 900 } 901 902 static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx) 903 { 904 switch (mmu_idx) { 905 case ARMMMUIdx_Stage1_E1_PAN: 906 case ARMMMUIdx_E10_1_PAN: 907 case ARMMMUIdx_E20_2_PAN: 908 case ARMMMUIdx_SE10_1_PAN: 909 return true; 910 default: 911 return false; 912 } 913 } 914 915 /* Return the FSR value for a debug exception (watchpoint, hardware 916 * breakpoint or BKPT insn) targeting the specified exception level. 917 */ 918 static inline uint32_t arm_debug_exception_fsr(CPUARMState *env) 919 { 920 ARMMMUFaultInfo fi = { .type = ARMFault_Debug }; 921 int target_el = arm_debug_target_el(env); 922 bool using_lpae = false; 923 924 if (target_el == 2 || arm_el_is_aa64(env, target_el)) { 925 using_lpae = true; 926 } else { 927 if (arm_feature(env, ARM_FEATURE_LPAE) && 928 (env->cp15.tcr_el[target_el].raw_tcr & TTBCR_EAE)) { 929 using_lpae = true; 930 } 931 } 932 933 if (using_lpae) { 934 return arm_fi_to_lfsc(&fi); 935 } else { 936 return arm_fi_to_sfsc(&fi); 937 } 938 } 939 940 /** 941 * arm_num_brps: Return number of implemented breakpoints. 942 * Note that the ID register BRPS field is "number of bps - 1", 943 * and we return the actual number of breakpoints. 944 */ 945 static inline int arm_num_brps(ARMCPU *cpu) 946 { 947 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 948 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1; 949 } else { 950 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1; 951 } 952 } 953 954 /** 955 * arm_num_wrps: Return number of implemented watchpoints. 956 * Note that the ID register WRPS field is "number of wps - 1", 957 * and we return the actual number of watchpoints. 958 */ 959 static inline int arm_num_wrps(ARMCPU *cpu) 960 { 961 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 962 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1; 963 } else { 964 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1; 965 } 966 } 967 968 /** 969 * arm_num_ctx_cmps: Return number of implemented context comparators. 970 * Note that the ID register CTX_CMPS field is "number of cmps - 1", 971 * and we return the actual number of comparators. 972 */ 973 static inline int arm_num_ctx_cmps(ARMCPU *cpu) 974 { 975 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 976 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1; 977 } else { 978 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1; 979 } 980 } 981 982 /* Note make_memop_idx reserves 4 bits for mmu_idx, and MO_BSWAP is bit 3. 983 * Thus a TCGMemOpIdx, without any MO_ALIGN bits, fits in 8 bits. 984 */ 985 #define MEMOPIDX_SHIFT 8 986 987 /** 988 * v7m_using_psp: Return true if using process stack pointer 989 * Return true if the CPU is currently using the process stack 990 * pointer, or false if it is using the main stack pointer. 991 */ 992 static inline bool v7m_using_psp(CPUARMState *env) 993 { 994 /* Handler mode always uses the main stack; for thread mode 995 * the CONTROL.SPSEL bit determines the answer. 996 * Note that in v7M it is not possible to be in Handler mode with 997 * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both. 998 */ 999 return !arm_v7m_is_handler_mode(env) && 1000 env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK; 1001 } 1002 1003 /** 1004 * v7m_sp_limit: Return SP limit for current CPU state 1005 * Return the SP limit value for the current CPU security state 1006 * and stack pointer. 1007 */ 1008 static inline uint32_t v7m_sp_limit(CPUARMState *env) 1009 { 1010 if (v7m_using_psp(env)) { 1011 return env->v7m.psplim[env->v7m.secure]; 1012 } else { 1013 return env->v7m.msplim[env->v7m.secure]; 1014 } 1015 } 1016 1017 /** 1018 * v7m_cpacr_pass: 1019 * Return true if the v7M CPACR permits access to the FPU for the specified 1020 * security state and privilege level. 1021 */ 1022 static inline bool v7m_cpacr_pass(CPUARMState *env, 1023 bool is_secure, bool is_priv) 1024 { 1025 switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) { 1026 case 0: 1027 case 2: /* UNPREDICTABLE: we treat like 0 */ 1028 return false; 1029 case 1: 1030 return is_priv; 1031 case 3: 1032 return true; 1033 default: 1034 g_assert_not_reached(); 1035 } 1036 } 1037 1038 /** 1039 * aarch32_mode_name(): Return name of the AArch32 CPU mode 1040 * @psr: Program Status Register indicating CPU mode 1041 * 1042 * Returns, for debug logging purposes, a printable representation 1043 * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by 1044 * the low bits of the specified PSR. 1045 */ 1046 static inline const char *aarch32_mode_name(uint32_t psr) 1047 { 1048 static const char cpu_mode_names[16][4] = { 1049 "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt", 1050 "???", "???", "hyp", "und", "???", "???", "???", "sys" 1051 }; 1052 1053 return cpu_mode_names[psr & 0xf]; 1054 } 1055 1056 /** 1057 * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request 1058 * 1059 * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following 1060 * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit. 1061 * Must be called with the iothread lock held. 1062 */ 1063 void arm_cpu_update_virq(ARMCPU *cpu); 1064 1065 /** 1066 * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request 1067 * 1068 * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following 1069 * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit. 1070 * Must be called with the iothread lock held. 1071 */ 1072 void arm_cpu_update_vfiq(ARMCPU *cpu); 1073 1074 /** 1075 * arm_mmu_idx_el: 1076 * @env: The cpu environment 1077 * @el: The EL to use. 1078 * 1079 * Return the full ARMMMUIdx for the translation regime for EL. 1080 */ 1081 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el); 1082 1083 /** 1084 * arm_mmu_idx: 1085 * @env: The cpu environment 1086 * 1087 * Return the full ARMMMUIdx for the current translation regime. 1088 */ 1089 ARMMMUIdx arm_mmu_idx(CPUARMState *env); 1090 1091 /** 1092 * arm_stage1_mmu_idx: 1093 * @env: The cpu environment 1094 * 1095 * Return the ARMMMUIdx for the stage1 traversal for the current regime. 1096 */ 1097 #ifdef CONFIG_USER_ONLY 1098 static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 1099 { 1100 return ARMMMUIdx_Stage1_E0; 1101 } 1102 #else 1103 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env); 1104 #endif 1105 1106 /** 1107 * arm_mmu_idx_is_stage1_of_2: 1108 * @mmu_idx: The ARMMMUIdx to test 1109 * 1110 * Return true if @mmu_idx is a NOTLB mmu_idx that is the 1111 * first stage of a two stage regime. 1112 */ 1113 static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx) 1114 { 1115 switch (mmu_idx) { 1116 case ARMMMUIdx_Stage1_E0: 1117 case ARMMMUIdx_Stage1_E1: 1118 case ARMMMUIdx_Stage1_E1_PAN: 1119 return true; 1120 default: 1121 return false; 1122 } 1123 } 1124 1125 static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features, 1126 const ARMISARegisters *id) 1127 { 1128 uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV; 1129 1130 if ((features >> ARM_FEATURE_V4T) & 1) { 1131 valid |= CPSR_T; 1132 } 1133 if ((features >> ARM_FEATURE_V5) & 1) { 1134 valid |= CPSR_Q; /* V5TE in reality*/ 1135 } 1136 if ((features >> ARM_FEATURE_V6) & 1) { 1137 valid |= CPSR_E | CPSR_GE; 1138 } 1139 if ((features >> ARM_FEATURE_THUMB2) & 1) { 1140 valid |= CPSR_IT; 1141 } 1142 if (isar_feature_aa32_jazelle(id)) { 1143 valid |= CPSR_J; 1144 } 1145 if (isar_feature_aa32_pan(id)) { 1146 valid |= CPSR_PAN; 1147 } 1148 1149 return valid; 1150 } 1151 1152 static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id) 1153 { 1154 uint32_t valid; 1155 1156 valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV; 1157 if (isar_feature_aa64_bti(id)) { 1158 valid |= PSTATE_BTYPE; 1159 } 1160 if (isar_feature_aa64_pan(id)) { 1161 valid |= PSTATE_PAN; 1162 } 1163 if (isar_feature_aa64_uao(id)) { 1164 valid |= PSTATE_UAO; 1165 } 1166 1167 return valid; 1168 } 1169 1170 /* 1171 * Parameters of a given virtual address, as extracted from the 1172 * translation control register (TCR) for a given regime. 1173 */ 1174 typedef struct ARMVAParameters { 1175 unsigned tsz : 8; 1176 unsigned select : 1; 1177 bool tbi : 1; 1178 bool epd : 1; 1179 bool hpd : 1; 1180 bool using16k : 1; 1181 bool using64k : 1; 1182 } ARMVAParameters; 1183 1184 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 1185 ARMMMUIdx mmu_idx, bool data); 1186 1187 static inline int exception_target_el(CPUARMState *env) 1188 { 1189 int target_el = MAX(1, arm_current_el(env)); 1190 1191 /* 1192 * No such thing as secure EL1 if EL3 is aarch32, 1193 * so update the target EL to EL3 in this case. 1194 */ 1195 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) { 1196 target_el = 3; 1197 } 1198 1199 return target_el; 1200 } 1201 1202 #ifndef CONFIG_USER_ONLY 1203 1204 /* Security attributes for an address, as returned by v8m_security_lookup. */ 1205 typedef struct V8M_SAttributes { 1206 bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */ 1207 bool ns; 1208 bool nsc; 1209 uint8_t sregion; 1210 bool srvalid; 1211 uint8_t iregion; 1212 bool irvalid; 1213 } V8M_SAttributes; 1214 1215 void v8m_security_lookup(CPUARMState *env, uint32_t address, 1216 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1217 V8M_SAttributes *sattrs); 1218 1219 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 1220 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1221 hwaddr *phys_ptr, MemTxAttrs *txattrs, 1222 int *prot, bool *is_subpage, 1223 ARMMMUFaultInfo *fi, uint32_t *mregion); 1224 1225 /* Cacheability and shareability attributes for a memory access */ 1226 typedef struct ARMCacheAttrs { 1227 unsigned int attrs:8; /* as in the MAIR register encoding */ 1228 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */ 1229 } ARMCacheAttrs; 1230 1231 bool get_phys_addr(CPUARMState *env, target_ulong address, 1232 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1233 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 1234 target_ulong *page_size, 1235 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); 1236 1237 void arm_log_exception(int idx); 1238 1239 #endif /* !CONFIG_USER_ONLY */ 1240 1241 #endif 1242