xref: /openbmc/qemu/target/arm/internals.h (revision f6a51c84)
1 /*
2  * QEMU ARM CPU -- internal functions and types
3  *
4  * Copyright (c) 2014 Linaro Ltd
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  *
20  * This header defines functions, types, etc which need to be shared
21  * between different source files within target/arm/ but which are
22  * private to it and not required by the rest of QEMU.
23  */
24 
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
27 
28 /* register banks for CPU modes */
29 #define BANK_USRSYS 0
30 #define BANK_SVC    1
31 #define BANK_ABT    2
32 #define BANK_UND    3
33 #define BANK_IRQ    4
34 #define BANK_FIQ    5
35 #define BANK_HYP    6
36 #define BANK_MON    7
37 
38 static inline bool excp_is_internal(int excp)
39 {
40     /* Return true if this exception number represents a QEMU-internal
41      * exception that will not be passed to the guest.
42      */
43     return excp == EXCP_INTERRUPT
44         || excp == EXCP_HLT
45         || excp == EXCP_DEBUG
46         || excp == EXCP_HALTED
47         || excp == EXCP_EXCEPTION_EXIT
48         || excp == EXCP_KERNEL_TRAP
49         || excp == EXCP_SEMIHOST;
50 }
51 
52 /* Exception names for debug logging; note that not all of these
53  * precisely correspond to architectural exceptions.
54  */
55 static const char * const excnames[] = {
56     [EXCP_UDEF] = "Undefined Instruction",
57     [EXCP_SWI] = "SVC",
58     [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
59     [EXCP_DATA_ABORT] = "Data Abort",
60     [EXCP_IRQ] = "IRQ",
61     [EXCP_FIQ] = "FIQ",
62     [EXCP_BKPT] = "Breakpoint",
63     [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
64     [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
65     [EXCP_HVC] = "Hypervisor Call",
66     [EXCP_HYP_TRAP] = "Hypervisor Trap",
67     [EXCP_SMC] = "Secure Monitor Call",
68     [EXCP_VIRQ] = "Virtual IRQ",
69     [EXCP_VFIQ] = "Virtual FIQ",
70     [EXCP_SEMIHOST] = "Semihosting call",
71 };
72 
73 /* Scale factor for generic timers, ie number of ns per tick.
74  * This gives a 62.5MHz timer.
75  */
76 #define GTIMER_SCALE 16
77 
78 /*
79  * For AArch64, map a given EL to an index in the banked_spsr array.
80  * Note that this mapping and the AArch32 mapping defined in bank_number()
81  * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
82  * mandated mapping between each other.
83  */
84 static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
85 {
86     static const unsigned int map[4] = {
87         [1] = BANK_SVC, /* EL1.  */
88         [2] = BANK_HYP, /* EL2.  */
89         [3] = BANK_MON, /* EL3.  */
90     };
91     assert(el >= 1 && el <= 3);
92     return map[el];
93 }
94 
95 /* Map CPU modes onto saved register banks.  */
96 static inline int bank_number(int mode)
97 {
98     switch (mode) {
99     case ARM_CPU_MODE_USR:
100     case ARM_CPU_MODE_SYS:
101         return BANK_USRSYS;
102     case ARM_CPU_MODE_SVC:
103         return BANK_SVC;
104     case ARM_CPU_MODE_ABT:
105         return BANK_ABT;
106     case ARM_CPU_MODE_UND:
107         return BANK_UND;
108     case ARM_CPU_MODE_IRQ:
109         return BANK_IRQ;
110     case ARM_CPU_MODE_FIQ:
111         return BANK_FIQ;
112     case ARM_CPU_MODE_HYP:
113         return BANK_HYP;
114     case ARM_CPU_MODE_MON:
115         return BANK_MON;
116     }
117     g_assert_not_reached();
118 }
119 
120 void switch_mode(CPUARMState *, int);
121 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
122 void arm_translate_init(void);
123 
124 enum arm_fprounding {
125     FPROUNDING_TIEEVEN,
126     FPROUNDING_POSINF,
127     FPROUNDING_NEGINF,
128     FPROUNDING_ZERO,
129     FPROUNDING_TIEAWAY,
130     FPROUNDING_ODD
131 };
132 
133 int arm_rmode_to_sf(int rmode);
134 
135 static inline void aarch64_save_sp(CPUARMState *env, int el)
136 {
137     if (env->pstate & PSTATE_SP) {
138         env->sp_el[el] = env->xregs[31];
139     } else {
140         env->sp_el[0] = env->xregs[31];
141     }
142 }
143 
144 static inline void aarch64_restore_sp(CPUARMState *env, int el)
145 {
146     if (env->pstate & PSTATE_SP) {
147         env->xregs[31] = env->sp_el[el];
148     } else {
149         env->xregs[31] = env->sp_el[0];
150     }
151 }
152 
153 static inline void update_spsel(CPUARMState *env, uint32_t imm)
154 {
155     unsigned int cur_el = arm_current_el(env);
156     /* Update PSTATE SPSel bit; this requires us to update the
157      * working stack pointer in xregs[31].
158      */
159     if (!((imm ^ env->pstate) & PSTATE_SP)) {
160         return;
161     }
162     aarch64_save_sp(env, cur_el);
163     env->pstate = deposit32(env->pstate, 0, 1, imm);
164 
165     /* We rely on illegal updates to SPsel from EL0 to get trapped
166      * at translation time.
167      */
168     assert(cur_el >= 1 && cur_el <= 3);
169     aarch64_restore_sp(env, cur_el);
170 }
171 
172 /*
173  * arm_pamax
174  * @cpu: ARMCPU
175  *
176  * Returns the implementation defined bit-width of physical addresses.
177  * The ARMv8 reference manuals refer to this as PAMax().
178  */
179 static inline unsigned int arm_pamax(ARMCPU *cpu)
180 {
181     static const unsigned int pamax_map[] = {
182         [0] = 32,
183         [1] = 36,
184         [2] = 40,
185         [3] = 42,
186         [4] = 44,
187         [5] = 48,
188     };
189     unsigned int parange = extract32(cpu->id_aa64mmfr0, 0, 4);
190 
191     /* id_aa64mmfr0 is a read-only register so values outside of the
192      * supported mappings can be considered an implementation error.  */
193     assert(parange < ARRAY_SIZE(pamax_map));
194     return pamax_map[parange];
195 }
196 
197 /* Return true if extended addresses are enabled.
198  * This is always the case if our translation regime is 64 bit,
199  * but depends on TTBCR.EAE for 32 bit.
200  */
201 static inline bool extended_addresses_enabled(CPUARMState *env)
202 {
203     TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
204     return arm_el_is_aa64(env, 1) ||
205            (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE));
206 }
207 
208 /* Valid Syndrome Register EC field values */
209 enum arm_exception_class {
210     EC_UNCATEGORIZED          = 0x00,
211     EC_WFX_TRAP               = 0x01,
212     EC_CP15RTTRAP             = 0x03,
213     EC_CP15RRTTRAP            = 0x04,
214     EC_CP14RTTRAP             = 0x05,
215     EC_CP14DTTRAP             = 0x06,
216     EC_ADVSIMDFPACCESSTRAP    = 0x07,
217     EC_FPIDTRAP               = 0x08,
218     EC_CP14RRTTRAP            = 0x0c,
219     EC_ILLEGALSTATE           = 0x0e,
220     EC_AA32_SVC               = 0x11,
221     EC_AA32_HVC               = 0x12,
222     EC_AA32_SMC               = 0x13,
223     EC_AA64_SVC               = 0x15,
224     EC_AA64_HVC               = 0x16,
225     EC_AA64_SMC               = 0x17,
226     EC_SYSTEMREGISTERTRAP     = 0x18,
227     EC_INSNABORT              = 0x20,
228     EC_INSNABORT_SAME_EL      = 0x21,
229     EC_PCALIGNMENT            = 0x22,
230     EC_DATAABORT              = 0x24,
231     EC_DATAABORT_SAME_EL      = 0x25,
232     EC_SPALIGNMENT            = 0x26,
233     EC_AA32_FPTRAP            = 0x28,
234     EC_AA64_FPTRAP            = 0x2c,
235     EC_SERROR                 = 0x2f,
236     EC_BREAKPOINT             = 0x30,
237     EC_BREAKPOINT_SAME_EL     = 0x31,
238     EC_SOFTWARESTEP           = 0x32,
239     EC_SOFTWARESTEP_SAME_EL   = 0x33,
240     EC_WATCHPOINT             = 0x34,
241     EC_WATCHPOINT_SAME_EL     = 0x35,
242     EC_AA32_BKPT              = 0x38,
243     EC_VECTORCATCH            = 0x3a,
244     EC_AA64_BKPT              = 0x3c,
245 };
246 
247 #define ARM_EL_EC_SHIFT 26
248 #define ARM_EL_IL_SHIFT 25
249 #define ARM_EL_ISV_SHIFT 24
250 #define ARM_EL_IL (1 << ARM_EL_IL_SHIFT)
251 #define ARM_EL_ISV (1 << ARM_EL_ISV_SHIFT)
252 
253 /* Utility functions for constructing various kinds of syndrome value.
254  * Note that in general we follow the AArch64 syndrome values; in a
255  * few cases the value in HSR for exceptions taken to AArch32 Hyp
256  * mode differs slightly, so if we ever implemented Hyp mode then the
257  * syndrome value would need some massaging on exception entry.
258  * (One example of this is that AArch64 defaults to IL bit set for
259  * exceptions which don't specifically indicate information about the
260  * trapping instruction, whereas AArch32 defaults to IL bit clear.)
261  */
262 static inline uint32_t syn_uncategorized(void)
263 {
264     return (EC_UNCATEGORIZED << ARM_EL_EC_SHIFT) | ARM_EL_IL;
265 }
266 
267 static inline uint32_t syn_aa64_svc(uint32_t imm16)
268 {
269     return (EC_AA64_SVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
270 }
271 
272 static inline uint32_t syn_aa64_hvc(uint32_t imm16)
273 {
274     return (EC_AA64_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
275 }
276 
277 static inline uint32_t syn_aa64_smc(uint32_t imm16)
278 {
279     return (EC_AA64_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
280 }
281 
282 static inline uint32_t syn_aa32_svc(uint32_t imm16, bool is_16bit)
283 {
284     return (EC_AA32_SVC << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
285         | (is_16bit ? 0 : ARM_EL_IL);
286 }
287 
288 static inline uint32_t syn_aa32_hvc(uint32_t imm16)
289 {
290     return (EC_AA32_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
291 }
292 
293 static inline uint32_t syn_aa32_smc(void)
294 {
295     return (EC_AA32_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL;
296 }
297 
298 static inline uint32_t syn_aa64_bkpt(uint32_t imm16)
299 {
300     return (EC_AA64_BKPT << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
301 }
302 
303 static inline uint32_t syn_aa32_bkpt(uint32_t imm16, bool is_16bit)
304 {
305     return (EC_AA32_BKPT << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
306         | (is_16bit ? 0 : ARM_EL_IL);
307 }
308 
309 static inline uint32_t syn_aa64_sysregtrap(int op0, int op1, int op2,
310                                            int crn, int crm, int rt,
311                                            int isread)
312 {
313     return (EC_SYSTEMREGISTERTRAP << ARM_EL_EC_SHIFT) | ARM_EL_IL
314         | (op0 << 20) | (op2 << 17) | (op1 << 14) | (crn << 10) | (rt << 5)
315         | (crm << 1) | isread;
316 }
317 
318 static inline uint32_t syn_cp14_rt_trap(int cv, int cond, int opc1, int opc2,
319                                         int crn, int crm, int rt, int isread,
320                                         bool is_16bit)
321 {
322     return (EC_CP14RTTRAP << ARM_EL_EC_SHIFT)
323         | (is_16bit ? 0 : ARM_EL_IL)
324         | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
325         | (crn << 10) | (rt << 5) | (crm << 1) | isread;
326 }
327 
328 static inline uint32_t syn_cp15_rt_trap(int cv, int cond, int opc1, int opc2,
329                                         int crn, int crm, int rt, int isread,
330                                         bool is_16bit)
331 {
332     return (EC_CP15RTTRAP << ARM_EL_EC_SHIFT)
333         | (is_16bit ? 0 : ARM_EL_IL)
334         | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
335         | (crn << 10) | (rt << 5) | (crm << 1) | isread;
336 }
337 
338 static inline uint32_t syn_cp14_rrt_trap(int cv, int cond, int opc1, int crm,
339                                          int rt, int rt2, int isread,
340                                          bool is_16bit)
341 {
342     return (EC_CP14RRTTRAP << ARM_EL_EC_SHIFT)
343         | (is_16bit ? 0 : ARM_EL_IL)
344         | (cv << 24) | (cond << 20) | (opc1 << 16)
345         | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
346 }
347 
348 static inline uint32_t syn_cp15_rrt_trap(int cv, int cond, int opc1, int crm,
349                                          int rt, int rt2, int isread,
350                                          bool is_16bit)
351 {
352     return (EC_CP15RRTTRAP << ARM_EL_EC_SHIFT)
353         | (is_16bit ? 0 : ARM_EL_IL)
354         | (cv << 24) | (cond << 20) | (opc1 << 16)
355         | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
356 }
357 
358 static inline uint32_t syn_fp_access_trap(int cv, int cond, bool is_16bit)
359 {
360     return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT)
361         | (is_16bit ? 0 : ARM_EL_IL)
362         | (cv << 24) | (cond << 20);
363 }
364 
365 static inline uint32_t syn_insn_abort(int same_el, int ea, int s1ptw, int fsc)
366 {
367     return (EC_INSNABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
368         | ARM_EL_IL | (ea << 9) | (s1ptw << 7) | fsc;
369 }
370 
371 static inline uint32_t syn_data_abort_no_iss(int same_el,
372                                              int ea, int cm, int s1ptw,
373                                              int wnr, int fsc)
374 {
375     return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
376            | ARM_EL_IL
377            | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
378 }
379 
380 static inline uint32_t syn_data_abort_with_iss(int same_el,
381                                                int sas, int sse, int srt,
382                                                int sf, int ar,
383                                                int ea, int cm, int s1ptw,
384                                                int wnr, int fsc,
385                                                bool is_16bit)
386 {
387     return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
388            | (is_16bit ? 0 : ARM_EL_IL)
389            | ARM_EL_ISV | (sas << 22) | (sse << 21) | (srt << 16)
390            | (sf << 15) | (ar << 14)
391            | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
392 }
393 
394 static inline uint32_t syn_swstep(int same_el, int isv, int ex)
395 {
396     return (EC_SOFTWARESTEP << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
397         | ARM_EL_IL | (isv << 24) | (ex << 6) | 0x22;
398 }
399 
400 static inline uint32_t syn_watchpoint(int same_el, int cm, int wnr)
401 {
402     return (EC_WATCHPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
403         | ARM_EL_IL | (cm << 8) | (wnr << 6) | 0x22;
404 }
405 
406 static inline uint32_t syn_breakpoint(int same_el)
407 {
408     return (EC_BREAKPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
409         | ARM_EL_IL | 0x22;
410 }
411 
412 static inline uint32_t syn_wfx(int cv, int cond, int ti)
413 {
414     return (EC_WFX_TRAP << ARM_EL_EC_SHIFT) |
415            (cv << 24) | (cond << 20) | ti;
416 }
417 
418 /* Update a QEMU watchpoint based on the information the guest has set in the
419  * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
420  */
421 void hw_watchpoint_update(ARMCPU *cpu, int n);
422 /* Update the QEMU watchpoints for every guest watchpoint. This does a
423  * complete delete-and-reinstate of the QEMU watchpoint list and so is
424  * suitable for use after migration or on reset.
425  */
426 void hw_watchpoint_update_all(ARMCPU *cpu);
427 /* Update a QEMU breakpoint based on the information the guest has set in the
428  * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
429  */
430 void hw_breakpoint_update(ARMCPU *cpu, int n);
431 /* Update the QEMU breakpoints for every guest breakpoint. This does a
432  * complete delete-and-reinstate of the QEMU breakpoint list and so is
433  * suitable for use after migration or on reset.
434  */
435 void hw_breakpoint_update_all(ARMCPU *cpu);
436 
437 /* Callback function for checking if a watchpoint should trigger. */
438 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
439 
440 /* Callback function for when a watchpoint or breakpoint triggers. */
441 void arm_debug_excp_handler(CPUState *cs);
442 
443 #ifdef CONFIG_USER_ONLY
444 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
445 {
446     return false;
447 }
448 #else
449 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
450 bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
451 /* Actually handle a PSCI call */
452 void arm_handle_psci_call(ARMCPU *cpu);
453 #endif
454 
455 /**
456  * ARMMMUFaultInfo: Information describing an ARM MMU Fault
457  * @s2addr: Address that caused a fault at stage 2
458  * @stage2: True if we faulted at stage 2
459  * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
460  */
461 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
462 struct ARMMMUFaultInfo {
463     target_ulong s2addr;
464     bool stage2;
465     bool s1ptw;
466 };
467 
468 /* Do a page table walk and add page to TLB if possible */
469 bool arm_tlb_fill(CPUState *cpu, vaddr address, int rw, int mmu_idx,
470                   uint32_t *fsr, ARMMMUFaultInfo *fi);
471 
472 /* Return true if the stage 1 translation regime is using LPAE format page
473  * tables */
474 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
475 
476 /* Raise a data fault alignment exception for the specified virtual address */
477 void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
478                                  MMUAccessType access_type,
479                                  int mmu_idx, uintptr_t retaddr);
480 
481 /* Call the EL change hook if one has been registered */
482 static inline void arm_call_el_change_hook(ARMCPU *cpu)
483 {
484     if (cpu->el_change_hook) {
485         cpu->el_change_hook(cpu, cpu->el_change_hook_opaque);
486     }
487 }
488 
489 #endif
490