1 /* 2 * QEMU ARM CPU -- internal functions and types 3 * 4 * Copyright (c) 2014 Linaro Ltd 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 * 20 * This header defines functions, types, etc which need to be shared 21 * between different source files within target/arm/ but which are 22 * private to it and not required by the rest of QEMU. 23 */ 24 25 #ifndef TARGET_ARM_INTERNALS_H 26 #define TARGET_ARM_INTERNALS_H 27 28 #include "hw/registerfields.h" 29 #include "tcg/tcg-gvec-desc.h" 30 #include "syndrome.h" 31 #include "cpu-features.h" 32 33 /* register banks for CPU modes */ 34 #define BANK_USRSYS 0 35 #define BANK_SVC 1 36 #define BANK_ABT 2 37 #define BANK_UND 3 38 #define BANK_IRQ 4 39 #define BANK_FIQ 5 40 #define BANK_HYP 6 41 #define BANK_MON 7 42 43 static inline int arm_env_mmu_index(CPUARMState *env) 44 { 45 return EX_TBFLAG_ANY(env->hflags, MMUIDX); 46 } 47 48 static inline bool excp_is_internal(int excp) 49 { 50 /* Return true if this exception number represents a QEMU-internal 51 * exception that will not be passed to the guest. 52 */ 53 return excp == EXCP_INTERRUPT 54 || excp == EXCP_HLT 55 || excp == EXCP_DEBUG 56 || excp == EXCP_HALTED 57 || excp == EXCP_EXCEPTION_EXIT 58 || excp == EXCP_KERNEL_TRAP 59 || excp == EXCP_SEMIHOST; 60 } 61 62 /* Scale factor for generic timers, ie number of ns per tick. 63 * This gives a 62.5MHz timer. 64 */ 65 #define GTIMER_SCALE 16 66 67 /* Bit definitions for the v7M CONTROL register */ 68 FIELD(V7M_CONTROL, NPRIV, 0, 1) 69 FIELD(V7M_CONTROL, SPSEL, 1, 1) 70 FIELD(V7M_CONTROL, FPCA, 2, 1) 71 FIELD(V7M_CONTROL, SFPA, 3, 1) 72 73 /* Bit definitions for v7M exception return payload */ 74 FIELD(V7M_EXCRET, ES, 0, 1) 75 FIELD(V7M_EXCRET, RES0, 1, 1) 76 FIELD(V7M_EXCRET, SPSEL, 2, 1) 77 FIELD(V7M_EXCRET, MODE, 3, 1) 78 FIELD(V7M_EXCRET, FTYPE, 4, 1) 79 FIELD(V7M_EXCRET, DCRS, 5, 1) 80 FIELD(V7M_EXCRET, S, 6, 1) 81 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */ 82 83 /* Minimum value which is a magic number for exception return */ 84 #define EXC_RETURN_MIN_MAGIC 0xff000000 85 /* Minimum number which is a magic number for function or exception return 86 * when using v8M security extension 87 */ 88 #define FNC_RETURN_MIN_MAGIC 0xfefffffe 89 90 /* Bit definitions for DBGWCRn and DBGWCRn_EL1 */ 91 FIELD(DBGWCR, E, 0, 1) 92 FIELD(DBGWCR, PAC, 1, 2) 93 FIELD(DBGWCR, LSC, 3, 2) 94 FIELD(DBGWCR, BAS, 5, 8) 95 FIELD(DBGWCR, HMC, 13, 1) 96 FIELD(DBGWCR, SSC, 14, 2) 97 FIELD(DBGWCR, LBN, 16, 4) 98 FIELD(DBGWCR, WT, 20, 1) 99 FIELD(DBGWCR, MASK, 24, 5) 100 FIELD(DBGWCR, SSCE, 29, 1) 101 102 /* We use a few fake FSR values for internal purposes in M profile. 103 * M profile cores don't have A/R format FSRs, but currently our 104 * get_phys_addr() code assumes A/R profile and reports failures via 105 * an A/R format FSR value. We then translate that into the proper 106 * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt(). 107 * Mostly the FSR values we use for this are those defined for v7PMSA, 108 * since we share some of that codepath. A few kinds of fault are 109 * only for M profile and have no A/R equivalent, though, so we have 110 * to pick a value from the reserved range (which we never otherwise 111 * generate) to use for these. 112 * These values will never be visible to the guest. 113 */ 114 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */ 115 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */ 116 117 /** 118 * raise_exception: Raise the specified exception. 119 * Raise a guest exception with the specified value, syndrome register 120 * and target exception level. This should be called from helper functions, 121 * and never returns because we will longjump back up to the CPU main loop. 122 */ 123 G_NORETURN void raise_exception(CPUARMState *env, uint32_t excp, 124 uint32_t syndrome, uint32_t target_el); 125 126 /* 127 * Similarly, but also use unwinding to restore cpu state. 128 */ 129 G_NORETURN void raise_exception_ra(CPUARMState *env, uint32_t excp, 130 uint32_t syndrome, uint32_t target_el, 131 uintptr_t ra); 132 133 /* 134 * For AArch64, map a given EL to an index in the banked_spsr array. 135 * Note that this mapping and the AArch32 mapping defined in bank_number() 136 * must agree such that the AArch64<->AArch32 SPSRs have the architecturally 137 * mandated mapping between each other. 138 */ 139 static inline unsigned int aarch64_banked_spsr_index(unsigned int el) 140 { 141 static const unsigned int map[4] = { 142 [1] = BANK_SVC, /* EL1. */ 143 [2] = BANK_HYP, /* EL2. */ 144 [3] = BANK_MON, /* EL3. */ 145 }; 146 assert(el >= 1 && el <= 3); 147 return map[el]; 148 } 149 150 /* Map CPU modes onto saved register banks. */ 151 static inline int bank_number(int mode) 152 { 153 switch (mode) { 154 case ARM_CPU_MODE_USR: 155 case ARM_CPU_MODE_SYS: 156 return BANK_USRSYS; 157 case ARM_CPU_MODE_SVC: 158 return BANK_SVC; 159 case ARM_CPU_MODE_ABT: 160 return BANK_ABT; 161 case ARM_CPU_MODE_UND: 162 return BANK_UND; 163 case ARM_CPU_MODE_IRQ: 164 return BANK_IRQ; 165 case ARM_CPU_MODE_FIQ: 166 return BANK_FIQ; 167 case ARM_CPU_MODE_HYP: 168 return BANK_HYP; 169 case ARM_CPU_MODE_MON: 170 return BANK_MON; 171 } 172 g_assert_not_reached(); 173 } 174 175 /** 176 * r14_bank_number: Map CPU mode onto register bank for r14 177 * 178 * Given an AArch32 CPU mode, return the index into the saved register 179 * banks to use for the R14 (LR) in that mode. This is the same as 180 * bank_number(), except for the special case of Hyp mode, where 181 * R14 is shared with USR and SYS, unlike its R13 and SPSR. 182 * This should be used as the index into env->banked_r14[], and 183 * bank_number() used for the index into env->banked_r13[] and 184 * env->banked_spsr[]. 185 */ 186 static inline int r14_bank_number(int mode) 187 { 188 return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode); 189 } 190 191 void arm_cpu_register(const ARMCPUInfo *info); 192 void aarch64_cpu_register(const ARMCPUInfo *info); 193 194 void register_cp_regs_for_features(ARMCPU *cpu); 195 void init_cpreg_list(ARMCPU *cpu); 196 197 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu); 198 void arm_translate_init(void); 199 200 void arm_restore_state_to_opc(CPUState *cs, 201 const TranslationBlock *tb, 202 const uint64_t *data); 203 204 #ifdef CONFIG_TCG 205 void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb); 206 #endif /* CONFIG_TCG */ 207 208 typedef enum ARMFPRounding { 209 FPROUNDING_TIEEVEN, 210 FPROUNDING_POSINF, 211 FPROUNDING_NEGINF, 212 FPROUNDING_ZERO, 213 FPROUNDING_TIEAWAY, 214 FPROUNDING_ODD 215 } ARMFPRounding; 216 217 extern const FloatRoundMode arm_rmode_to_sf_map[6]; 218 219 static inline FloatRoundMode arm_rmode_to_sf(ARMFPRounding rmode) 220 { 221 assert((unsigned)rmode < ARRAY_SIZE(arm_rmode_to_sf_map)); 222 return arm_rmode_to_sf_map[rmode]; 223 } 224 225 static inline void aarch64_save_sp(CPUARMState *env, int el) 226 { 227 if (env->pstate & PSTATE_SP) { 228 env->sp_el[el] = env->xregs[31]; 229 } else { 230 env->sp_el[0] = env->xregs[31]; 231 } 232 } 233 234 static inline void aarch64_restore_sp(CPUARMState *env, int el) 235 { 236 if (env->pstate & PSTATE_SP) { 237 env->xregs[31] = env->sp_el[el]; 238 } else { 239 env->xregs[31] = env->sp_el[0]; 240 } 241 } 242 243 static inline void update_spsel(CPUARMState *env, uint32_t imm) 244 { 245 unsigned int cur_el = arm_current_el(env); 246 /* Update PSTATE SPSel bit; this requires us to update the 247 * working stack pointer in xregs[31]. 248 */ 249 if (!((imm ^ env->pstate) & PSTATE_SP)) { 250 return; 251 } 252 aarch64_save_sp(env, cur_el); 253 env->pstate = deposit32(env->pstate, 0, 1, imm); 254 255 /* We rely on illegal updates to SPsel from EL0 to get trapped 256 * at translation time. 257 */ 258 assert(cur_el >= 1 && cur_el <= 3); 259 aarch64_restore_sp(env, cur_el); 260 } 261 262 /* 263 * arm_pamax 264 * @cpu: ARMCPU 265 * 266 * Returns the implementation defined bit-width of physical addresses. 267 * The ARMv8 reference manuals refer to this as PAMax(). 268 */ 269 unsigned int arm_pamax(ARMCPU *cpu); 270 271 /* Return true if extended addresses are enabled. 272 * This is always the case if our translation regime is 64 bit, 273 * but depends on TTBCR.EAE for 32 bit. 274 */ 275 static inline bool extended_addresses_enabled(CPUARMState *env) 276 { 277 uint64_t tcr = env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1]; 278 if (arm_feature(env, ARM_FEATURE_PMSA) && 279 arm_feature(env, ARM_FEATURE_V8)) { 280 return true; 281 } 282 return arm_el_is_aa64(env, 1) || 283 (arm_feature(env, ARM_FEATURE_LPAE) && (tcr & TTBCR_EAE)); 284 } 285 286 /* Update a QEMU watchpoint based on the information the guest has set in the 287 * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers. 288 */ 289 void hw_watchpoint_update(ARMCPU *cpu, int n); 290 /* Update the QEMU watchpoints for every guest watchpoint. This does a 291 * complete delete-and-reinstate of the QEMU watchpoint list and so is 292 * suitable for use after migration or on reset. 293 */ 294 void hw_watchpoint_update_all(ARMCPU *cpu); 295 /* Update a QEMU breakpoint based on the information the guest has set in the 296 * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers. 297 */ 298 void hw_breakpoint_update(ARMCPU *cpu, int n); 299 /* Update the QEMU breakpoints for every guest breakpoint. This does a 300 * complete delete-and-reinstate of the QEMU breakpoint list and so is 301 * suitable for use after migration or on reset. 302 */ 303 void hw_breakpoint_update_all(ARMCPU *cpu); 304 305 /* Callback function for checking if a breakpoint should trigger. */ 306 bool arm_debug_check_breakpoint(CPUState *cs); 307 308 /* Callback function for checking if a watchpoint should trigger. */ 309 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp); 310 311 /* Adjust addresses (in BE32 mode) before testing against watchpoint 312 * addresses. 313 */ 314 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len); 315 316 /* Callback function for when a watchpoint or breakpoint triggers. */ 317 void arm_debug_excp_handler(CPUState *cs); 318 319 #if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG) 320 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type) 321 { 322 return false; 323 } 324 static inline void arm_handle_psci_call(ARMCPU *cpu) 325 { 326 g_assert_not_reached(); 327 } 328 #else 329 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */ 330 bool arm_is_psci_call(ARMCPU *cpu, int excp_type); 331 /* Actually handle a PSCI call */ 332 void arm_handle_psci_call(ARMCPU *cpu); 333 #endif 334 335 /** 336 * arm_clear_exclusive: clear the exclusive monitor 337 * @env: CPU env 338 * Clear the CPU's exclusive monitor, like the guest CLREX instruction. 339 */ 340 static inline void arm_clear_exclusive(CPUARMState *env) 341 { 342 env->exclusive_addr = -1; 343 } 344 345 /** 346 * ARMFaultType: type of an ARM MMU fault 347 * This corresponds to the v8A pseudocode's Fault enumeration, 348 * with extensions for QEMU internal conditions. 349 */ 350 typedef enum ARMFaultType { 351 ARMFault_None, 352 ARMFault_AccessFlag, 353 ARMFault_Alignment, 354 ARMFault_Background, 355 ARMFault_Domain, 356 ARMFault_Permission, 357 ARMFault_Translation, 358 ARMFault_AddressSize, 359 ARMFault_SyncExternal, 360 ARMFault_SyncExternalOnWalk, 361 ARMFault_SyncParity, 362 ARMFault_SyncParityOnWalk, 363 ARMFault_AsyncParity, 364 ARMFault_AsyncExternal, 365 ARMFault_Debug, 366 ARMFault_TLBConflict, 367 ARMFault_UnsuppAtomicUpdate, 368 ARMFault_Lockdown, 369 ARMFault_Exclusive, 370 ARMFault_ICacheMaint, 371 ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */ 372 ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */ 373 ARMFault_GPCFOnWalk, 374 ARMFault_GPCFOnOutput, 375 } ARMFaultType; 376 377 typedef enum ARMGPCF { 378 GPCF_None, 379 GPCF_AddressSize, 380 GPCF_Walk, 381 GPCF_EABT, 382 GPCF_Fail, 383 } ARMGPCF; 384 385 /** 386 * ARMMMUFaultInfo: Information describing an ARM MMU Fault 387 * @type: Type of fault 388 * @gpcf: Subtype of ARMFault_GPCFOn{Walk,Output}. 389 * @level: Table walk level (for translation, access flag and permission faults) 390 * @domain: Domain of the fault address (for non-LPAE CPUs only) 391 * @s2addr: Address that caused a fault at stage 2 392 * @paddr: physical address that caused a fault for gpc 393 * @paddr_space: physical address space that caused a fault for gpc 394 * @stage2: True if we faulted at stage 2 395 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk 396 * @s1ns: True if we faulted on a non-secure IPA while in secure state 397 * @ea: True if we should set the EA (external abort type) bit in syndrome 398 */ 399 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo; 400 struct ARMMMUFaultInfo { 401 ARMFaultType type; 402 ARMGPCF gpcf; 403 target_ulong s2addr; 404 target_ulong paddr; 405 ARMSecuritySpace paddr_space; 406 int level; 407 int domain; 408 bool stage2; 409 bool s1ptw; 410 bool s1ns; 411 bool ea; 412 }; 413 414 /** 415 * arm_fi_to_sfsc: Convert fault info struct to short-format FSC 416 * Compare pseudocode EncodeSDFSC(), though unlike that function 417 * we set up a whole FSR-format code including domain field and 418 * putting the high bit of the FSC into bit 10. 419 */ 420 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi) 421 { 422 uint32_t fsc; 423 424 switch (fi->type) { 425 case ARMFault_None: 426 return 0; 427 case ARMFault_AccessFlag: 428 fsc = fi->level == 1 ? 0x3 : 0x6; 429 break; 430 case ARMFault_Alignment: 431 fsc = 0x1; 432 break; 433 case ARMFault_Permission: 434 fsc = fi->level == 1 ? 0xd : 0xf; 435 break; 436 case ARMFault_Domain: 437 fsc = fi->level == 1 ? 0x9 : 0xb; 438 break; 439 case ARMFault_Translation: 440 fsc = fi->level == 1 ? 0x5 : 0x7; 441 break; 442 case ARMFault_SyncExternal: 443 fsc = 0x8 | (fi->ea << 12); 444 break; 445 case ARMFault_SyncExternalOnWalk: 446 fsc = fi->level == 1 ? 0xc : 0xe; 447 fsc |= (fi->ea << 12); 448 break; 449 case ARMFault_SyncParity: 450 fsc = 0x409; 451 break; 452 case ARMFault_SyncParityOnWalk: 453 fsc = fi->level == 1 ? 0x40c : 0x40e; 454 break; 455 case ARMFault_AsyncParity: 456 fsc = 0x408; 457 break; 458 case ARMFault_AsyncExternal: 459 fsc = 0x406 | (fi->ea << 12); 460 break; 461 case ARMFault_Debug: 462 fsc = 0x2; 463 break; 464 case ARMFault_TLBConflict: 465 fsc = 0x400; 466 break; 467 case ARMFault_Lockdown: 468 fsc = 0x404; 469 break; 470 case ARMFault_Exclusive: 471 fsc = 0x405; 472 break; 473 case ARMFault_ICacheMaint: 474 fsc = 0x4; 475 break; 476 case ARMFault_Background: 477 fsc = 0x0; 478 break; 479 case ARMFault_QEMU_NSCExec: 480 fsc = M_FAKE_FSR_NSC_EXEC; 481 break; 482 case ARMFault_QEMU_SFault: 483 fsc = M_FAKE_FSR_SFAULT; 484 break; 485 default: 486 /* Other faults can't occur in a context that requires a 487 * short-format status code. 488 */ 489 g_assert_not_reached(); 490 } 491 492 fsc |= (fi->domain << 4); 493 return fsc; 494 } 495 496 /** 497 * arm_fi_to_lfsc: Convert fault info struct to long-format FSC 498 * Compare pseudocode EncodeLDFSC(), though unlike that function 499 * we fill in also the LPAE bit 9 of a DFSR format. 500 */ 501 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi) 502 { 503 uint32_t fsc; 504 505 switch (fi->type) { 506 case ARMFault_None: 507 return 0; 508 case ARMFault_AddressSize: 509 assert(fi->level >= -1 && fi->level <= 3); 510 if (fi->level < 0) { 511 fsc = 0b101001; 512 } else { 513 fsc = fi->level; 514 } 515 break; 516 case ARMFault_AccessFlag: 517 assert(fi->level >= 0 && fi->level <= 3); 518 fsc = 0b001000 | fi->level; 519 break; 520 case ARMFault_Permission: 521 assert(fi->level >= 0 && fi->level <= 3); 522 fsc = 0b001100 | fi->level; 523 break; 524 case ARMFault_Translation: 525 assert(fi->level >= -1 && fi->level <= 3); 526 if (fi->level < 0) { 527 fsc = 0b101011; 528 } else { 529 fsc = 0b000100 | fi->level; 530 } 531 break; 532 case ARMFault_SyncExternal: 533 fsc = 0x10 | (fi->ea << 12); 534 break; 535 case ARMFault_SyncExternalOnWalk: 536 assert(fi->level >= -1 && fi->level <= 3); 537 if (fi->level < 0) { 538 fsc = 0b010011; 539 } else { 540 fsc = 0b010100 | fi->level; 541 } 542 fsc |= fi->ea << 12; 543 break; 544 case ARMFault_SyncParity: 545 fsc = 0x18; 546 break; 547 case ARMFault_SyncParityOnWalk: 548 assert(fi->level >= -1 && fi->level <= 3); 549 if (fi->level < 0) { 550 fsc = 0b011011; 551 } else { 552 fsc = 0b011100 | fi->level; 553 } 554 break; 555 case ARMFault_AsyncParity: 556 fsc = 0x19; 557 break; 558 case ARMFault_AsyncExternal: 559 fsc = 0x11 | (fi->ea << 12); 560 break; 561 case ARMFault_Alignment: 562 fsc = 0x21; 563 break; 564 case ARMFault_Debug: 565 fsc = 0x22; 566 break; 567 case ARMFault_TLBConflict: 568 fsc = 0x30; 569 break; 570 case ARMFault_UnsuppAtomicUpdate: 571 fsc = 0x31; 572 break; 573 case ARMFault_Lockdown: 574 fsc = 0x34; 575 break; 576 case ARMFault_Exclusive: 577 fsc = 0x35; 578 break; 579 case ARMFault_GPCFOnWalk: 580 assert(fi->level >= -1 && fi->level <= 3); 581 if (fi->level < 0) { 582 fsc = 0b100011; 583 } else { 584 fsc = 0b100100 | fi->level; 585 } 586 break; 587 case ARMFault_GPCFOnOutput: 588 fsc = 0b101000; 589 break; 590 default: 591 /* Other faults can't occur in a context that requires a 592 * long-format status code. 593 */ 594 g_assert_not_reached(); 595 } 596 597 fsc |= 1 << 9; 598 return fsc; 599 } 600 601 static inline bool arm_extabort_type(MemTxResult result) 602 { 603 /* The EA bit in syndromes and fault status registers is an 604 * IMPDEF classification of external aborts. ARM implementations 605 * usually use this to indicate AXI bus Decode error (0) or 606 * Slave error (1); in QEMU we follow that. 607 */ 608 return result != MEMTX_DECODE_ERROR; 609 } 610 611 #ifdef CONFIG_USER_ONLY 612 void arm_cpu_record_sigsegv(CPUState *cpu, vaddr addr, 613 MMUAccessType access_type, 614 bool maperr, uintptr_t ra); 615 void arm_cpu_record_sigbus(CPUState *cpu, vaddr addr, 616 MMUAccessType access_type, uintptr_t ra); 617 #else 618 bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size, 619 MMUAccessType access_type, int mmu_idx, 620 bool probe, uintptr_t retaddr); 621 #endif 622 623 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx) 624 { 625 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK; 626 } 627 628 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx) 629 { 630 if (arm_feature(env, ARM_FEATURE_M)) { 631 return mmu_idx | ARM_MMU_IDX_M; 632 } else { 633 return mmu_idx | ARM_MMU_IDX_A; 634 } 635 } 636 637 static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx) 638 { 639 /* AArch64 is always a-profile. */ 640 return mmu_idx | ARM_MMU_IDX_A; 641 } 642 643 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx); 644 645 /* Return the MMU index for a v7M CPU in the specified security state */ 646 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate); 647 648 /* 649 * Return true if the stage 1 translation regime is using LPAE 650 * format page tables 651 */ 652 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx); 653 654 /* Raise a data fault alignment exception for the specified virtual address */ 655 G_NORETURN void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr, 656 MMUAccessType access_type, 657 int mmu_idx, uintptr_t retaddr); 658 659 #ifndef CONFIG_USER_ONLY 660 /* arm_cpu_do_transaction_failed: handle a memory system error response 661 * (eg "no device/memory present at address") by raising an external abort 662 * exception 663 */ 664 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, 665 vaddr addr, unsigned size, 666 MMUAccessType access_type, 667 int mmu_idx, MemTxAttrs attrs, 668 MemTxResult response, uintptr_t retaddr); 669 #endif 670 671 /* Call any registered EL change hooks */ 672 static inline void arm_call_pre_el_change_hook(ARMCPU *cpu) 673 { 674 ARMELChangeHook *hook, *next; 675 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) { 676 hook->hook(cpu, hook->opaque); 677 } 678 } 679 static inline void arm_call_el_change_hook(ARMCPU *cpu) 680 { 681 ARMELChangeHook *hook, *next; 682 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) { 683 hook->hook(cpu, hook->opaque); 684 } 685 } 686 687 /* Return true if this address translation regime has two ranges. */ 688 static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx) 689 { 690 switch (mmu_idx) { 691 case ARMMMUIdx_Stage1_E0: 692 case ARMMMUIdx_Stage1_E1: 693 case ARMMMUIdx_Stage1_E1_PAN: 694 case ARMMMUIdx_E10_0: 695 case ARMMMUIdx_E10_1: 696 case ARMMMUIdx_E10_1_PAN: 697 case ARMMMUIdx_E20_0: 698 case ARMMMUIdx_E20_2: 699 case ARMMMUIdx_E20_2_PAN: 700 return true; 701 default: 702 return false; 703 } 704 } 705 706 static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx) 707 { 708 switch (mmu_idx) { 709 case ARMMMUIdx_Stage1_E1_PAN: 710 case ARMMMUIdx_E10_1_PAN: 711 case ARMMMUIdx_E20_2_PAN: 712 return true; 713 default: 714 return false; 715 } 716 } 717 718 static inline bool regime_is_stage2(ARMMMUIdx mmu_idx) 719 { 720 return mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S; 721 } 722 723 /* Return the exception level which controls this address translation regime */ 724 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) 725 { 726 switch (mmu_idx) { 727 case ARMMMUIdx_E20_0: 728 case ARMMMUIdx_E20_2: 729 case ARMMMUIdx_E20_2_PAN: 730 case ARMMMUIdx_Stage2: 731 case ARMMMUIdx_Stage2_S: 732 case ARMMMUIdx_E2: 733 return 2; 734 case ARMMMUIdx_E3: 735 return 3; 736 case ARMMMUIdx_E10_0: 737 case ARMMMUIdx_Stage1_E0: 738 return arm_el_is_aa64(env, 3) || !arm_is_secure_below_el3(env) ? 1 : 3; 739 case ARMMMUIdx_Stage1_E1: 740 case ARMMMUIdx_Stage1_E1_PAN: 741 case ARMMMUIdx_E10_1: 742 case ARMMMUIdx_E10_1_PAN: 743 case ARMMMUIdx_MPrivNegPri: 744 case ARMMMUIdx_MUserNegPri: 745 case ARMMMUIdx_MPriv: 746 case ARMMMUIdx_MUser: 747 case ARMMMUIdx_MSPrivNegPri: 748 case ARMMMUIdx_MSUserNegPri: 749 case ARMMMUIdx_MSPriv: 750 case ARMMMUIdx_MSUser: 751 return 1; 752 default: 753 g_assert_not_reached(); 754 } 755 } 756 757 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 758 { 759 switch (mmu_idx) { 760 case ARMMMUIdx_E20_0: 761 case ARMMMUIdx_Stage1_E0: 762 case ARMMMUIdx_MUser: 763 case ARMMMUIdx_MSUser: 764 case ARMMMUIdx_MUserNegPri: 765 case ARMMMUIdx_MSUserNegPri: 766 return true; 767 default: 768 return false; 769 case ARMMMUIdx_E10_0: 770 case ARMMMUIdx_E10_1: 771 case ARMMMUIdx_E10_1_PAN: 772 g_assert_not_reached(); 773 } 774 } 775 776 /* Return the SCTLR value which controls this address translation regime */ 777 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 778 { 779 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 780 } 781 782 /* 783 * These are the fields in VTCR_EL2 which affect both the Secure stage 2 784 * and the Non-Secure stage 2 translation regimes (and hence which are 785 * not present in VSTCR_EL2). 786 */ 787 #define VTCR_SHARED_FIELD_MASK \ 788 (R_VTCR_IRGN0_MASK | R_VTCR_ORGN0_MASK | R_VTCR_SH0_MASK | \ 789 R_VTCR_PS_MASK | R_VTCR_VS_MASK | R_VTCR_HA_MASK | R_VTCR_HD_MASK | \ 790 R_VTCR_DS_MASK) 791 792 /* Return the value of the TCR controlling this translation regime */ 793 static inline uint64_t regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) 794 { 795 if (mmu_idx == ARMMMUIdx_Stage2) { 796 return env->cp15.vtcr_el2; 797 } 798 if (mmu_idx == ARMMMUIdx_Stage2_S) { 799 /* 800 * Secure stage 2 shares fields from VTCR_EL2. We merge those 801 * in with the VSTCR_EL2 value to synthesize a single VTCR_EL2 format 802 * value so the callers don't need to special case this. 803 * 804 * If a future architecture change defines bits in VSTCR_EL2 that 805 * overlap with these VTCR_EL2 fields we may need to revisit this. 806 */ 807 uint64_t v = env->cp15.vstcr_el2 & ~VTCR_SHARED_FIELD_MASK; 808 v |= env->cp15.vtcr_el2 & VTCR_SHARED_FIELD_MASK; 809 return v; 810 } 811 return env->cp15.tcr_el[regime_el(env, mmu_idx)]; 812 } 813 814 /* Return true if the translation regime is using LPAE format page tables */ 815 static inline bool regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 816 { 817 int el = regime_el(env, mmu_idx); 818 if (el == 2 || arm_el_is_aa64(env, el)) { 819 return true; 820 } 821 if (arm_feature(env, ARM_FEATURE_PMSA) && 822 arm_feature(env, ARM_FEATURE_V8)) { 823 return true; 824 } 825 if (arm_feature(env, ARM_FEATURE_LPAE) 826 && (regime_tcr(env, mmu_idx) & TTBCR_EAE)) { 827 return true; 828 } 829 return false; 830 } 831 832 /** 833 * arm_num_brps: Return number of implemented breakpoints. 834 * Note that the ID register BRPS field is "number of bps - 1", 835 * and we return the actual number of breakpoints. 836 */ 837 static inline int arm_num_brps(ARMCPU *cpu) 838 { 839 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 840 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1; 841 } else { 842 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1; 843 } 844 } 845 846 /** 847 * arm_num_wrps: Return number of implemented watchpoints. 848 * Note that the ID register WRPS field is "number of wps - 1", 849 * and we return the actual number of watchpoints. 850 */ 851 static inline int arm_num_wrps(ARMCPU *cpu) 852 { 853 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 854 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1; 855 } else { 856 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1; 857 } 858 } 859 860 /** 861 * arm_num_ctx_cmps: Return number of implemented context comparators. 862 * Note that the ID register CTX_CMPS field is "number of cmps - 1", 863 * and we return the actual number of comparators. 864 */ 865 static inline int arm_num_ctx_cmps(ARMCPU *cpu) 866 { 867 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 868 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1; 869 } else { 870 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1; 871 } 872 } 873 874 /** 875 * v7m_using_psp: Return true if using process stack pointer 876 * Return true if the CPU is currently using the process stack 877 * pointer, or false if it is using the main stack pointer. 878 */ 879 static inline bool v7m_using_psp(CPUARMState *env) 880 { 881 /* Handler mode always uses the main stack; for thread mode 882 * the CONTROL.SPSEL bit determines the answer. 883 * Note that in v7M it is not possible to be in Handler mode with 884 * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both. 885 */ 886 return !arm_v7m_is_handler_mode(env) && 887 env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK; 888 } 889 890 /** 891 * v7m_sp_limit: Return SP limit for current CPU state 892 * Return the SP limit value for the current CPU security state 893 * and stack pointer. 894 */ 895 static inline uint32_t v7m_sp_limit(CPUARMState *env) 896 { 897 if (v7m_using_psp(env)) { 898 return env->v7m.psplim[env->v7m.secure]; 899 } else { 900 return env->v7m.msplim[env->v7m.secure]; 901 } 902 } 903 904 /** 905 * v7m_cpacr_pass: 906 * Return true if the v7M CPACR permits access to the FPU for the specified 907 * security state and privilege level. 908 */ 909 static inline bool v7m_cpacr_pass(CPUARMState *env, 910 bool is_secure, bool is_priv) 911 { 912 switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) { 913 case 0: 914 case 2: /* UNPREDICTABLE: we treat like 0 */ 915 return false; 916 case 1: 917 return is_priv; 918 case 3: 919 return true; 920 default: 921 g_assert_not_reached(); 922 } 923 } 924 925 /** 926 * aarch32_mode_name(): Return name of the AArch32 CPU mode 927 * @psr: Program Status Register indicating CPU mode 928 * 929 * Returns, for debug logging purposes, a printable representation 930 * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by 931 * the low bits of the specified PSR. 932 */ 933 static inline const char *aarch32_mode_name(uint32_t psr) 934 { 935 static const char cpu_mode_names[16][4] = { 936 "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt", 937 "???", "???", "hyp", "und", "???", "???", "???", "sys" 938 }; 939 940 return cpu_mode_names[psr & 0xf]; 941 } 942 943 /** 944 * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request 945 * 946 * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following 947 * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit. 948 * Must be called with the BQL held. 949 */ 950 void arm_cpu_update_virq(ARMCPU *cpu); 951 952 /** 953 * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request 954 * 955 * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following 956 * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit. 957 * Must be called with the BQL held. 958 */ 959 void arm_cpu_update_vfiq(ARMCPU *cpu); 960 961 /** 962 * arm_cpu_update_vserr: Update CPU_INTERRUPT_VSERR bit 963 * 964 * Update the CPU_INTERRUPT_VSERR bit in cs->interrupt_request, 965 * following a change to the HCR_EL2.VSE bit. 966 */ 967 void arm_cpu_update_vserr(ARMCPU *cpu); 968 969 /** 970 * arm_mmu_idx_el: 971 * @env: The cpu environment 972 * @el: The EL to use. 973 * 974 * Return the full ARMMMUIdx for the translation regime for EL. 975 */ 976 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el); 977 978 /** 979 * arm_mmu_idx: 980 * @env: The cpu environment 981 * 982 * Return the full ARMMMUIdx for the current translation regime. 983 */ 984 ARMMMUIdx arm_mmu_idx(CPUARMState *env); 985 986 /** 987 * arm_stage1_mmu_idx: 988 * @env: The cpu environment 989 * 990 * Return the ARMMMUIdx for the stage1 traversal for the current regime. 991 */ 992 #ifdef CONFIG_USER_ONLY 993 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 994 { 995 return ARMMMUIdx_Stage1_E0; 996 } 997 static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 998 { 999 return ARMMMUIdx_Stage1_E0; 1000 } 1001 #else 1002 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx); 1003 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env); 1004 #endif 1005 1006 /** 1007 * arm_mmu_idx_is_stage1_of_2: 1008 * @mmu_idx: The ARMMMUIdx to test 1009 * 1010 * Return true if @mmu_idx is a NOTLB mmu_idx that is the 1011 * first stage of a two stage regime. 1012 */ 1013 static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx) 1014 { 1015 switch (mmu_idx) { 1016 case ARMMMUIdx_Stage1_E0: 1017 case ARMMMUIdx_Stage1_E1: 1018 case ARMMMUIdx_Stage1_E1_PAN: 1019 return true; 1020 default: 1021 return false; 1022 } 1023 } 1024 1025 static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features, 1026 const ARMISARegisters *id) 1027 { 1028 uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV; 1029 1030 if ((features >> ARM_FEATURE_V4T) & 1) { 1031 valid |= CPSR_T; 1032 } 1033 if ((features >> ARM_FEATURE_V5) & 1) { 1034 valid |= CPSR_Q; /* V5TE in reality*/ 1035 } 1036 if ((features >> ARM_FEATURE_V6) & 1) { 1037 valid |= CPSR_E | CPSR_GE; 1038 } 1039 if ((features >> ARM_FEATURE_THUMB2) & 1) { 1040 valid |= CPSR_IT; 1041 } 1042 if (isar_feature_aa32_jazelle(id)) { 1043 valid |= CPSR_J; 1044 } 1045 if (isar_feature_aa32_pan(id)) { 1046 valid |= CPSR_PAN; 1047 } 1048 if (isar_feature_aa32_dit(id)) { 1049 valid |= CPSR_DIT; 1050 } 1051 if (isar_feature_aa32_ssbs(id)) { 1052 valid |= CPSR_SSBS; 1053 } 1054 1055 return valid; 1056 } 1057 1058 static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id) 1059 { 1060 uint32_t valid; 1061 1062 valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV; 1063 if (isar_feature_aa64_bti(id)) { 1064 valid |= PSTATE_BTYPE; 1065 } 1066 if (isar_feature_aa64_pan(id)) { 1067 valid |= PSTATE_PAN; 1068 } 1069 if (isar_feature_aa64_uao(id)) { 1070 valid |= PSTATE_UAO; 1071 } 1072 if (isar_feature_aa64_dit(id)) { 1073 valid |= PSTATE_DIT; 1074 } 1075 if (isar_feature_aa64_ssbs(id)) { 1076 valid |= PSTATE_SSBS; 1077 } 1078 if (isar_feature_aa64_mte(id)) { 1079 valid |= PSTATE_TCO; 1080 } 1081 1082 return valid; 1083 } 1084 1085 /* Granule size (i.e. page size) */ 1086 typedef enum ARMGranuleSize { 1087 /* Same order as TG0 encoding */ 1088 Gran4K, 1089 Gran64K, 1090 Gran16K, 1091 GranInvalid, 1092 } ARMGranuleSize; 1093 1094 /** 1095 * arm_granule_bits: Return address size of the granule in bits 1096 * 1097 * Return the address size of the granule in bits. This corresponds 1098 * to the pseudocode TGxGranuleBits(). 1099 */ 1100 static inline int arm_granule_bits(ARMGranuleSize gran) 1101 { 1102 switch (gran) { 1103 case Gran64K: 1104 return 16; 1105 case Gran16K: 1106 return 14; 1107 case Gran4K: 1108 return 12; 1109 default: 1110 g_assert_not_reached(); 1111 } 1112 } 1113 1114 /* 1115 * Parameters of a given virtual address, as extracted from the 1116 * translation control register (TCR) for a given regime. 1117 */ 1118 typedef struct ARMVAParameters { 1119 unsigned tsz : 8; 1120 unsigned ps : 3; 1121 unsigned sh : 2; 1122 unsigned select : 1; 1123 bool tbi : 1; 1124 bool epd : 1; 1125 bool hpd : 1; 1126 bool tsz_oob : 1; /* tsz has been clamped to legal range */ 1127 bool ds : 1; 1128 bool ha : 1; 1129 bool hd : 1; 1130 ARMGranuleSize gran : 2; 1131 } ARMVAParameters; 1132 1133 /** 1134 * aa64_va_parameters: Return parameters for an AArch64 virtual address 1135 * @env: CPU 1136 * @va: virtual address to look up 1137 * @mmu_idx: determines translation regime to use 1138 * @data: true if this is a data access 1139 * @el1_is_aa32: true if we are asking about stage 2 when EL1 is AArch32 1140 * (ignored if @mmu_idx is for a stage 1 regime; only affects tsz/tsz_oob) 1141 */ 1142 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 1143 ARMMMUIdx mmu_idx, bool data, 1144 bool el1_is_aa32); 1145 1146 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx); 1147 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx); 1148 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx); 1149 1150 /* Determine if allocation tags are available. */ 1151 static inline bool allocation_tag_access_enabled(CPUARMState *env, int el, 1152 uint64_t sctlr) 1153 { 1154 if (el < 3 1155 && arm_feature(env, ARM_FEATURE_EL3) 1156 && !(env->cp15.scr_el3 & SCR_ATA)) { 1157 return false; 1158 } 1159 if (el < 2 && arm_is_el2_enabled(env)) { 1160 uint64_t hcr = arm_hcr_el2_eff(env); 1161 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 1162 return false; 1163 } 1164 } 1165 sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA); 1166 return sctlr != 0; 1167 } 1168 1169 #ifndef CONFIG_USER_ONLY 1170 1171 /* Security attributes for an address, as returned by v8m_security_lookup. */ 1172 typedef struct V8M_SAttributes { 1173 bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */ 1174 bool ns; 1175 bool nsc; 1176 uint8_t sregion; 1177 bool srvalid; 1178 uint8_t iregion; 1179 bool irvalid; 1180 } V8M_SAttributes; 1181 1182 void v8m_security_lookup(CPUARMState *env, uint32_t address, 1183 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1184 bool secure, V8M_SAttributes *sattrs); 1185 1186 /* Cacheability and shareability attributes for a memory access */ 1187 typedef struct ARMCacheAttrs { 1188 /* 1189 * If is_s2_format is true, attrs is the S2 descriptor bits [5:2] 1190 * Otherwise, attrs is the same as the MAIR_EL1 8-bit format 1191 */ 1192 unsigned int attrs:8; 1193 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */ 1194 bool is_s2_format:1; 1195 } ARMCacheAttrs; 1196 1197 /* Fields that are valid upon success. */ 1198 typedef struct GetPhysAddrResult { 1199 CPUTLBEntryFull f; 1200 ARMCacheAttrs cacheattrs; 1201 } GetPhysAddrResult; 1202 1203 /** 1204 * get_phys_addr: get the physical address for a virtual address 1205 * @env: CPUARMState 1206 * @address: virtual address to get physical address for 1207 * @access_type: 0 for read, 1 for write, 2 for execute 1208 * @mmu_idx: MMU index indicating required translation regime 1209 * @result: set on translation success. 1210 * @fi: set to fault info if the translation fails 1211 * 1212 * Find the physical address corresponding to the given virtual address, 1213 * by doing a translation table walk on MMU based systems or using the 1214 * MPU state on MPU based systems. 1215 * 1216 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 1217 * prot and page_size may not be filled in, and the populated fsr value provides 1218 * information on why the translation aborted, in the format of a 1219 * DFSR/IFSR fault register, with the following caveats: 1220 * * we honour the short vs long DFSR format differences. 1221 * * the WnR bit is never set (the caller must do this). 1222 * * for PSMAv5 based systems we don't bother to return a full FSR format 1223 * value. 1224 */ 1225 bool get_phys_addr(CPUARMState *env, target_ulong address, 1226 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1227 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 1228 __attribute__((nonnull)); 1229 1230 /** 1231 * get_phys_addr_with_space_nogpc: get the physical address for a virtual 1232 * address 1233 * @env: CPUARMState 1234 * @address: virtual address to get physical address for 1235 * @access_type: 0 for read, 1 for write, 2 for execute 1236 * @mmu_idx: MMU index indicating required translation regime 1237 * @space: security space for the access 1238 * @result: set on translation success. 1239 * @fi: set to fault info if the translation fails 1240 * 1241 * Similar to get_phys_addr, but use the given security space and don't perform 1242 * a Granule Protection Check on the resulting address. 1243 */ 1244 bool get_phys_addr_with_space_nogpc(CPUARMState *env, target_ulong address, 1245 MMUAccessType access_type, 1246 ARMMMUIdx mmu_idx, ARMSecuritySpace space, 1247 GetPhysAddrResult *result, 1248 ARMMMUFaultInfo *fi) 1249 __attribute__((nonnull)); 1250 1251 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 1252 MMUAccessType access_type, ARMMMUIdx mmu_idx, 1253 bool is_secure, GetPhysAddrResult *result, 1254 ARMMMUFaultInfo *fi, uint32_t *mregion); 1255 1256 void arm_log_exception(CPUState *cs); 1257 1258 #endif /* !CONFIG_USER_ONLY */ 1259 1260 /* 1261 * SVE predicates are 1/8 the size of SVE vectors, and cannot use 1262 * the same simd_desc() encoding due to restrictions on size. 1263 * Use these instead. 1264 */ 1265 FIELD(PREDDESC, OPRSZ, 0, 6) 1266 FIELD(PREDDESC, ESZ, 6, 2) 1267 FIELD(PREDDESC, DATA, 8, 24) 1268 1269 /* 1270 * The SVE simd_data field, for memory ops, contains either 1271 * rd (5 bits) or a shift count (2 bits). 1272 */ 1273 #define SVE_MTEDESC_SHIFT 5 1274 1275 /* Bits within a descriptor passed to the helper_mte_check* functions. */ 1276 FIELD(MTEDESC, MIDX, 0, 4) 1277 FIELD(MTEDESC, TBI, 4, 2) 1278 FIELD(MTEDESC, TCMA, 6, 2) 1279 FIELD(MTEDESC, WRITE, 8, 1) 1280 FIELD(MTEDESC, ALIGN, 9, 3) 1281 FIELD(MTEDESC, SIZEM1, 12, SIMD_DATA_BITS - 12) /* size - 1 */ 1282 1283 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr); 1284 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra); 1285 1286 /** 1287 * mte_mops_probe: Check where the next MTE failure is for a FEAT_MOPS operation 1288 * @env: CPU env 1289 * @ptr: start address of memory region (dirty pointer) 1290 * @size: length of region (guaranteed not to cross a page boundary) 1291 * @desc: MTEDESC descriptor word (0 means no MTE checks) 1292 * Returns: the size of the region that can be copied without hitting 1293 * an MTE tag failure 1294 * 1295 * Note that we assume that the caller has already checked the TBI 1296 * and TCMA bits with mte_checks_needed() and an MTE check is definitely 1297 * required. 1298 */ 1299 uint64_t mte_mops_probe(CPUARMState *env, uint64_t ptr, uint64_t size, 1300 uint32_t desc); 1301 1302 /** 1303 * mte_mops_probe_rev: Check where the next MTE failure is for a FEAT_MOPS 1304 * operation going in the reverse direction 1305 * @env: CPU env 1306 * @ptr: *end* address of memory region (dirty pointer) 1307 * @size: length of region (guaranteed not to cross a page boundary) 1308 * @desc: MTEDESC descriptor word (0 means no MTE checks) 1309 * Returns: the size of the region that can be copied without hitting 1310 * an MTE tag failure 1311 * 1312 * Note that we assume that the caller has already checked the TBI 1313 * and TCMA bits with mte_checks_needed() and an MTE check is definitely 1314 * required. 1315 */ 1316 uint64_t mte_mops_probe_rev(CPUARMState *env, uint64_t ptr, uint64_t size, 1317 uint32_t desc); 1318 1319 /** 1320 * mte_check_fail: Record an MTE tag check failure 1321 * @env: CPU env 1322 * @desc: MTEDESC descriptor word 1323 * @dirty_ptr: Failing dirty address 1324 * @ra: TCG retaddr 1325 * 1326 * This may never return (if the MTE tag checks are configured to fault). 1327 */ 1328 void mte_check_fail(CPUARMState *env, uint32_t desc, 1329 uint64_t dirty_ptr, uintptr_t ra); 1330 1331 /** 1332 * mte_mops_set_tags: Set MTE tags for a portion of a FEAT_MOPS operation 1333 * @env: CPU env 1334 * @dirty_ptr: Start address of memory region (dirty pointer) 1335 * @size: length of region (guaranteed not to cross page boundary) 1336 * @desc: MTEDESC descriptor word 1337 */ 1338 void mte_mops_set_tags(CPUARMState *env, uint64_t dirty_ptr, uint64_t size, 1339 uint32_t desc); 1340 1341 static inline int allocation_tag_from_addr(uint64_t ptr) 1342 { 1343 return extract64(ptr, 56, 4); 1344 } 1345 1346 static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag) 1347 { 1348 return deposit64(ptr, 56, 4, rtag); 1349 } 1350 1351 /* Return true if tbi bits mean that the access is checked. */ 1352 static inline bool tbi_check(uint32_t desc, int bit55) 1353 { 1354 return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1; 1355 } 1356 1357 /* Return true if tcma bits mean that the access is unchecked. */ 1358 static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag) 1359 { 1360 /* 1361 * We had extracted bit55 and ptr_tag for other reasons, so fold 1362 * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test. 1363 */ 1364 bool match = ((ptr_tag + bit55) & 0xf) == 0; 1365 bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1; 1366 return tcma && match; 1367 } 1368 1369 /* 1370 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 1371 * for the tag to be present in the FAR_ELx register. But for user-only 1372 * mode, we do not have a TLB with which to implement this, so we must 1373 * remove the top byte. 1374 */ 1375 static inline uint64_t useronly_clean_ptr(uint64_t ptr) 1376 { 1377 #ifdef CONFIG_USER_ONLY 1378 /* TBI0 is known to be enabled, while TBI1 is disabled. */ 1379 ptr &= sextract64(ptr, 0, 56); 1380 #endif 1381 return ptr; 1382 } 1383 1384 static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr) 1385 { 1386 #ifdef CONFIG_USER_ONLY 1387 int64_t clean_ptr = sextract64(ptr, 0, 56); 1388 if (tbi_check(desc, clean_ptr < 0)) { 1389 ptr = clean_ptr; 1390 } 1391 #endif 1392 return ptr; 1393 } 1394 1395 /* Values for M-profile PSR.ECI for MVE insns */ 1396 enum MVEECIState { 1397 ECI_NONE = 0, /* No completed beats */ 1398 ECI_A0 = 1, /* Completed: A0 */ 1399 ECI_A0A1 = 2, /* Completed: A0, A1 */ 1400 /* 3 is reserved */ 1401 ECI_A0A1A2 = 4, /* Completed: A0, A1, A2 */ 1402 ECI_A0A1A2B0 = 5, /* Completed: A0, A1, A2, B0 */ 1403 /* All other values reserved */ 1404 }; 1405 1406 /* Definitions for the PMU registers */ 1407 #define PMCRN_MASK 0xf800 1408 #define PMCRN_SHIFT 11 1409 #define PMCRLP 0x80 1410 #define PMCRLC 0x40 1411 #define PMCRDP 0x20 1412 #define PMCRX 0x10 1413 #define PMCRD 0x8 1414 #define PMCRC 0x4 1415 #define PMCRP 0x2 1416 #define PMCRE 0x1 1417 /* 1418 * Mask of PMCR bits writable by guest (not including WO bits like C, P, 1419 * which can be written as 1 to trigger behaviour but which stay RAZ). 1420 */ 1421 #define PMCR_WRITABLE_MASK (PMCRLP | PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE) 1422 1423 #define PMXEVTYPER_P 0x80000000 1424 #define PMXEVTYPER_U 0x40000000 1425 #define PMXEVTYPER_NSK 0x20000000 1426 #define PMXEVTYPER_NSU 0x10000000 1427 #define PMXEVTYPER_NSH 0x08000000 1428 #define PMXEVTYPER_M 0x04000000 1429 #define PMXEVTYPER_MT 0x02000000 1430 #define PMXEVTYPER_EVTCOUNT 0x0000ffff 1431 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \ 1432 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \ 1433 PMXEVTYPER_M | PMXEVTYPER_MT | \ 1434 PMXEVTYPER_EVTCOUNT) 1435 1436 #define PMCCFILTR 0xf8000000 1437 #define PMCCFILTR_M PMXEVTYPER_M 1438 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M) 1439 1440 static inline uint32_t pmu_num_counters(CPUARMState *env) 1441 { 1442 ARMCPU *cpu = env_archcpu(env); 1443 1444 return (cpu->isar.reset_pmcr_el0 & PMCRN_MASK) >> PMCRN_SHIFT; 1445 } 1446 1447 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */ 1448 static inline uint64_t pmu_counter_mask(CPUARMState *env) 1449 { 1450 return (1ULL << 31) | ((1ULL << pmu_num_counters(env)) - 1); 1451 } 1452 1453 #ifdef TARGET_AARCH64 1454 int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg); 1455 int aarch64_gdb_get_sve_reg(CPUARMState *env, GByteArray *buf, int reg); 1456 int aarch64_gdb_set_sve_reg(CPUARMState *env, uint8_t *buf, int reg); 1457 int aarch64_gdb_get_fpu_reg(CPUARMState *env, GByteArray *buf, int reg); 1458 int aarch64_gdb_set_fpu_reg(CPUARMState *env, uint8_t *buf, int reg); 1459 int aarch64_gdb_get_pauth_reg(CPUARMState *env, GByteArray *buf, int reg); 1460 int aarch64_gdb_set_pauth_reg(CPUARMState *env, uint8_t *buf, int reg); 1461 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp); 1462 void arm_cpu_sme_finalize(ARMCPU *cpu, Error **errp); 1463 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp); 1464 void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp); 1465 void aarch64_max_tcg_initfn(Object *obj); 1466 void aarch64_add_pauth_properties(Object *obj); 1467 void aarch64_add_sve_properties(Object *obj); 1468 void aarch64_add_sme_properties(Object *obj); 1469 #endif 1470 1471 /* Read the CONTROL register as the MRS instruction would. */ 1472 uint32_t arm_v7m_mrs_control(CPUARMState *env, uint32_t secure); 1473 1474 /* 1475 * Return a pointer to the location where we currently store the 1476 * stack pointer for the requested security state and thread mode. 1477 * This pointer will become invalid if the CPU state is updated 1478 * such that the stack pointers are switched around (eg changing 1479 * the SPSEL control bit). 1480 */ 1481 uint32_t *arm_v7m_get_sp_ptr(CPUARMState *env, bool secure, 1482 bool threadmode, bool spsel); 1483 1484 bool el_is_in_host(CPUARMState *env, int el); 1485 1486 void aa32_max_features(ARMCPU *cpu); 1487 int exception_target_el(CPUARMState *env); 1488 bool arm_singlestep_active(CPUARMState *env); 1489 bool arm_generate_debug_exceptions(CPUARMState *env); 1490 1491 /** 1492 * pauth_ptr_mask: 1493 * @param: parameters defining the MMU setup 1494 * 1495 * Return a mask of the address bits that contain the authentication code, 1496 * given the MMU config defined by @param. 1497 */ 1498 static inline uint64_t pauth_ptr_mask(ARMVAParameters param) 1499 { 1500 int bot_pac_bit = 64 - param.tsz; 1501 int top_pac_bit = 64 - 8 * param.tbi; 1502 1503 return MAKE_64BIT_MASK(bot_pac_bit, top_pac_bit - bot_pac_bit); 1504 } 1505 1506 /* Add the cpreg definitions for debug related system registers */ 1507 void define_debug_regs(ARMCPU *cpu); 1508 1509 /* Effective value of MDCR_EL2 */ 1510 static inline uint64_t arm_mdcr_el2_eff(CPUARMState *env) 1511 { 1512 return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0; 1513 } 1514 1515 /* Powers of 2 for sve_vq_map et al. */ 1516 #define SVE_VQ_POW2_MAP \ 1517 ((1 << (1 - 1)) | (1 << (2 - 1)) | \ 1518 (1 << (4 - 1)) | (1 << (8 - 1)) | (1 << (16 - 1))) 1519 1520 /* 1521 * Return true if it is possible to take a fine-grained-trap to EL2. 1522 */ 1523 static inline bool arm_fgt_active(CPUARMState *env, int el) 1524 { 1525 /* 1526 * The Arm ARM only requires the "{E2H,TGE} != {1,1}" test for traps 1527 * that can affect EL0, but it is harmless to do the test also for 1528 * traps on registers that are only accessible at EL1 because if the test 1529 * returns true then we can't be executing at EL1 anyway. 1530 * FGT traps only happen when EL2 is enabled and EL1 is AArch64; 1531 * traps from AArch32 only happen for the EL0 is AArch32 case. 1532 */ 1533 return cpu_isar_feature(aa64_fgt, env_archcpu(env)) && 1534 el < 2 && arm_is_el2_enabled(env) && 1535 arm_el_is_aa64(env, 1) && 1536 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE) && 1537 (!arm_feature(env, ARM_FEATURE_EL3) || (env->cp15.scr_el3 & SCR_FGTEN)); 1538 } 1539 1540 void assert_hflags_rebuild_correctly(CPUARMState *env); 1541 1542 /* 1543 * Although the ARM implementation of hardware assisted debugging 1544 * allows for different breakpoints per-core, the current GDB 1545 * interface treats them as a global pool of registers (which seems to 1546 * be the case for x86, ppc and s390). As a result we store one copy 1547 * of registers which is used for all active cores. 1548 * 1549 * Write access is serialised by virtue of the GDB protocol which 1550 * updates things. Read access (i.e. when the values are copied to the 1551 * vCPU) is also gated by GDB's run control. 1552 * 1553 * This is not unreasonable as most of the time debugging kernels you 1554 * never know which core will eventually execute your function. 1555 */ 1556 1557 typedef struct { 1558 uint64_t bcr; 1559 uint64_t bvr; 1560 } HWBreakpoint; 1561 1562 /* 1563 * The watchpoint registers can cover more area than the requested 1564 * watchpoint so we need to store the additional information 1565 * somewhere. We also need to supply a CPUWatchpoint to the GDB stub 1566 * when the watchpoint is hit. 1567 */ 1568 typedef struct { 1569 uint64_t wcr; 1570 uint64_t wvr; 1571 CPUWatchpoint details; 1572 } HWWatchpoint; 1573 1574 /* Maximum and current break/watch point counts */ 1575 extern int max_hw_bps, max_hw_wps; 1576 extern GArray *hw_breakpoints, *hw_watchpoints; 1577 1578 #define cur_hw_wps (hw_watchpoints->len) 1579 #define cur_hw_bps (hw_breakpoints->len) 1580 #define get_hw_bp(i) (&g_array_index(hw_breakpoints, HWBreakpoint, i)) 1581 #define get_hw_wp(i) (&g_array_index(hw_watchpoints, HWWatchpoint, i)) 1582 1583 bool find_hw_breakpoint(CPUState *cpu, target_ulong pc); 1584 int insert_hw_breakpoint(target_ulong pc); 1585 int delete_hw_breakpoint(target_ulong pc); 1586 1587 bool check_watchpoint_in_range(int i, target_ulong addr); 1588 CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr); 1589 int insert_hw_watchpoint(target_ulong addr, target_ulong len, int type); 1590 int delete_hw_watchpoint(target_ulong addr, target_ulong len, int type); 1591 #endif 1592