1 /* 2 * QEMU ARM CPU -- internal functions and types 3 * 4 * Copyright (c) 2014 Linaro Ltd 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 * 20 * This header defines functions, types, etc which need to be shared 21 * between different source files within target/arm/ but which are 22 * private to it and not required by the rest of QEMU. 23 */ 24 25 #ifndef TARGET_ARM_INTERNALS_H 26 #define TARGET_ARM_INTERNALS_H 27 28 #include "hw/registerfields.h" 29 #include "tcg/tcg-gvec-desc.h" 30 #include "syndrome.h" 31 #include "cpu-features.h" 32 33 /* register banks for CPU modes */ 34 #define BANK_USRSYS 0 35 #define BANK_SVC 1 36 #define BANK_ABT 2 37 #define BANK_UND 3 38 #define BANK_IRQ 4 39 #define BANK_FIQ 5 40 #define BANK_HYP 6 41 #define BANK_MON 7 42 43 static inline bool excp_is_internal(int excp) 44 { 45 /* Return true if this exception number represents a QEMU-internal 46 * exception that will not be passed to the guest. 47 */ 48 return excp == EXCP_INTERRUPT 49 || excp == EXCP_HLT 50 || excp == EXCP_DEBUG 51 || excp == EXCP_HALTED 52 || excp == EXCP_EXCEPTION_EXIT 53 || excp == EXCP_KERNEL_TRAP 54 || excp == EXCP_SEMIHOST; 55 } 56 57 /* Scale factor for generic timers, ie number of ns per tick. 58 * This gives a 62.5MHz timer. 59 */ 60 #define GTIMER_SCALE 16 61 62 /* Bit definitions for the v7M CONTROL register */ 63 FIELD(V7M_CONTROL, NPRIV, 0, 1) 64 FIELD(V7M_CONTROL, SPSEL, 1, 1) 65 FIELD(V7M_CONTROL, FPCA, 2, 1) 66 FIELD(V7M_CONTROL, SFPA, 3, 1) 67 68 /* Bit definitions for v7M exception return payload */ 69 FIELD(V7M_EXCRET, ES, 0, 1) 70 FIELD(V7M_EXCRET, RES0, 1, 1) 71 FIELD(V7M_EXCRET, SPSEL, 2, 1) 72 FIELD(V7M_EXCRET, MODE, 3, 1) 73 FIELD(V7M_EXCRET, FTYPE, 4, 1) 74 FIELD(V7M_EXCRET, DCRS, 5, 1) 75 FIELD(V7M_EXCRET, S, 6, 1) 76 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */ 77 78 /* Minimum value which is a magic number for exception return */ 79 #define EXC_RETURN_MIN_MAGIC 0xff000000 80 /* Minimum number which is a magic number for function or exception return 81 * when using v8M security extension 82 */ 83 #define FNC_RETURN_MIN_MAGIC 0xfefffffe 84 85 /* Bit definitions for DBGWCRn and DBGWCRn_EL1 */ 86 FIELD(DBGWCR, E, 0, 1) 87 FIELD(DBGWCR, PAC, 1, 2) 88 FIELD(DBGWCR, LSC, 3, 2) 89 FIELD(DBGWCR, BAS, 5, 8) 90 FIELD(DBGWCR, HMC, 13, 1) 91 FIELD(DBGWCR, SSC, 14, 2) 92 FIELD(DBGWCR, LBN, 16, 4) 93 FIELD(DBGWCR, WT, 20, 1) 94 FIELD(DBGWCR, MASK, 24, 5) 95 FIELD(DBGWCR, SSCE, 29, 1) 96 97 /* We use a few fake FSR values for internal purposes in M profile. 98 * M profile cores don't have A/R format FSRs, but currently our 99 * get_phys_addr() code assumes A/R profile and reports failures via 100 * an A/R format FSR value. We then translate that into the proper 101 * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt(). 102 * Mostly the FSR values we use for this are those defined for v7PMSA, 103 * since we share some of that codepath. A few kinds of fault are 104 * only for M profile and have no A/R equivalent, though, so we have 105 * to pick a value from the reserved range (which we never otherwise 106 * generate) to use for these. 107 * These values will never be visible to the guest. 108 */ 109 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */ 110 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */ 111 112 /** 113 * raise_exception: Raise the specified exception. 114 * Raise a guest exception with the specified value, syndrome register 115 * and target exception level. This should be called from helper functions, 116 * and never returns because we will longjump back up to the CPU main loop. 117 */ 118 G_NORETURN void raise_exception(CPUARMState *env, uint32_t excp, 119 uint32_t syndrome, uint32_t target_el); 120 121 /* 122 * Similarly, but also use unwinding to restore cpu state. 123 */ 124 G_NORETURN void raise_exception_ra(CPUARMState *env, uint32_t excp, 125 uint32_t syndrome, uint32_t target_el, 126 uintptr_t ra); 127 128 /* 129 * For AArch64, map a given EL to an index in the banked_spsr array. 130 * Note that this mapping and the AArch32 mapping defined in bank_number() 131 * must agree such that the AArch64<->AArch32 SPSRs have the architecturally 132 * mandated mapping between each other. 133 */ 134 static inline unsigned int aarch64_banked_spsr_index(unsigned int el) 135 { 136 static const unsigned int map[4] = { 137 [1] = BANK_SVC, /* EL1. */ 138 [2] = BANK_HYP, /* EL2. */ 139 [3] = BANK_MON, /* EL3. */ 140 }; 141 assert(el >= 1 && el <= 3); 142 return map[el]; 143 } 144 145 /* Map CPU modes onto saved register banks. */ 146 static inline int bank_number(int mode) 147 { 148 switch (mode) { 149 case ARM_CPU_MODE_USR: 150 case ARM_CPU_MODE_SYS: 151 return BANK_USRSYS; 152 case ARM_CPU_MODE_SVC: 153 return BANK_SVC; 154 case ARM_CPU_MODE_ABT: 155 return BANK_ABT; 156 case ARM_CPU_MODE_UND: 157 return BANK_UND; 158 case ARM_CPU_MODE_IRQ: 159 return BANK_IRQ; 160 case ARM_CPU_MODE_FIQ: 161 return BANK_FIQ; 162 case ARM_CPU_MODE_HYP: 163 return BANK_HYP; 164 case ARM_CPU_MODE_MON: 165 return BANK_MON; 166 } 167 g_assert_not_reached(); 168 } 169 170 /** 171 * r14_bank_number: Map CPU mode onto register bank for r14 172 * 173 * Given an AArch32 CPU mode, return the index into the saved register 174 * banks to use for the R14 (LR) in that mode. This is the same as 175 * bank_number(), except for the special case of Hyp mode, where 176 * R14 is shared with USR and SYS, unlike its R13 and SPSR. 177 * This should be used as the index into env->banked_r14[], and 178 * bank_number() used for the index into env->banked_r13[] and 179 * env->banked_spsr[]. 180 */ 181 static inline int r14_bank_number(int mode) 182 { 183 return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode); 184 } 185 186 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu); 187 void arm_translate_init(void); 188 189 void arm_restore_state_to_opc(CPUState *cs, 190 const TranslationBlock *tb, 191 const uint64_t *data); 192 193 #ifdef CONFIG_TCG 194 void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb); 195 #endif /* CONFIG_TCG */ 196 197 typedef enum ARMFPRounding { 198 FPROUNDING_TIEEVEN, 199 FPROUNDING_POSINF, 200 FPROUNDING_NEGINF, 201 FPROUNDING_ZERO, 202 FPROUNDING_TIEAWAY, 203 FPROUNDING_ODD 204 } ARMFPRounding; 205 206 extern const FloatRoundMode arm_rmode_to_sf_map[6]; 207 208 static inline FloatRoundMode arm_rmode_to_sf(ARMFPRounding rmode) 209 { 210 assert((unsigned)rmode < ARRAY_SIZE(arm_rmode_to_sf_map)); 211 return arm_rmode_to_sf_map[rmode]; 212 } 213 214 static inline void aarch64_save_sp(CPUARMState *env, int el) 215 { 216 if (env->pstate & PSTATE_SP) { 217 env->sp_el[el] = env->xregs[31]; 218 } else { 219 env->sp_el[0] = env->xregs[31]; 220 } 221 } 222 223 static inline void aarch64_restore_sp(CPUARMState *env, int el) 224 { 225 if (env->pstate & PSTATE_SP) { 226 env->xregs[31] = env->sp_el[el]; 227 } else { 228 env->xregs[31] = env->sp_el[0]; 229 } 230 } 231 232 static inline void update_spsel(CPUARMState *env, uint32_t imm) 233 { 234 unsigned int cur_el = arm_current_el(env); 235 /* Update PSTATE SPSel bit; this requires us to update the 236 * working stack pointer in xregs[31]. 237 */ 238 if (!((imm ^ env->pstate) & PSTATE_SP)) { 239 return; 240 } 241 aarch64_save_sp(env, cur_el); 242 env->pstate = deposit32(env->pstate, 0, 1, imm); 243 244 /* We rely on illegal updates to SPsel from EL0 to get trapped 245 * at translation time. 246 */ 247 assert(cur_el >= 1 && cur_el <= 3); 248 aarch64_restore_sp(env, cur_el); 249 } 250 251 /* 252 * arm_pamax 253 * @cpu: ARMCPU 254 * 255 * Returns the implementation defined bit-width of physical addresses. 256 * The ARMv8 reference manuals refer to this as PAMax(). 257 */ 258 unsigned int arm_pamax(ARMCPU *cpu); 259 260 /* Return true if extended addresses are enabled. 261 * This is always the case if our translation regime is 64 bit, 262 * but depends on TTBCR.EAE for 32 bit. 263 */ 264 static inline bool extended_addresses_enabled(CPUARMState *env) 265 { 266 uint64_t tcr = env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1]; 267 if (arm_feature(env, ARM_FEATURE_PMSA) && 268 arm_feature(env, ARM_FEATURE_V8)) { 269 return true; 270 } 271 return arm_el_is_aa64(env, 1) || 272 (arm_feature(env, ARM_FEATURE_LPAE) && (tcr & TTBCR_EAE)); 273 } 274 275 /* Update a QEMU watchpoint based on the information the guest has set in the 276 * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers. 277 */ 278 void hw_watchpoint_update(ARMCPU *cpu, int n); 279 /* Update the QEMU watchpoints for every guest watchpoint. This does a 280 * complete delete-and-reinstate of the QEMU watchpoint list and so is 281 * suitable for use after migration or on reset. 282 */ 283 void hw_watchpoint_update_all(ARMCPU *cpu); 284 /* Update a QEMU breakpoint based on the information the guest has set in the 285 * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers. 286 */ 287 void hw_breakpoint_update(ARMCPU *cpu, int n); 288 /* Update the QEMU breakpoints for every guest breakpoint. This does a 289 * complete delete-and-reinstate of the QEMU breakpoint list and so is 290 * suitable for use after migration or on reset. 291 */ 292 void hw_breakpoint_update_all(ARMCPU *cpu); 293 294 /* Callback function for checking if a breakpoint should trigger. */ 295 bool arm_debug_check_breakpoint(CPUState *cs); 296 297 /* Callback function for checking if a watchpoint should trigger. */ 298 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp); 299 300 /* Adjust addresses (in BE32 mode) before testing against watchpoint 301 * addresses. 302 */ 303 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len); 304 305 /* Callback function for when a watchpoint or breakpoint triggers. */ 306 void arm_debug_excp_handler(CPUState *cs); 307 308 #if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG) 309 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type) 310 { 311 return false; 312 } 313 static inline void arm_handle_psci_call(ARMCPU *cpu) 314 { 315 g_assert_not_reached(); 316 } 317 #else 318 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */ 319 bool arm_is_psci_call(ARMCPU *cpu, int excp_type); 320 /* Actually handle a PSCI call */ 321 void arm_handle_psci_call(ARMCPU *cpu); 322 #endif 323 324 /** 325 * arm_clear_exclusive: clear the exclusive monitor 326 * @env: CPU env 327 * Clear the CPU's exclusive monitor, like the guest CLREX instruction. 328 */ 329 static inline void arm_clear_exclusive(CPUARMState *env) 330 { 331 env->exclusive_addr = -1; 332 } 333 334 /** 335 * ARMFaultType: type of an ARM MMU fault 336 * This corresponds to the v8A pseudocode's Fault enumeration, 337 * with extensions for QEMU internal conditions. 338 */ 339 typedef enum ARMFaultType { 340 ARMFault_None, 341 ARMFault_AccessFlag, 342 ARMFault_Alignment, 343 ARMFault_Background, 344 ARMFault_Domain, 345 ARMFault_Permission, 346 ARMFault_Translation, 347 ARMFault_AddressSize, 348 ARMFault_SyncExternal, 349 ARMFault_SyncExternalOnWalk, 350 ARMFault_SyncParity, 351 ARMFault_SyncParityOnWalk, 352 ARMFault_AsyncParity, 353 ARMFault_AsyncExternal, 354 ARMFault_Debug, 355 ARMFault_TLBConflict, 356 ARMFault_UnsuppAtomicUpdate, 357 ARMFault_Lockdown, 358 ARMFault_Exclusive, 359 ARMFault_ICacheMaint, 360 ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */ 361 ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */ 362 ARMFault_GPCFOnWalk, 363 ARMFault_GPCFOnOutput, 364 } ARMFaultType; 365 366 typedef enum ARMGPCF { 367 GPCF_None, 368 GPCF_AddressSize, 369 GPCF_Walk, 370 GPCF_EABT, 371 GPCF_Fail, 372 } ARMGPCF; 373 374 /** 375 * ARMMMUFaultInfo: Information describing an ARM MMU Fault 376 * @type: Type of fault 377 * @gpcf: Subtype of ARMFault_GPCFOn{Walk,Output}. 378 * @level: Table walk level (for translation, access flag and permission faults) 379 * @domain: Domain of the fault address (for non-LPAE CPUs only) 380 * @s2addr: Address that caused a fault at stage 2 381 * @paddr: physical address that caused a fault for gpc 382 * @paddr_space: physical address space that caused a fault for gpc 383 * @stage2: True if we faulted at stage 2 384 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk 385 * @s1ns: True if we faulted on a non-secure IPA while in secure state 386 * @ea: True if we should set the EA (external abort type) bit in syndrome 387 */ 388 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo; 389 struct ARMMMUFaultInfo { 390 ARMFaultType type; 391 ARMGPCF gpcf; 392 target_ulong s2addr; 393 target_ulong paddr; 394 ARMSecuritySpace paddr_space; 395 int level; 396 int domain; 397 bool stage2; 398 bool s1ptw; 399 bool s1ns; 400 bool ea; 401 }; 402 403 /** 404 * arm_fi_to_sfsc: Convert fault info struct to short-format FSC 405 * Compare pseudocode EncodeSDFSC(), though unlike that function 406 * we set up a whole FSR-format code including domain field and 407 * putting the high bit of the FSC into bit 10. 408 */ 409 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi) 410 { 411 uint32_t fsc; 412 413 switch (fi->type) { 414 case ARMFault_None: 415 return 0; 416 case ARMFault_AccessFlag: 417 fsc = fi->level == 1 ? 0x3 : 0x6; 418 break; 419 case ARMFault_Alignment: 420 fsc = 0x1; 421 break; 422 case ARMFault_Permission: 423 fsc = fi->level == 1 ? 0xd : 0xf; 424 break; 425 case ARMFault_Domain: 426 fsc = fi->level == 1 ? 0x9 : 0xb; 427 break; 428 case ARMFault_Translation: 429 fsc = fi->level == 1 ? 0x5 : 0x7; 430 break; 431 case ARMFault_SyncExternal: 432 fsc = 0x8 | (fi->ea << 12); 433 break; 434 case ARMFault_SyncExternalOnWalk: 435 fsc = fi->level == 1 ? 0xc : 0xe; 436 fsc |= (fi->ea << 12); 437 break; 438 case ARMFault_SyncParity: 439 fsc = 0x409; 440 break; 441 case ARMFault_SyncParityOnWalk: 442 fsc = fi->level == 1 ? 0x40c : 0x40e; 443 break; 444 case ARMFault_AsyncParity: 445 fsc = 0x408; 446 break; 447 case ARMFault_AsyncExternal: 448 fsc = 0x406 | (fi->ea << 12); 449 break; 450 case ARMFault_Debug: 451 fsc = 0x2; 452 break; 453 case ARMFault_TLBConflict: 454 fsc = 0x400; 455 break; 456 case ARMFault_Lockdown: 457 fsc = 0x404; 458 break; 459 case ARMFault_Exclusive: 460 fsc = 0x405; 461 break; 462 case ARMFault_ICacheMaint: 463 fsc = 0x4; 464 break; 465 case ARMFault_Background: 466 fsc = 0x0; 467 break; 468 case ARMFault_QEMU_NSCExec: 469 fsc = M_FAKE_FSR_NSC_EXEC; 470 break; 471 case ARMFault_QEMU_SFault: 472 fsc = M_FAKE_FSR_SFAULT; 473 break; 474 default: 475 /* Other faults can't occur in a context that requires a 476 * short-format status code. 477 */ 478 g_assert_not_reached(); 479 } 480 481 fsc |= (fi->domain << 4); 482 return fsc; 483 } 484 485 /** 486 * arm_fi_to_lfsc: Convert fault info struct to long-format FSC 487 * Compare pseudocode EncodeLDFSC(), though unlike that function 488 * we fill in also the LPAE bit 9 of a DFSR format. 489 */ 490 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi) 491 { 492 uint32_t fsc; 493 494 switch (fi->type) { 495 case ARMFault_None: 496 return 0; 497 case ARMFault_AddressSize: 498 assert(fi->level >= -1 && fi->level <= 3); 499 if (fi->level < 0) { 500 fsc = 0b101001; 501 } else { 502 fsc = fi->level; 503 } 504 break; 505 case ARMFault_AccessFlag: 506 assert(fi->level >= 0 && fi->level <= 3); 507 fsc = 0b001000 | fi->level; 508 break; 509 case ARMFault_Permission: 510 assert(fi->level >= 0 && fi->level <= 3); 511 fsc = 0b001100 | fi->level; 512 break; 513 case ARMFault_Translation: 514 assert(fi->level >= -1 && fi->level <= 3); 515 if (fi->level < 0) { 516 fsc = 0b101011; 517 } else { 518 fsc = 0b000100 | fi->level; 519 } 520 break; 521 case ARMFault_SyncExternal: 522 fsc = 0x10 | (fi->ea << 12); 523 break; 524 case ARMFault_SyncExternalOnWalk: 525 assert(fi->level >= -1 && fi->level <= 3); 526 if (fi->level < 0) { 527 fsc = 0b010011; 528 } else { 529 fsc = 0b010100 | fi->level; 530 } 531 fsc |= fi->ea << 12; 532 break; 533 case ARMFault_SyncParity: 534 fsc = 0x18; 535 break; 536 case ARMFault_SyncParityOnWalk: 537 assert(fi->level >= -1 && fi->level <= 3); 538 if (fi->level < 0) { 539 fsc = 0b011011; 540 } else { 541 fsc = 0b011100 | fi->level; 542 } 543 break; 544 case ARMFault_AsyncParity: 545 fsc = 0x19; 546 break; 547 case ARMFault_AsyncExternal: 548 fsc = 0x11 | (fi->ea << 12); 549 break; 550 case ARMFault_Alignment: 551 fsc = 0x21; 552 break; 553 case ARMFault_Debug: 554 fsc = 0x22; 555 break; 556 case ARMFault_TLBConflict: 557 fsc = 0x30; 558 break; 559 case ARMFault_UnsuppAtomicUpdate: 560 fsc = 0x31; 561 break; 562 case ARMFault_Lockdown: 563 fsc = 0x34; 564 break; 565 case ARMFault_Exclusive: 566 fsc = 0x35; 567 break; 568 case ARMFault_GPCFOnWalk: 569 assert(fi->level >= -1 && fi->level <= 3); 570 if (fi->level < 0) { 571 fsc = 0b100011; 572 } else { 573 fsc = 0b100100 | fi->level; 574 } 575 break; 576 case ARMFault_GPCFOnOutput: 577 fsc = 0b101000; 578 break; 579 default: 580 /* Other faults can't occur in a context that requires a 581 * long-format status code. 582 */ 583 g_assert_not_reached(); 584 } 585 586 fsc |= 1 << 9; 587 return fsc; 588 } 589 590 static inline bool arm_extabort_type(MemTxResult result) 591 { 592 /* The EA bit in syndromes and fault status registers is an 593 * IMPDEF classification of external aborts. ARM implementations 594 * usually use this to indicate AXI bus Decode error (0) or 595 * Slave error (1); in QEMU we follow that. 596 */ 597 return result != MEMTX_DECODE_ERROR; 598 } 599 600 #ifdef CONFIG_USER_ONLY 601 void arm_cpu_record_sigsegv(CPUState *cpu, vaddr addr, 602 MMUAccessType access_type, 603 bool maperr, uintptr_t ra); 604 void arm_cpu_record_sigbus(CPUState *cpu, vaddr addr, 605 MMUAccessType access_type, uintptr_t ra); 606 #else 607 bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size, 608 MMUAccessType access_type, int mmu_idx, 609 bool probe, uintptr_t retaddr); 610 #endif 611 612 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx) 613 { 614 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK; 615 } 616 617 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx) 618 { 619 if (arm_feature(env, ARM_FEATURE_M)) { 620 return mmu_idx | ARM_MMU_IDX_M; 621 } else { 622 return mmu_idx | ARM_MMU_IDX_A; 623 } 624 } 625 626 static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx) 627 { 628 /* AArch64 is always a-profile. */ 629 return mmu_idx | ARM_MMU_IDX_A; 630 } 631 632 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx); 633 634 /* Return the MMU index for a v7M CPU in the specified security state */ 635 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate); 636 637 /* 638 * Return true if the stage 1 translation regime is using LPAE 639 * format page tables 640 */ 641 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx); 642 643 /* Raise a data fault alignment exception for the specified virtual address */ 644 G_NORETURN void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr, 645 MMUAccessType access_type, 646 int mmu_idx, uintptr_t retaddr); 647 648 #ifndef CONFIG_USER_ONLY 649 /* arm_cpu_do_transaction_failed: handle a memory system error response 650 * (eg "no device/memory present at address") by raising an external abort 651 * exception 652 */ 653 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, 654 vaddr addr, unsigned size, 655 MMUAccessType access_type, 656 int mmu_idx, MemTxAttrs attrs, 657 MemTxResult response, uintptr_t retaddr); 658 #endif 659 660 /* Call any registered EL change hooks */ 661 static inline void arm_call_pre_el_change_hook(ARMCPU *cpu) 662 { 663 ARMELChangeHook *hook, *next; 664 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) { 665 hook->hook(cpu, hook->opaque); 666 } 667 } 668 static inline void arm_call_el_change_hook(ARMCPU *cpu) 669 { 670 ARMELChangeHook *hook, *next; 671 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) { 672 hook->hook(cpu, hook->opaque); 673 } 674 } 675 676 /* Return true if this address translation regime has two ranges. */ 677 static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx) 678 { 679 switch (mmu_idx) { 680 case ARMMMUIdx_Stage1_E0: 681 case ARMMMUIdx_Stage1_E1: 682 case ARMMMUIdx_Stage1_E1_PAN: 683 case ARMMMUIdx_E10_0: 684 case ARMMMUIdx_E10_1: 685 case ARMMMUIdx_E10_1_PAN: 686 case ARMMMUIdx_E20_0: 687 case ARMMMUIdx_E20_2: 688 case ARMMMUIdx_E20_2_PAN: 689 return true; 690 default: 691 return false; 692 } 693 } 694 695 static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx) 696 { 697 switch (mmu_idx) { 698 case ARMMMUIdx_Stage1_E1_PAN: 699 case ARMMMUIdx_E10_1_PAN: 700 case ARMMMUIdx_E20_2_PAN: 701 return true; 702 default: 703 return false; 704 } 705 } 706 707 static inline bool regime_is_stage2(ARMMMUIdx mmu_idx) 708 { 709 return mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S; 710 } 711 712 /* Return the exception level which controls this address translation regime */ 713 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) 714 { 715 switch (mmu_idx) { 716 case ARMMMUIdx_E20_0: 717 case ARMMMUIdx_E20_2: 718 case ARMMMUIdx_E20_2_PAN: 719 case ARMMMUIdx_Stage2: 720 case ARMMMUIdx_Stage2_S: 721 case ARMMMUIdx_E2: 722 return 2; 723 case ARMMMUIdx_E3: 724 return 3; 725 case ARMMMUIdx_E10_0: 726 case ARMMMUIdx_Stage1_E0: 727 return arm_el_is_aa64(env, 3) || !arm_is_secure_below_el3(env) ? 1 : 3; 728 case ARMMMUIdx_Stage1_E1: 729 case ARMMMUIdx_Stage1_E1_PAN: 730 case ARMMMUIdx_E10_1: 731 case ARMMMUIdx_E10_1_PAN: 732 case ARMMMUIdx_MPrivNegPri: 733 case ARMMMUIdx_MUserNegPri: 734 case ARMMMUIdx_MPriv: 735 case ARMMMUIdx_MUser: 736 case ARMMMUIdx_MSPrivNegPri: 737 case ARMMMUIdx_MSUserNegPri: 738 case ARMMMUIdx_MSPriv: 739 case ARMMMUIdx_MSUser: 740 return 1; 741 default: 742 g_assert_not_reached(); 743 } 744 } 745 746 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 747 { 748 switch (mmu_idx) { 749 case ARMMMUIdx_E20_0: 750 case ARMMMUIdx_Stage1_E0: 751 case ARMMMUIdx_MUser: 752 case ARMMMUIdx_MSUser: 753 case ARMMMUIdx_MUserNegPri: 754 case ARMMMUIdx_MSUserNegPri: 755 return true; 756 default: 757 return false; 758 case ARMMMUIdx_E10_0: 759 case ARMMMUIdx_E10_1: 760 case ARMMMUIdx_E10_1_PAN: 761 g_assert_not_reached(); 762 } 763 } 764 765 /* Return the SCTLR value which controls this address translation regime */ 766 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 767 { 768 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 769 } 770 771 /* 772 * These are the fields in VTCR_EL2 which affect both the Secure stage 2 773 * and the Non-Secure stage 2 translation regimes (and hence which are 774 * not present in VSTCR_EL2). 775 */ 776 #define VTCR_SHARED_FIELD_MASK \ 777 (R_VTCR_IRGN0_MASK | R_VTCR_ORGN0_MASK | R_VTCR_SH0_MASK | \ 778 R_VTCR_PS_MASK | R_VTCR_VS_MASK | R_VTCR_HA_MASK | R_VTCR_HD_MASK | \ 779 R_VTCR_DS_MASK) 780 781 /* Return the value of the TCR controlling this translation regime */ 782 static inline uint64_t regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) 783 { 784 if (mmu_idx == ARMMMUIdx_Stage2) { 785 return env->cp15.vtcr_el2; 786 } 787 if (mmu_idx == ARMMMUIdx_Stage2_S) { 788 /* 789 * Secure stage 2 shares fields from VTCR_EL2. We merge those 790 * in with the VSTCR_EL2 value to synthesize a single VTCR_EL2 format 791 * value so the callers don't need to special case this. 792 * 793 * If a future architecture change defines bits in VSTCR_EL2 that 794 * overlap with these VTCR_EL2 fields we may need to revisit this. 795 */ 796 uint64_t v = env->cp15.vstcr_el2 & ~VTCR_SHARED_FIELD_MASK; 797 v |= env->cp15.vtcr_el2 & VTCR_SHARED_FIELD_MASK; 798 return v; 799 } 800 return env->cp15.tcr_el[regime_el(env, mmu_idx)]; 801 } 802 803 /* Return true if the translation regime is using LPAE format page tables */ 804 static inline bool regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 805 { 806 int el = regime_el(env, mmu_idx); 807 if (el == 2 || arm_el_is_aa64(env, el)) { 808 return true; 809 } 810 if (arm_feature(env, ARM_FEATURE_PMSA) && 811 arm_feature(env, ARM_FEATURE_V8)) { 812 return true; 813 } 814 if (arm_feature(env, ARM_FEATURE_LPAE) 815 && (regime_tcr(env, mmu_idx) & TTBCR_EAE)) { 816 return true; 817 } 818 return false; 819 } 820 821 /** 822 * arm_num_brps: Return number of implemented breakpoints. 823 * Note that the ID register BRPS field is "number of bps - 1", 824 * and we return the actual number of breakpoints. 825 */ 826 static inline int arm_num_brps(ARMCPU *cpu) 827 { 828 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 829 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1; 830 } else { 831 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1; 832 } 833 } 834 835 /** 836 * arm_num_wrps: Return number of implemented watchpoints. 837 * Note that the ID register WRPS field is "number of wps - 1", 838 * and we return the actual number of watchpoints. 839 */ 840 static inline int arm_num_wrps(ARMCPU *cpu) 841 { 842 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 843 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1; 844 } else { 845 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1; 846 } 847 } 848 849 /** 850 * arm_num_ctx_cmps: Return number of implemented context comparators. 851 * Note that the ID register CTX_CMPS field is "number of cmps - 1", 852 * and we return the actual number of comparators. 853 */ 854 static inline int arm_num_ctx_cmps(ARMCPU *cpu) 855 { 856 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 857 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1; 858 } else { 859 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1; 860 } 861 } 862 863 /** 864 * v7m_using_psp: Return true if using process stack pointer 865 * Return true if the CPU is currently using the process stack 866 * pointer, or false if it is using the main stack pointer. 867 */ 868 static inline bool v7m_using_psp(CPUARMState *env) 869 { 870 /* Handler mode always uses the main stack; for thread mode 871 * the CONTROL.SPSEL bit determines the answer. 872 * Note that in v7M it is not possible to be in Handler mode with 873 * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both. 874 */ 875 return !arm_v7m_is_handler_mode(env) && 876 env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK; 877 } 878 879 /** 880 * v7m_sp_limit: Return SP limit for current CPU state 881 * Return the SP limit value for the current CPU security state 882 * and stack pointer. 883 */ 884 static inline uint32_t v7m_sp_limit(CPUARMState *env) 885 { 886 if (v7m_using_psp(env)) { 887 return env->v7m.psplim[env->v7m.secure]; 888 } else { 889 return env->v7m.msplim[env->v7m.secure]; 890 } 891 } 892 893 /** 894 * v7m_cpacr_pass: 895 * Return true if the v7M CPACR permits access to the FPU for the specified 896 * security state and privilege level. 897 */ 898 static inline bool v7m_cpacr_pass(CPUARMState *env, 899 bool is_secure, bool is_priv) 900 { 901 switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) { 902 case 0: 903 case 2: /* UNPREDICTABLE: we treat like 0 */ 904 return false; 905 case 1: 906 return is_priv; 907 case 3: 908 return true; 909 default: 910 g_assert_not_reached(); 911 } 912 } 913 914 /** 915 * aarch32_mode_name(): Return name of the AArch32 CPU mode 916 * @psr: Program Status Register indicating CPU mode 917 * 918 * Returns, for debug logging purposes, a printable representation 919 * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by 920 * the low bits of the specified PSR. 921 */ 922 static inline const char *aarch32_mode_name(uint32_t psr) 923 { 924 static const char cpu_mode_names[16][4] = { 925 "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt", 926 "???", "???", "hyp", "und", "???", "???", "???", "sys" 927 }; 928 929 return cpu_mode_names[psr & 0xf]; 930 } 931 932 /** 933 * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request 934 * 935 * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following 936 * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit. 937 * Must be called with the iothread lock held. 938 */ 939 void arm_cpu_update_virq(ARMCPU *cpu); 940 941 /** 942 * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request 943 * 944 * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following 945 * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit. 946 * Must be called with the iothread lock held. 947 */ 948 void arm_cpu_update_vfiq(ARMCPU *cpu); 949 950 /** 951 * arm_cpu_update_vserr: Update CPU_INTERRUPT_VSERR bit 952 * 953 * Update the CPU_INTERRUPT_VSERR bit in cs->interrupt_request, 954 * following a change to the HCR_EL2.VSE bit. 955 */ 956 void arm_cpu_update_vserr(ARMCPU *cpu); 957 958 /** 959 * arm_mmu_idx_el: 960 * @env: The cpu environment 961 * @el: The EL to use. 962 * 963 * Return the full ARMMMUIdx for the translation regime for EL. 964 */ 965 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el); 966 967 /** 968 * arm_mmu_idx: 969 * @env: The cpu environment 970 * 971 * Return the full ARMMMUIdx for the current translation regime. 972 */ 973 ARMMMUIdx arm_mmu_idx(CPUARMState *env); 974 975 /** 976 * arm_stage1_mmu_idx: 977 * @env: The cpu environment 978 * 979 * Return the ARMMMUIdx for the stage1 traversal for the current regime. 980 */ 981 #ifdef CONFIG_USER_ONLY 982 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 983 { 984 return ARMMMUIdx_Stage1_E0; 985 } 986 static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 987 { 988 return ARMMMUIdx_Stage1_E0; 989 } 990 #else 991 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx); 992 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env); 993 #endif 994 995 /** 996 * arm_mmu_idx_is_stage1_of_2: 997 * @mmu_idx: The ARMMMUIdx to test 998 * 999 * Return true if @mmu_idx is a NOTLB mmu_idx that is the 1000 * first stage of a two stage regime. 1001 */ 1002 static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx) 1003 { 1004 switch (mmu_idx) { 1005 case ARMMMUIdx_Stage1_E0: 1006 case ARMMMUIdx_Stage1_E1: 1007 case ARMMMUIdx_Stage1_E1_PAN: 1008 return true; 1009 default: 1010 return false; 1011 } 1012 } 1013 1014 static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features, 1015 const ARMISARegisters *id) 1016 { 1017 uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV; 1018 1019 if ((features >> ARM_FEATURE_V4T) & 1) { 1020 valid |= CPSR_T; 1021 } 1022 if ((features >> ARM_FEATURE_V5) & 1) { 1023 valid |= CPSR_Q; /* V5TE in reality*/ 1024 } 1025 if ((features >> ARM_FEATURE_V6) & 1) { 1026 valid |= CPSR_E | CPSR_GE; 1027 } 1028 if ((features >> ARM_FEATURE_THUMB2) & 1) { 1029 valid |= CPSR_IT; 1030 } 1031 if (isar_feature_aa32_jazelle(id)) { 1032 valid |= CPSR_J; 1033 } 1034 if (isar_feature_aa32_pan(id)) { 1035 valid |= CPSR_PAN; 1036 } 1037 if (isar_feature_aa32_dit(id)) { 1038 valid |= CPSR_DIT; 1039 } 1040 if (isar_feature_aa32_ssbs(id)) { 1041 valid |= CPSR_SSBS; 1042 } 1043 1044 return valid; 1045 } 1046 1047 static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id) 1048 { 1049 uint32_t valid; 1050 1051 valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV; 1052 if (isar_feature_aa64_bti(id)) { 1053 valid |= PSTATE_BTYPE; 1054 } 1055 if (isar_feature_aa64_pan(id)) { 1056 valid |= PSTATE_PAN; 1057 } 1058 if (isar_feature_aa64_uao(id)) { 1059 valid |= PSTATE_UAO; 1060 } 1061 if (isar_feature_aa64_dit(id)) { 1062 valid |= PSTATE_DIT; 1063 } 1064 if (isar_feature_aa64_ssbs(id)) { 1065 valid |= PSTATE_SSBS; 1066 } 1067 if (isar_feature_aa64_mte(id)) { 1068 valid |= PSTATE_TCO; 1069 } 1070 1071 return valid; 1072 } 1073 1074 /* Granule size (i.e. page size) */ 1075 typedef enum ARMGranuleSize { 1076 /* Same order as TG0 encoding */ 1077 Gran4K, 1078 Gran64K, 1079 Gran16K, 1080 GranInvalid, 1081 } ARMGranuleSize; 1082 1083 /** 1084 * arm_granule_bits: Return address size of the granule in bits 1085 * 1086 * Return the address size of the granule in bits. This corresponds 1087 * to the pseudocode TGxGranuleBits(). 1088 */ 1089 static inline int arm_granule_bits(ARMGranuleSize gran) 1090 { 1091 switch (gran) { 1092 case Gran64K: 1093 return 16; 1094 case Gran16K: 1095 return 14; 1096 case Gran4K: 1097 return 12; 1098 default: 1099 g_assert_not_reached(); 1100 } 1101 } 1102 1103 /* 1104 * Parameters of a given virtual address, as extracted from the 1105 * translation control register (TCR) for a given regime. 1106 */ 1107 typedef struct ARMVAParameters { 1108 unsigned tsz : 8; 1109 unsigned ps : 3; 1110 unsigned sh : 2; 1111 unsigned select : 1; 1112 bool tbi : 1; 1113 bool epd : 1; 1114 bool hpd : 1; 1115 bool tsz_oob : 1; /* tsz has been clamped to legal range */ 1116 bool ds : 1; 1117 bool ha : 1; 1118 bool hd : 1; 1119 ARMGranuleSize gran : 2; 1120 } ARMVAParameters; 1121 1122 /** 1123 * aa64_va_parameters: Return parameters for an AArch64 virtual address 1124 * @env: CPU 1125 * @va: virtual address to look up 1126 * @mmu_idx: determines translation regime to use 1127 * @data: true if this is a data access 1128 * @el1_is_aa32: true if we are asking about stage 2 when EL1 is AArch32 1129 * (ignored if @mmu_idx is for a stage 1 regime; only affects tsz/tsz_oob) 1130 */ 1131 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 1132 ARMMMUIdx mmu_idx, bool data, 1133 bool el1_is_aa32); 1134 1135 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx); 1136 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx); 1137 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx); 1138 1139 /* Determine if allocation tags are available. */ 1140 static inline bool allocation_tag_access_enabled(CPUARMState *env, int el, 1141 uint64_t sctlr) 1142 { 1143 if (el < 3 1144 && arm_feature(env, ARM_FEATURE_EL3) 1145 && !(env->cp15.scr_el3 & SCR_ATA)) { 1146 return false; 1147 } 1148 if (el < 2 && arm_is_el2_enabled(env)) { 1149 uint64_t hcr = arm_hcr_el2_eff(env); 1150 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 1151 return false; 1152 } 1153 } 1154 sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA); 1155 return sctlr != 0; 1156 } 1157 1158 #ifndef CONFIG_USER_ONLY 1159 1160 /* Security attributes for an address, as returned by v8m_security_lookup. */ 1161 typedef struct V8M_SAttributes { 1162 bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */ 1163 bool ns; 1164 bool nsc; 1165 uint8_t sregion; 1166 bool srvalid; 1167 uint8_t iregion; 1168 bool irvalid; 1169 } V8M_SAttributes; 1170 1171 void v8m_security_lookup(CPUARMState *env, uint32_t address, 1172 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1173 bool secure, V8M_SAttributes *sattrs); 1174 1175 /* Cacheability and shareability attributes for a memory access */ 1176 typedef struct ARMCacheAttrs { 1177 /* 1178 * If is_s2_format is true, attrs is the S2 descriptor bits [5:2] 1179 * Otherwise, attrs is the same as the MAIR_EL1 8-bit format 1180 */ 1181 unsigned int attrs:8; 1182 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */ 1183 bool is_s2_format:1; 1184 bool guarded:1; /* guarded bit of the v8-64 PTE */ 1185 } ARMCacheAttrs; 1186 1187 /* Fields that are valid upon success. */ 1188 typedef struct GetPhysAddrResult { 1189 CPUTLBEntryFull f; 1190 ARMCacheAttrs cacheattrs; 1191 } GetPhysAddrResult; 1192 1193 /** 1194 * get_phys_addr: get the physical address for a virtual address 1195 * @env: CPUARMState 1196 * @address: virtual address to get physical address for 1197 * @access_type: 0 for read, 1 for write, 2 for execute 1198 * @mmu_idx: MMU index indicating required translation regime 1199 * @result: set on translation success. 1200 * @fi: set to fault info if the translation fails 1201 * 1202 * Find the physical address corresponding to the given virtual address, 1203 * by doing a translation table walk on MMU based systems or using the 1204 * MPU state on MPU based systems. 1205 * 1206 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 1207 * prot and page_size may not be filled in, and the populated fsr value provides 1208 * information on why the translation aborted, in the format of a 1209 * DFSR/IFSR fault register, with the following caveats: 1210 * * we honour the short vs long DFSR format differences. 1211 * * the WnR bit is never set (the caller must do this). 1212 * * for PSMAv5 based systems we don't bother to return a full FSR format 1213 * value. 1214 */ 1215 bool get_phys_addr(CPUARMState *env, target_ulong address, 1216 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1217 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 1218 __attribute__((nonnull)); 1219 1220 /** 1221 * get_phys_addr_with_space_nogpc: get the physical address for a virtual 1222 * address 1223 * @env: CPUARMState 1224 * @address: virtual address to get physical address for 1225 * @access_type: 0 for read, 1 for write, 2 for execute 1226 * @mmu_idx: MMU index indicating required translation regime 1227 * @space: security space for the access 1228 * @result: set on translation success. 1229 * @fi: set to fault info if the translation fails 1230 * 1231 * Similar to get_phys_addr, but use the given security space and don't perform 1232 * a Granule Protection Check on the resulting address. 1233 */ 1234 bool get_phys_addr_with_space_nogpc(CPUARMState *env, target_ulong address, 1235 MMUAccessType access_type, 1236 ARMMMUIdx mmu_idx, ARMSecuritySpace space, 1237 GetPhysAddrResult *result, 1238 ARMMMUFaultInfo *fi) 1239 __attribute__((nonnull)); 1240 1241 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 1242 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1243 bool is_secure, GetPhysAddrResult *result, 1244 ARMMMUFaultInfo *fi, uint32_t *mregion); 1245 1246 void arm_log_exception(CPUState *cs); 1247 1248 #endif /* !CONFIG_USER_ONLY */ 1249 1250 /* 1251 * SVE predicates are 1/8 the size of SVE vectors, and cannot use 1252 * the same simd_desc() encoding due to restrictions on size. 1253 * Use these instead. 1254 */ 1255 FIELD(PREDDESC, OPRSZ, 0, 6) 1256 FIELD(PREDDESC, ESZ, 6, 2) 1257 FIELD(PREDDESC, DATA, 8, 24) 1258 1259 /* 1260 * The SVE simd_data field, for memory ops, contains either 1261 * rd (5 bits) or a shift count (2 bits). 1262 */ 1263 #define SVE_MTEDESC_SHIFT 5 1264 1265 /* Bits within a descriptor passed to the helper_mte_check* functions. */ 1266 FIELD(MTEDESC, MIDX, 0, 4) 1267 FIELD(MTEDESC, TBI, 4, 2) 1268 FIELD(MTEDESC, TCMA, 6, 2) 1269 FIELD(MTEDESC, WRITE, 8, 1) 1270 FIELD(MTEDESC, ALIGN, 9, 3) 1271 FIELD(MTEDESC, SIZEM1, 12, SIMD_DATA_BITS - 12) /* size - 1 */ 1272 1273 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr); 1274 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra); 1275 1276 /** 1277 * mte_mops_probe: Check where the next MTE failure is for a FEAT_MOPS operation 1278 * @env: CPU env 1279 * @ptr: start address of memory region (dirty pointer) 1280 * @size: length of region (guaranteed not to cross a page boundary) 1281 * @desc: MTEDESC descriptor word (0 means no MTE checks) 1282 * Returns: the size of the region that can be copied without hitting 1283 * an MTE tag failure 1284 * 1285 * Note that we assume that the caller has already checked the TBI 1286 * and TCMA bits with mte_checks_needed() and an MTE check is definitely 1287 * required. 1288 */ 1289 uint64_t mte_mops_probe(CPUARMState *env, uint64_t ptr, uint64_t size, 1290 uint32_t desc); 1291 1292 /** 1293 * mte_mops_probe_rev: Check where the next MTE failure is for a FEAT_MOPS 1294 * operation going in the reverse direction 1295 * @env: CPU env 1296 * @ptr: *end* address of memory region (dirty pointer) 1297 * @size: length of region (guaranteed not to cross a page boundary) 1298 * @desc: MTEDESC descriptor word (0 means no MTE checks) 1299 * Returns: the size of the region that can be copied without hitting 1300 * an MTE tag failure 1301 * 1302 * Note that we assume that the caller has already checked the TBI 1303 * and TCMA bits with mte_checks_needed() and an MTE check is definitely 1304 * required. 1305 */ 1306 uint64_t mte_mops_probe_rev(CPUARMState *env, uint64_t ptr, uint64_t size, 1307 uint32_t desc); 1308 1309 /** 1310 * mte_check_fail: Record an MTE tag check failure 1311 * @env: CPU env 1312 * @desc: MTEDESC descriptor word 1313 * @dirty_ptr: Failing dirty address 1314 * @ra: TCG retaddr 1315 * 1316 * This may never return (if the MTE tag checks are configured to fault). 1317 */ 1318 void mte_check_fail(CPUARMState *env, uint32_t desc, 1319 uint64_t dirty_ptr, uintptr_t ra); 1320 1321 /** 1322 * mte_mops_set_tags: Set MTE tags for a portion of a FEAT_MOPS operation 1323 * @env: CPU env 1324 * @dirty_ptr: Start address of memory region (dirty pointer) 1325 * @size: length of region (guaranteed not to cross page boundary) 1326 * @desc: MTEDESC descriptor word 1327 */ 1328 void mte_mops_set_tags(CPUARMState *env, uint64_t dirty_ptr, uint64_t size, 1329 uint32_t desc); 1330 1331 static inline int allocation_tag_from_addr(uint64_t ptr) 1332 { 1333 return extract64(ptr, 56, 4); 1334 } 1335 1336 static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag) 1337 { 1338 return deposit64(ptr, 56, 4, rtag); 1339 } 1340 1341 /* Return true if tbi bits mean that the access is checked. */ 1342 static inline bool tbi_check(uint32_t desc, int bit55) 1343 { 1344 return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1; 1345 } 1346 1347 /* Return true if tcma bits mean that the access is unchecked. */ 1348 static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag) 1349 { 1350 /* 1351 * We had extracted bit55 and ptr_tag for other reasons, so fold 1352 * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test. 1353 */ 1354 bool match = ((ptr_tag + bit55) & 0xf) == 0; 1355 bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1; 1356 return tcma && match; 1357 } 1358 1359 /* 1360 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 1361 * for the tag to be present in the FAR_ELx register. But for user-only 1362 * mode, we do not have a TLB with which to implement this, so we must 1363 * remove the top byte. 1364 */ 1365 static inline uint64_t useronly_clean_ptr(uint64_t ptr) 1366 { 1367 #ifdef CONFIG_USER_ONLY 1368 /* TBI0 is known to be enabled, while TBI1 is disabled. */ 1369 ptr &= sextract64(ptr, 0, 56); 1370 #endif 1371 return ptr; 1372 } 1373 1374 static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr) 1375 { 1376 #ifdef CONFIG_USER_ONLY 1377 int64_t clean_ptr = sextract64(ptr, 0, 56); 1378 if (tbi_check(desc, clean_ptr < 0)) { 1379 ptr = clean_ptr; 1380 } 1381 #endif 1382 return ptr; 1383 } 1384 1385 /* Values for M-profile PSR.ECI for MVE insns */ 1386 enum MVEECIState { 1387 ECI_NONE = 0, /* No completed beats */ 1388 ECI_A0 = 1, /* Completed: A0 */ 1389 ECI_A0A1 = 2, /* Completed: A0, A1 */ 1390 /* 3 is reserved */ 1391 ECI_A0A1A2 = 4, /* Completed: A0, A1, A2 */ 1392 ECI_A0A1A2B0 = 5, /* Completed: A0, A1, A2, B0 */ 1393 /* All other values reserved */ 1394 }; 1395 1396 /* Definitions for the PMU registers */ 1397 #define PMCRN_MASK 0xf800 1398 #define PMCRN_SHIFT 11 1399 #define PMCRLP 0x80 1400 #define PMCRLC 0x40 1401 #define PMCRDP 0x20 1402 #define PMCRX 0x10 1403 #define PMCRD 0x8 1404 #define PMCRC 0x4 1405 #define PMCRP 0x2 1406 #define PMCRE 0x1 1407 /* 1408 * Mask of PMCR bits writable by guest (not including WO bits like C, P, 1409 * which can be written as 1 to trigger behaviour but which stay RAZ). 1410 */ 1411 #define PMCR_WRITABLE_MASK (PMCRLP | PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE) 1412 1413 #define PMXEVTYPER_P 0x80000000 1414 #define PMXEVTYPER_U 0x40000000 1415 #define PMXEVTYPER_NSK 0x20000000 1416 #define PMXEVTYPER_NSU 0x10000000 1417 #define PMXEVTYPER_NSH 0x08000000 1418 #define PMXEVTYPER_M 0x04000000 1419 #define PMXEVTYPER_MT 0x02000000 1420 #define PMXEVTYPER_EVTCOUNT 0x0000ffff 1421 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \ 1422 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \ 1423 PMXEVTYPER_M | PMXEVTYPER_MT | \ 1424 PMXEVTYPER_EVTCOUNT) 1425 1426 #define PMCCFILTR 0xf8000000 1427 #define PMCCFILTR_M PMXEVTYPER_M 1428 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M) 1429 1430 static inline uint32_t pmu_num_counters(CPUARMState *env) 1431 { 1432 ARMCPU *cpu = env_archcpu(env); 1433 1434 return (cpu->isar.reset_pmcr_el0 & PMCRN_MASK) >> PMCRN_SHIFT; 1435 } 1436 1437 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */ 1438 static inline uint64_t pmu_counter_mask(CPUARMState *env) 1439 { 1440 return (1ULL << 31) | ((1ULL << pmu_num_counters(env)) - 1); 1441 } 1442 1443 #ifdef TARGET_AARCH64 1444 int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg); 1445 int aarch64_gdb_get_sve_reg(CPUARMState *env, GByteArray *buf, int reg); 1446 int aarch64_gdb_set_sve_reg(CPUARMState *env, uint8_t *buf, int reg); 1447 int aarch64_gdb_get_fpu_reg(CPUARMState *env, GByteArray *buf, int reg); 1448 int aarch64_gdb_set_fpu_reg(CPUARMState *env, uint8_t *buf, int reg); 1449 int aarch64_gdb_get_pauth_reg(CPUARMState *env, GByteArray *buf, int reg); 1450 int aarch64_gdb_set_pauth_reg(CPUARMState *env, uint8_t *buf, int reg); 1451 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp); 1452 void arm_cpu_sme_finalize(ARMCPU *cpu, Error **errp); 1453 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp); 1454 void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp); 1455 void aarch64_max_tcg_initfn(Object *obj); 1456 void aarch64_add_pauth_properties(Object *obj); 1457 void aarch64_add_sve_properties(Object *obj); 1458 void aarch64_add_sme_properties(Object *obj); 1459 #endif 1460 1461 /* Read the CONTROL register as the MRS instruction would. */ 1462 uint32_t arm_v7m_mrs_control(CPUARMState *env, uint32_t secure); 1463 1464 /* 1465 * Return a pointer to the location where we currently store the 1466 * stack pointer for the requested security state and thread mode. 1467 * This pointer will become invalid if the CPU state is updated 1468 * such that the stack pointers are switched around (eg changing 1469 * the SPSEL control bit). 1470 */ 1471 uint32_t *arm_v7m_get_sp_ptr(CPUARMState *env, bool secure, 1472 bool threadmode, bool spsel); 1473 1474 bool el_is_in_host(CPUARMState *env, int el); 1475 1476 void aa32_max_features(ARMCPU *cpu); 1477 int exception_target_el(CPUARMState *env); 1478 bool arm_singlestep_active(CPUARMState *env); 1479 bool arm_generate_debug_exceptions(CPUARMState *env); 1480 1481 /** 1482 * pauth_ptr_mask: 1483 * @param: parameters defining the MMU setup 1484 * 1485 * Return a mask of the address bits that contain the authentication code, 1486 * given the MMU config defined by @param. 1487 */ 1488 static inline uint64_t pauth_ptr_mask(ARMVAParameters param) 1489 { 1490 int bot_pac_bit = 64 - param.tsz; 1491 int top_pac_bit = 64 - 8 * param.tbi; 1492 1493 return MAKE_64BIT_MASK(bot_pac_bit, top_pac_bit - bot_pac_bit); 1494 } 1495 1496 /* Add the cpreg definitions for debug related system registers */ 1497 void define_debug_regs(ARMCPU *cpu); 1498 1499 /* Effective value of MDCR_EL2 */ 1500 static inline uint64_t arm_mdcr_el2_eff(CPUARMState *env) 1501 { 1502 return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0; 1503 } 1504 1505 /* Powers of 2 for sve_vq_map et al. */ 1506 #define SVE_VQ_POW2_MAP \ 1507 ((1 << (1 - 1)) | (1 << (2 - 1)) | \ 1508 (1 << (4 - 1)) | (1 << (8 - 1)) | (1 << (16 - 1))) 1509 1510 /* 1511 * Return true if it is possible to take a fine-grained-trap to EL2. 1512 */ 1513 static inline bool arm_fgt_active(CPUARMState *env, int el) 1514 { 1515 /* 1516 * The Arm ARM only requires the "{E2H,TGE} != {1,1}" test for traps 1517 * that can affect EL0, but it is harmless to do the test also for 1518 * traps on registers that are only accessible at EL1 because if the test 1519 * returns true then we can't be executing at EL1 anyway. 1520 * FGT traps only happen when EL2 is enabled and EL1 is AArch64; 1521 * traps from AArch32 only happen for the EL0 is AArch32 case. 1522 */ 1523 return cpu_isar_feature(aa64_fgt, env_archcpu(env)) && 1524 el < 2 && arm_is_el2_enabled(env) && 1525 arm_el_is_aa64(env, 1) && 1526 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE) && 1527 (!arm_feature(env, ARM_FEATURE_EL3) || (env->cp15.scr_el3 & SCR_FGTEN)); 1528 } 1529 1530 void assert_hflags_rebuild_correctly(CPUARMState *env); 1531 1532 /* 1533 * Although the ARM implementation of hardware assisted debugging 1534 * allows for different breakpoints per-core, the current GDB 1535 * interface treats them as a global pool of registers (which seems to 1536 * be the case for x86, ppc and s390). As a result we store one copy 1537 * of registers which is used for all active cores. 1538 * 1539 * Write access is serialised by virtue of the GDB protocol which 1540 * updates things. Read access (i.e. when the values are copied to the 1541 * vCPU) is also gated by GDB's run control. 1542 * 1543 * This is not unreasonable as most of the time debugging kernels you 1544 * never know which core will eventually execute your function. 1545 */ 1546 1547 typedef struct { 1548 uint64_t bcr; 1549 uint64_t bvr; 1550 } HWBreakpoint; 1551 1552 /* 1553 * The watchpoint registers can cover more area than the requested 1554 * watchpoint so we need to store the additional information 1555 * somewhere. We also need to supply a CPUWatchpoint to the GDB stub 1556 * when the watchpoint is hit. 1557 */ 1558 typedef struct { 1559 uint64_t wcr; 1560 uint64_t wvr; 1561 CPUWatchpoint details; 1562 } HWWatchpoint; 1563 1564 /* Maximum and current break/watch point counts */ 1565 extern int max_hw_bps, max_hw_wps; 1566 extern GArray *hw_breakpoints, *hw_watchpoints; 1567 1568 #define cur_hw_wps (hw_watchpoints->len) 1569 #define cur_hw_bps (hw_breakpoints->len) 1570 #define get_hw_bp(i) (&g_array_index(hw_breakpoints, HWBreakpoint, i)) 1571 #define get_hw_wp(i) (&g_array_index(hw_watchpoints, HWWatchpoint, i)) 1572 1573 bool find_hw_breakpoint(CPUState *cpu, target_ulong pc); 1574 int insert_hw_breakpoint(target_ulong pc); 1575 int delete_hw_breakpoint(target_ulong pc); 1576 1577 bool check_watchpoint_in_range(int i, target_ulong addr); 1578 CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr); 1579 int insert_hw_watchpoint(target_ulong addr, target_ulong len, int type); 1580 int delete_hw_watchpoint(target_ulong addr, target_ulong len, int type); 1581 #endif 1582