xref: /openbmc/qemu/target/arm/internals.h (revision e0091133)
1 /*
2  * QEMU ARM CPU -- internal functions and types
3  *
4  * Copyright (c) 2014 Linaro Ltd
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  *
20  * This header defines functions, types, etc which need to be shared
21  * between different source files within target/arm/ but which are
22  * private to it and not required by the rest of QEMU.
23  */
24 
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
27 
28 #include "hw/registerfields.h"
29 #include "tcg/tcg-gvec-desc.h"
30 #include "syndrome.h"
31 
32 /* register banks for CPU modes */
33 #define BANK_USRSYS 0
34 #define BANK_SVC    1
35 #define BANK_ABT    2
36 #define BANK_UND    3
37 #define BANK_IRQ    4
38 #define BANK_FIQ    5
39 #define BANK_HYP    6
40 #define BANK_MON    7
41 
42 static inline bool excp_is_internal(int excp)
43 {
44     /* Return true if this exception number represents a QEMU-internal
45      * exception that will not be passed to the guest.
46      */
47     return excp == EXCP_INTERRUPT
48         || excp == EXCP_HLT
49         || excp == EXCP_DEBUG
50         || excp == EXCP_HALTED
51         || excp == EXCP_EXCEPTION_EXIT
52         || excp == EXCP_KERNEL_TRAP
53         || excp == EXCP_SEMIHOST;
54 }
55 
56 /* Scale factor for generic timers, ie number of ns per tick.
57  * This gives a 62.5MHz timer.
58  */
59 #define GTIMER_SCALE 16
60 
61 /* Bit definitions for the v7M CONTROL register */
62 FIELD(V7M_CONTROL, NPRIV, 0, 1)
63 FIELD(V7M_CONTROL, SPSEL, 1, 1)
64 FIELD(V7M_CONTROL, FPCA, 2, 1)
65 FIELD(V7M_CONTROL, SFPA, 3, 1)
66 
67 /* Bit definitions for v7M exception return payload */
68 FIELD(V7M_EXCRET, ES, 0, 1)
69 FIELD(V7M_EXCRET, RES0, 1, 1)
70 FIELD(V7M_EXCRET, SPSEL, 2, 1)
71 FIELD(V7M_EXCRET, MODE, 3, 1)
72 FIELD(V7M_EXCRET, FTYPE, 4, 1)
73 FIELD(V7M_EXCRET, DCRS, 5, 1)
74 FIELD(V7M_EXCRET, S, 6, 1)
75 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
76 
77 /* Minimum value which is a magic number for exception return */
78 #define EXC_RETURN_MIN_MAGIC 0xff000000
79 /* Minimum number which is a magic number for function or exception return
80  * when using v8M security extension
81  */
82 #define FNC_RETURN_MIN_MAGIC 0xfefffffe
83 
84 /* Bit definitions for DBGWCRn and DBGWCRn_EL1 */
85 FIELD(DBGWCR, E, 0, 1)
86 FIELD(DBGWCR, PAC, 1, 2)
87 FIELD(DBGWCR, LSC, 3, 2)
88 FIELD(DBGWCR, BAS, 5, 8)
89 FIELD(DBGWCR, HMC, 13, 1)
90 FIELD(DBGWCR, SSC, 14, 2)
91 FIELD(DBGWCR, LBN, 16, 4)
92 FIELD(DBGWCR, WT, 20, 1)
93 FIELD(DBGWCR, MASK, 24, 5)
94 FIELD(DBGWCR, SSCE, 29, 1)
95 
96 /* We use a few fake FSR values for internal purposes in M profile.
97  * M profile cores don't have A/R format FSRs, but currently our
98  * get_phys_addr() code assumes A/R profile and reports failures via
99  * an A/R format FSR value. We then translate that into the proper
100  * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
101  * Mostly the FSR values we use for this are those defined for v7PMSA,
102  * since we share some of that codepath. A few kinds of fault are
103  * only for M profile and have no A/R equivalent, though, so we have
104  * to pick a value from the reserved range (which we never otherwise
105  * generate) to use for these.
106  * These values will never be visible to the guest.
107  */
108 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
109 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
110 
111 /**
112  * raise_exception: Raise the specified exception.
113  * Raise a guest exception with the specified value, syndrome register
114  * and target exception level. This should be called from helper functions,
115  * and never returns because we will longjump back up to the CPU main loop.
116  */
117 G_NORETURN void raise_exception(CPUARMState *env, uint32_t excp,
118                                 uint32_t syndrome, uint32_t target_el);
119 
120 /*
121  * Similarly, but also use unwinding to restore cpu state.
122  */
123 G_NORETURN void raise_exception_ra(CPUARMState *env, uint32_t excp,
124                                       uint32_t syndrome, uint32_t target_el,
125                                       uintptr_t ra);
126 
127 /*
128  * For AArch64, map a given EL to an index in the banked_spsr array.
129  * Note that this mapping and the AArch32 mapping defined in bank_number()
130  * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
131  * mandated mapping between each other.
132  */
133 static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
134 {
135     static const unsigned int map[4] = {
136         [1] = BANK_SVC, /* EL1.  */
137         [2] = BANK_HYP, /* EL2.  */
138         [3] = BANK_MON, /* EL3.  */
139     };
140     assert(el >= 1 && el <= 3);
141     return map[el];
142 }
143 
144 /* Map CPU modes onto saved register banks.  */
145 static inline int bank_number(int mode)
146 {
147     switch (mode) {
148     case ARM_CPU_MODE_USR:
149     case ARM_CPU_MODE_SYS:
150         return BANK_USRSYS;
151     case ARM_CPU_MODE_SVC:
152         return BANK_SVC;
153     case ARM_CPU_MODE_ABT:
154         return BANK_ABT;
155     case ARM_CPU_MODE_UND:
156         return BANK_UND;
157     case ARM_CPU_MODE_IRQ:
158         return BANK_IRQ;
159     case ARM_CPU_MODE_FIQ:
160         return BANK_FIQ;
161     case ARM_CPU_MODE_HYP:
162         return BANK_HYP;
163     case ARM_CPU_MODE_MON:
164         return BANK_MON;
165     }
166     g_assert_not_reached();
167 }
168 
169 /**
170  * r14_bank_number: Map CPU mode onto register bank for r14
171  *
172  * Given an AArch32 CPU mode, return the index into the saved register
173  * banks to use for the R14 (LR) in that mode. This is the same as
174  * bank_number(), except for the special case of Hyp mode, where
175  * R14 is shared with USR and SYS, unlike its R13 and SPSR.
176  * This should be used as the index into env->banked_r14[], and
177  * bank_number() used for the index into env->banked_r13[] and
178  * env->banked_spsr[].
179  */
180 static inline int r14_bank_number(int mode)
181 {
182     return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
183 }
184 
185 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
186 void arm_translate_init(void);
187 
188 #ifdef CONFIG_TCG
189 void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb);
190 #endif /* CONFIG_TCG */
191 
192 enum arm_fprounding {
193     FPROUNDING_TIEEVEN,
194     FPROUNDING_POSINF,
195     FPROUNDING_NEGINF,
196     FPROUNDING_ZERO,
197     FPROUNDING_TIEAWAY,
198     FPROUNDING_ODD
199 };
200 
201 int arm_rmode_to_sf(int rmode);
202 
203 static inline void aarch64_save_sp(CPUARMState *env, int el)
204 {
205     if (env->pstate & PSTATE_SP) {
206         env->sp_el[el] = env->xregs[31];
207     } else {
208         env->sp_el[0] = env->xregs[31];
209     }
210 }
211 
212 static inline void aarch64_restore_sp(CPUARMState *env, int el)
213 {
214     if (env->pstate & PSTATE_SP) {
215         env->xregs[31] = env->sp_el[el];
216     } else {
217         env->xregs[31] = env->sp_el[0];
218     }
219 }
220 
221 static inline void update_spsel(CPUARMState *env, uint32_t imm)
222 {
223     unsigned int cur_el = arm_current_el(env);
224     /* Update PSTATE SPSel bit; this requires us to update the
225      * working stack pointer in xregs[31].
226      */
227     if (!((imm ^ env->pstate) & PSTATE_SP)) {
228         return;
229     }
230     aarch64_save_sp(env, cur_el);
231     env->pstate = deposit32(env->pstate, 0, 1, imm);
232 
233     /* We rely on illegal updates to SPsel from EL0 to get trapped
234      * at translation time.
235      */
236     assert(cur_el >= 1 && cur_el <= 3);
237     aarch64_restore_sp(env, cur_el);
238 }
239 
240 /*
241  * arm_pamax
242  * @cpu: ARMCPU
243  *
244  * Returns the implementation defined bit-width of physical addresses.
245  * The ARMv8 reference manuals refer to this as PAMax().
246  */
247 unsigned int arm_pamax(ARMCPU *cpu);
248 
249 /* Return true if extended addresses are enabled.
250  * This is always the case if our translation regime is 64 bit,
251  * but depends on TTBCR.EAE for 32 bit.
252  */
253 static inline bool extended_addresses_enabled(CPUARMState *env)
254 {
255     uint64_t tcr = env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
256     return arm_el_is_aa64(env, 1) ||
257            (arm_feature(env, ARM_FEATURE_LPAE) && (tcr & TTBCR_EAE));
258 }
259 
260 /* Update a QEMU watchpoint based on the information the guest has set in the
261  * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
262  */
263 void hw_watchpoint_update(ARMCPU *cpu, int n);
264 /* Update the QEMU watchpoints for every guest watchpoint. This does a
265  * complete delete-and-reinstate of the QEMU watchpoint list and so is
266  * suitable for use after migration or on reset.
267  */
268 void hw_watchpoint_update_all(ARMCPU *cpu);
269 /* Update a QEMU breakpoint based on the information the guest has set in the
270  * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
271  */
272 void hw_breakpoint_update(ARMCPU *cpu, int n);
273 /* Update the QEMU breakpoints for every guest breakpoint. This does a
274  * complete delete-and-reinstate of the QEMU breakpoint list and so is
275  * suitable for use after migration or on reset.
276  */
277 void hw_breakpoint_update_all(ARMCPU *cpu);
278 
279 /* Callback function for checking if a breakpoint should trigger. */
280 bool arm_debug_check_breakpoint(CPUState *cs);
281 
282 /* Callback function for checking if a watchpoint should trigger. */
283 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
284 
285 /* Adjust addresses (in BE32 mode) before testing against watchpoint
286  * addresses.
287  */
288 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
289 
290 /* Callback function for when a watchpoint or breakpoint triggers. */
291 void arm_debug_excp_handler(CPUState *cs);
292 
293 #if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG)
294 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
295 {
296     return false;
297 }
298 static inline void arm_handle_psci_call(ARMCPU *cpu)
299 {
300     g_assert_not_reached();
301 }
302 #else
303 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
304 bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
305 /* Actually handle a PSCI call */
306 void arm_handle_psci_call(ARMCPU *cpu);
307 #endif
308 
309 /**
310  * arm_clear_exclusive: clear the exclusive monitor
311  * @env: CPU env
312  * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
313  */
314 static inline void arm_clear_exclusive(CPUARMState *env)
315 {
316     env->exclusive_addr = -1;
317 }
318 
319 /**
320  * ARMFaultType: type of an ARM MMU fault
321  * This corresponds to the v8A pseudocode's Fault enumeration,
322  * with extensions for QEMU internal conditions.
323  */
324 typedef enum ARMFaultType {
325     ARMFault_None,
326     ARMFault_AccessFlag,
327     ARMFault_Alignment,
328     ARMFault_Background,
329     ARMFault_Domain,
330     ARMFault_Permission,
331     ARMFault_Translation,
332     ARMFault_AddressSize,
333     ARMFault_SyncExternal,
334     ARMFault_SyncExternalOnWalk,
335     ARMFault_SyncParity,
336     ARMFault_SyncParityOnWalk,
337     ARMFault_AsyncParity,
338     ARMFault_AsyncExternal,
339     ARMFault_Debug,
340     ARMFault_TLBConflict,
341     ARMFault_UnsuppAtomicUpdate,
342     ARMFault_Lockdown,
343     ARMFault_Exclusive,
344     ARMFault_ICacheMaint,
345     ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
346     ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
347 } ARMFaultType;
348 
349 /**
350  * ARMMMUFaultInfo: Information describing an ARM MMU Fault
351  * @type: Type of fault
352  * @level: Table walk level (for translation, access flag and permission faults)
353  * @domain: Domain of the fault address (for non-LPAE CPUs only)
354  * @s2addr: Address that caused a fault at stage 2
355  * @stage2: True if we faulted at stage 2
356  * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
357  * @s1ns: True if we faulted on a non-secure IPA while in secure state
358  * @ea: True if we should set the EA (external abort type) bit in syndrome
359  */
360 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
361 struct ARMMMUFaultInfo {
362     ARMFaultType type;
363     target_ulong s2addr;
364     int level;
365     int domain;
366     bool stage2;
367     bool s1ptw;
368     bool s1ns;
369     bool ea;
370 };
371 
372 /**
373  * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
374  * Compare pseudocode EncodeSDFSC(), though unlike that function
375  * we set up a whole FSR-format code including domain field and
376  * putting the high bit of the FSC into bit 10.
377  */
378 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
379 {
380     uint32_t fsc;
381 
382     switch (fi->type) {
383     case ARMFault_None:
384         return 0;
385     case ARMFault_AccessFlag:
386         fsc = fi->level == 1 ? 0x3 : 0x6;
387         break;
388     case ARMFault_Alignment:
389         fsc = 0x1;
390         break;
391     case ARMFault_Permission:
392         fsc = fi->level == 1 ? 0xd : 0xf;
393         break;
394     case ARMFault_Domain:
395         fsc = fi->level == 1 ? 0x9 : 0xb;
396         break;
397     case ARMFault_Translation:
398         fsc = fi->level == 1 ? 0x5 : 0x7;
399         break;
400     case ARMFault_SyncExternal:
401         fsc = 0x8 | (fi->ea << 12);
402         break;
403     case ARMFault_SyncExternalOnWalk:
404         fsc = fi->level == 1 ? 0xc : 0xe;
405         fsc |= (fi->ea << 12);
406         break;
407     case ARMFault_SyncParity:
408         fsc = 0x409;
409         break;
410     case ARMFault_SyncParityOnWalk:
411         fsc = fi->level == 1 ? 0x40c : 0x40e;
412         break;
413     case ARMFault_AsyncParity:
414         fsc = 0x408;
415         break;
416     case ARMFault_AsyncExternal:
417         fsc = 0x406 | (fi->ea << 12);
418         break;
419     case ARMFault_Debug:
420         fsc = 0x2;
421         break;
422     case ARMFault_TLBConflict:
423         fsc = 0x400;
424         break;
425     case ARMFault_Lockdown:
426         fsc = 0x404;
427         break;
428     case ARMFault_Exclusive:
429         fsc = 0x405;
430         break;
431     case ARMFault_ICacheMaint:
432         fsc = 0x4;
433         break;
434     case ARMFault_Background:
435         fsc = 0x0;
436         break;
437     case ARMFault_QEMU_NSCExec:
438         fsc = M_FAKE_FSR_NSC_EXEC;
439         break;
440     case ARMFault_QEMU_SFault:
441         fsc = M_FAKE_FSR_SFAULT;
442         break;
443     default:
444         /* Other faults can't occur in a context that requires a
445          * short-format status code.
446          */
447         g_assert_not_reached();
448     }
449 
450     fsc |= (fi->domain << 4);
451     return fsc;
452 }
453 
454 /**
455  * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
456  * Compare pseudocode EncodeLDFSC(), though unlike that function
457  * we fill in also the LPAE bit 9 of a DFSR format.
458  */
459 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
460 {
461     uint32_t fsc;
462 
463     switch (fi->type) {
464     case ARMFault_None:
465         return 0;
466     case ARMFault_AddressSize:
467         assert(fi->level >= -1 && fi->level <= 3);
468         if (fi->level < 0) {
469             fsc = 0b101001;
470         } else {
471             fsc = fi->level;
472         }
473         break;
474     case ARMFault_AccessFlag:
475         assert(fi->level >= 0 && fi->level <= 3);
476         fsc = 0b001000 | fi->level;
477         break;
478     case ARMFault_Permission:
479         assert(fi->level >= 0 && fi->level <= 3);
480         fsc = 0b001100 | fi->level;
481         break;
482     case ARMFault_Translation:
483         assert(fi->level >= -1 && fi->level <= 3);
484         if (fi->level < 0) {
485             fsc = 0b101011;
486         } else {
487             fsc = 0b000100 | fi->level;
488         }
489         break;
490     case ARMFault_SyncExternal:
491         fsc = 0x10 | (fi->ea << 12);
492         break;
493     case ARMFault_SyncExternalOnWalk:
494         assert(fi->level >= -1 && fi->level <= 3);
495         if (fi->level < 0) {
496             fsc = 0b010011;
497         } else {
498             fsc = 0b010100 | fi->level;
499         }
500         fsc |= fi->ea << 12;
501         break;
502     case ARMFault_SyncParity:
503         fsc = 0x18;
504         break;
505     case ARMFault_SyncParityOnWalk:
506         assert(fi->level >= -1 && fi->level <= 3);
507         if (fi->level < 0) {
508             fsc = 0b011011;
509         } else {
510             fsc = 0b011100 | fi->level;
511         }
512         break;
513     case ARMFault_AsyncParity:
514         fsc = 0x19;
515         break;
516     case ARMFault_AsyncExternal:
517         fsc = 0x11 | (fi->ea << 12);
518         break;
519     case ARMFault_Alignment:
520         fsc = 0x21;
521         break;
522     case ARMFault_Debug:
523         fsc = 0x22;
524         break;
525     case ARMFault_TLBConflict:
526         fsc = 0x30;
527         break;
528     case ARMFault_UnsuppAtomicUpdate:
529         fsc = 0x31;
530         break;
531     case ARMFault_Lockdown:
532         fsc = 0x34;
533         break;
534     case ARMFault_Exclusive:
535         fsc = 0x35;
536         break;
537     default:
538         /* Other faults can't occur in a context that requires a
539          * long-format status code.
540          */
541         g_assert_not_reached();
542     }
543 
544     fsc |= 1 << 9;
545     return fsc;
546 }
547 
548 static inline bool arm_extabort_type(MemTxResult result)
549 {
550     /* The EA bit in syndromes and fault status registers is an
551      * IMPDEF classification of external aborts. ARM implementations
552      * usually use this to indicate AXI bus Decode error (0) or
553      * Slave error (1); in QEMU we follow that.
554      */
555     return result != MEMTX_DECODE_ERROR;
556 }
557 
558 #ifdef CONFIG_USER_ONLY
559 void arm_cpu_record_sigsegv(CPUState *cpu, vaddr addr,
560                             MMUAccessType access_type,
561                             bool maperr, uintptr_t ra);
562 void arm_cpu_record_sigbus(CPUState *cpu, vaddr addr,
563                            MMUAccessType access_type, uintptr_t ra);
564 #else
565 bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
566                       MMUAccessType access_type, int mmu_idx,
567                       bool probe, uintptr_t retaddr);
568 #endif
569 
570 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
571 {
572     return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
573 }
574 
575 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
576 {
577     if (arm_feature(env, ARM_FEATURE_M)) {
578         return mmu_idx | ARM_MMU_IDX_M;
579     } else {
580         return mmu_idx | ARM_MMU_IDX_A;
581     }
582 }
583 
584 static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx)
585 {
586     /* AArch64 is always a-profile. */
587     return mmu_idx | ARM_MMU_IDX_A;
588 }
589 
590 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx);
591 
592 /*
593  * Return the MMU index for a v7M CPU with all relevant information
594  * manually specified.
595  */
596 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
597                               bool secstate, bool priv, bool negpri);
598 
599 /*
600  * Return the MMU index for a v7M CPU in the specified security and
601  * privilege state.
602  */
603 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
604                                                 bool secstate, bool priv);
605 
606 /* Return the MMU index for a v7M CPU in the specified security state */
607 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
608 
609 /* Return true if the translation regime is using LPAE format page tables */
610 bool regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
611 
612 /*
613  * Return true if the stage 1 translation regime is using LPAE
614  * format page tables
615  */
616 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
617 
618 /* Raise a data fault alignment exception for the specified virtual address */
619 G_NORETURN void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
620                                             MMUAccessType access_type,
621                                             int mmu_idx, uintptr_t retaddr);
622 
623 /* arm_cpu_do_transaction_failed: handle a memory system error response
624  * (eg "no device/memory present at address") by raising an external abort
625  * exception
626  */
627 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
628                                    vaddr addr, unsigned size,
629                                    MMUAccessType access_type,
630                                    int mmu_idx, MemTxAttrs attrs,
631                                    MemTxResult response, uintptr_t retaddr);
632 
633 /* Call any registered EL change hooks */
634 static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
635 {
636     ARMELChangeHook *hook, *next;
637     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
638         hook->hook(cpu, hook->opaque);
639     }
640 }
641 static inline void arm_call_el_change_hook(ARMCPU *cpu)
642 {
643     ARMELChangeHook *hook, *next;
644     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
645         hook->hook(cpu, hook->opaque);
646     }
647 }
648 
649 /* Return true if this address translation regime has two ranges.  */
650 static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx)
651 {
652     switch (mmu_idx) {
653     case ARMMMUIdx_Stage1_E0:
654     case ARMMMUIdx_Stage1_E1:
655     case ARMMMUIdx_Stage1_E1_PAN:
656     case ARMMMUIdx_E10_0:
657     case ARMMMUIdx_E10_1:
658     case ARMMMUIdx_E10_1_PAN:
659     case ARMMMUIdx_E20_0:
660     case ARMMMUIdx_E20_2:
661     case ARMMMUIdx_E20_2_PAN:
662         return true;
663     default:
664         return false;
665     }
666 }
667 
668 static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx)
669 {
670     switch (mmu_idx) {
671     case ARMMMUIdx_Stage1_E1_PAN:
672     case ARMMMUIdx_E10_1_PAN:
673     case ARMMMUIdx_E20_2_PAN:
674         return true;
675     default:
676         return false;
677     }
678 }
679 
680 static inline bool regime_is_stage2(ARMMMUIdx mmu_idx)
681 {
682     return mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S;
683 }
684 
685 /* Return the exception level which controls this address translation regime */
686 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
687 {
688     switch (mmu_idx) {
689     case ARMMMUIdx_E20_0:
690     case ARMMMUIdx_E20_2:
691     case ARMMMUIdx_E20_2_PAN:
692     case ARMMMUIdx_Stage2:
693     case ARMMMUIdx_Stage2_S:
694     case ARMMMUIdx_E2:
695         return 2;
696     case ARMMMUIdx_E3:
697         return 3;
698     case ARMMMUIdx_E10_0:
699     case ARMMMUIdx_Stage1_E0:
700         return arm_el_is_aa64(env, 3) || !arm_is_secure_below_el3(env) ? 1 : 3;
701     case ARMMMUIdx_Stage1_E1:
702     case ARMMMUIdx_Stage1_E1_PAN:
703     case ARMMMUIdx_E10_1:
704     case ARMMMUIdx_E10_1_PAN:
705     case ARMMMUIdx_MPrivNegPri:
706     case ARMMMUIdx_MUserNegPri:
707     case ARMMMUIdx_MPriv:
708     case ARMMMUIdx_MUser:
709     case ARMMMUIdx_MSPrivNegPri:
710     case ARMMMUIdx_MSUserNegPri:
711     case ARMMMUIdx_MSPriv:
712     case ARMMMUIdx_MSUser:
713         return 1;
714     default:
715         g_assert_not_reached();
716     }
717 }
718 
719 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
720 {
721     switch (mmu_idx) {
722     case ARMMMUIdx_E20_0:
723     case ARMMMUIdx_Stage1_E0:
724     case ARMMMUIdx_MUser:
725     case ARMMMUIdx_MSUser:
726     case ARMMMUIdx_MUserNegPri:
727     case ARMMMUIdx_MSUserNegPri:
728         return true;
729     default:
730         return false;
731     case ARMMMUIdx_E10_0:
732     case ARMMMUIdx_E10_1:
733     case ARMMMUIdx_E10_1_PAN:
734         g_assert_not_reached();
735     }
736 }
737 
738 /* Return the SCTLR value which controls this address translation regime */
739 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
740 {
741     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
742 }
743 
744 /*
745  * These are the fields in VTCR_EL2 which affect both the Secure stage 2
746  * and the Non-Secure stage 2 translation regimes (and hence which are
747  * not present in VSTCR_EL2).
748  */
749 #define VTCR_SHARED_FIELD_MASK \
750     (R_VTCR_IRGN0_MASK | R_VTCR_ORGN0_MASK | R_VTCR_SH0_MASK | \
751      R_VTCR_PS_MASK | R_VTCR_VS_MASK | R_VTCR_HA_MASK | R_VTCR_HD_MASK | \
752      R_VTCR_DS_MASK)
753 
754 /* Return the value of the TCR controlling this translation regime */
755 static inline uint64_t regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
756 {
757     if (mmu_idx == ARMMMUIdx_Stage2) {
758         return env->cp15.vtcr_el2;
759     }
760     if (mmu_idx == ARMMMUIdx_Stage2_S) {
761         /*
762          * Secure stage 2 shares fields from VTCR_EL2. We merge those
763          * in with the VSTCR_EL2 value to synthesize a single VTCR_EL2 format
764          * value so the callers don't need to special case this.
765          *
766          * If a future architecture change defines bits in VSTCR_EL2 that
767          * overlap with these VTCR_EL2 fields we may need to revisit this.
768          */
769         uint64_t v = env->cp15.vstcr_el2 & ~VTCR_SHARED_FIELD_MASK;
770         v |= env->cp15.vtcr_el2 & VTCR_SHARED_FIELD_MASK;
771         return v;
772     }
773     return env->cp15.tcr_el[regime_el(env, mmu_idx)];
774 }
775 
776 /**
777  * arm_num_brps: Return number of implemented breakpoints.
778  * Note that the ID register BRPS field is "number of bps - 1",
779  * and we return the actual number of breakpoints.
780  */
781 static inline int arm_num_brps(ARMCPU *cpu)
782 {
783     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
784         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1;
785     } else {
786         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1;
787     }
788 }
789 
790 /**
791  * arm_num_wrps: Return number of implemented watchpoints.
792  * Note that the ID register WRPS field is "number of wps - 1",
793  * and we return the actual number of watchpoints.
794  */
795 static inline int arm_num_wrps(ARMCPU *cpu)
796 {
797     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
798         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1;
799     } else {
800         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1;
801     }
802 }
803 
804 /**
805  * arm_num_ctx_cmps: Return number of implemented context comparators.
806  * Note that the ID register CTX_CMPS field is "number of cmps - 1",
807  * and we return the actual number of comparators.
808  */
809 static inline int arm_num_ctx_cmps(ARMCPU *cpu)
810 {
811     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
812         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1;
813     } else {
814         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1;
815     }
816 }
817 
818 /**
819  * v7m_using_psp: Return true if using process stack pointer
820  * Return true if the CPU is currently using the process stack
821  * pointer, or false if it is using the main stack pointer.
822  */
823 static inline bool v7m_using_psp(CPUARMState *env)
824 {
825     /* Handler mode always uses the main stack; for thread mode
826      * the CONTROL.SPSEL bit determines the answer.
827      * Note that in v7M it is not possible to be in Handler mode with
828      * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
829      */
830     return !arm_v7m_is_handler_mode(env) &&
831         env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
832 }
833 
834 /**
835  * v7m_sp_limit: Return SP limit for current CPU state
836  * Return the SP limit value for the current CPU security state
837  * and stack pointer.
838  */
839 static inline uint32_t v7m_sp_limit(CPUARMState *env)
840 {
841     if (v7m_using_psp(env)) {
842         return env->v7m.psplim[env->v7m.secure];
843     } else {
844         return env->v7m.msplim[env->v7m.secure];
845     }
846 }
847 
848 /**
849  * v7m_cpacr_pass:
850  * Return true if the v7M CPACR permits access to the FPU for the specified
851  * security state and privilege level.
852  */
853 static inline bool v7m_cpacr_pass(CPUARMState *env,
854                                   bool is_secure, bool is_priv)
855 {
856     switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) {
857     case 0:
858     case 2: /* UNPREDICTABLE: we treat like 0 */
859         return false;
860     case 1:
861         return is_priv;
862     case 3:
863         return true;
864     default:
865         g_assert_not_reached();
866     }
867 }
868 
869 /**
870  * aarch32_mode_name(): Return name of the AArch32 CPU mode
871  * @psr: Program Status Register indicating CPU mode
872  *
873  * Returns, for debug logging purposes, a printable representation
874  * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
875  * the low bits of the specified PSR.
876  */
877 static inline const char *aarch32_mode_name(uint32_t psr)
878 {
879     static const char cpu_mode_names[16][4] = {
880         "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
881         "???", "???", "hyp", "und", "???", "???", "???", "sys"
882     };
883 
884     return cpu_mode_names[psr & 0xf];
885 }
886 
887 /**
888  * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
889  *
890  * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
891  * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
892  * Must be called with the iothread lock held.
893  */
894 void arm_cpu_update_virq(ARMCPU *cpu);
895 
896 /**
897  * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
898  *
899  * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
900  * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
901  * Must be called with the iothread lock held.
902  */
903 void arm_cpu_update_vfiq(ARMCPU *cpu);
904 
905 /**
906  * arm_cpu_update_vserr: Update CPU_INTERRUPT_VSERR bit
907  *
908  * Update the CPU_INTERRUPT_VSERR bit in cs->interrupt_request,
909  * following a change to the HCR_EL2.VSE bit.
910  */
911 void arm_cpu_update_vserr(ARMCPU *cpu);
912 
913 /**
914  * arm_mmu_idx_el:
915  * @env: The cpu environment
916  * @el: The EL to use.
917  *
918  * Return the full ARMMMUIdx for the translation regime for EL.
919  */
920 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el);
921 
922 /**
923  * arm_mmu_idx:
924  * @env: The cpu environment
925  *
926  * Return the full ARMMMUIdx for the current translation regime.
927  */
928 ARMMMUIdx arm_mmu_idx(CPUARMState *env);
929 
930 /**
931  * arm_stage1_mmu_idx:
932  * @env: The cpu environment
933  *
934  * Return the ARMMMUIdx for the stage1 traversal for the current regime.
935  */
936 #ifdef CONFIG_USER_ONLY
937 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
938 {
939     return ARMMMUIdx_Stage1_E0;
940 }
941 static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
942 {
943     return ARMMMUIdx_Stage1_E0;
944 }
945 #else
946 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx);
947 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env);
948 #endif
949 
950 /**
951  * arm_mmu_idx_is_stage1_of_2:
952  * @mmu_idx: The ARMMMUIdx to test
953  *
954  * Return true if @mmu_idx is a NOTLB mmu_idx that is the
955  * first stage of a two stage regime.
956  */
957 static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx)
958 {
959     switch (mmu_idx) {
960     case ARMMMUIdx_Stage1_E0:
961     case ARMMMUIdx_Stage1_E1:
962     case ARMMMUIdx_Stage1_E1_PAN:
963         return true;
964     default:
965         return false;
966     }
967 }
968 
969 static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features,
970                                                const ARMISARegisters *id)
971 {
972     uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV;
973 
974     if ((features >> ARM_FEATURE_V4T) & 1) {
975         valid |= CPSR_T;
976     }
977     if ((features >> ARM_FEATURE_V5) & 1) {
978         valid |= CPSR_Q; /* V5TE in reality*/
979     }
980     if ((features >> ARM_FEATURE_V6) & 1) {
981         valid |= CPSR_E | CPSR_GE;
982     }
983     if ((features >> ARM_FEATURE_THUMB2) & 1) {
984         valid |= CPSR_IT;
985     }
986     if (isar_feature_aa32_jazelle(id)) {
987         valid |= CPSR_J;
988     }
989     if (isar_feature_aa32_pan(id)) {
990         valid |= CPSR_PAN;
991     }
992     if (isar_feature_aa32_dit(id)) {
993         valid |= CPSR_DIT;
994     }
995     if (isar_feature_aa32_ssbs(id)) {
996         valid |= CPSR_SSBS;
997     }
998 
999     return valid;
1000 }
1001 
1002 static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id)
1003 {
1004     uint32_t valid;
1005 
1006     valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV;
1007     if (isar_feature_aa64_bti(id)) {
1008         valid |= PSTATE_BTYPE;
1009     }
1010     if (isar_feature_aa64_pan(id)) {
1011         valid |= PSTATE_PAN;
1012     }
1013     if (isar_feature_aa64_uao(id)) {
1014         valid |= PSTATE_UAO;
1015     }
1016     if (isar_feature_aa64_dit(id)) {
1017         valid |= PSTATE_DIT;
1018     }
1019     if (isar_feature_aa64_ssbs(id)) {
1020         valid |= PSTATE_SSBS;
1021     }
1022     if (isar_feature_aa64_mte(id)) {
1023         valid |= PSTATE_TCO;
1024     }
1025 
1026     return valid;
1027 }
1028 
1029 /* Granule size (i.e. page size) */
1030 typedef enum ARMGranuleSize {
1031     /* Same order as TG0 encoding */
1032     Gran4K,
1033     Gran64K,
1034     Gran16K,
1035     GranInvalid,
1036 } ARMGranuleSize;
1037 
1038 /**
1039  * arm_granule_bits: Return address size of the granule in bits
1040  *
1041  * Return the address size of the granule in bits. This corresponds
1042  * to the pseudocode TGxGranuleBits().
1043  */
1044 static inline int arm_granule_bits(ARMGranuleSize gran)
1045 {
1046     switch (gran) {
1047     case Gran64K:
1048         return 16;
1049     case Gran16K:
1050         return 14;
1051     case Gran4K:
1052         return 12;
1053     default:
1054         g_assert_not_reached();
1055     }
1056 }
1057 
1058 /*
1059  * Parameters of a given virtual address, as extracted from the
1060  * translation control register (TCR) for a given regime.
1061  */
1062 typedef struct ARMVAParameters {
1063     unsigned tsz    : 8;
1064     unsigned ps     : 3;
1065     unsigned sh     : 2;
1066     unsigned select : 1;
1067     bool tbi        : 1;
1068     bool epd        : 1;
1069     bool hpd        : 1;
1070     bool tsz_oob    : 1;  /* tsz has been clamped to legal range */
1071     bool ds         : 1;
1072     bool ha         : 1;
1073     bool hd         : 1;
1074     ARMGranuleSize gran : 2;
1075 } ARMVAParameters;
1076 
1077 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
1078                                    ARMMMUIdx mmu_idx, bool data);
1079 
1080 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
1081 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx);
1082 
1083 /* Determine if allocation tags are available.  */
1084 static inline bool allocation_tag_access_enabled(CPUARMState *env, int el,
1085                                                  uint64_t sctlr)
1086 {
1087     if (el < 3
1088         && arm_feature(env, ARM_FEATURE_EL3)
1089         && !(env->cp15.scr_el3 & SCR_ATA)) {
1090         return false;
1091     }
1092     if (el < 2 && arm_is_el2_enabled(env)) {
1093         uint64_t hcr = arm_hcr_el2_eff(env);
1094         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
1095             return false;
1096         }
1097     }
1098     sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA);
1099     return sctlr != 0;
1100 }
1101 
1102 #ifndef CONFIG_USER_ONLY
1103 
1104 /* Security attributes for an address, as returned by v8m_security_lookup. */
1105 typedef struct V8M_SAttributes {
1106     bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
1107     bool ns;
1108     bool nsc;
1109     uint8_t sregion;
1110     bool srvalid;
1111     uint8_t iregion;
1112     bool irvalid;
1113 } V8M_SAttributes;
1114 
1115 void v8m_security_lookup(CPUARMState *env, uint32_t address,
1116                          MMUAccessType access_type, ARMMMUIdx mmu_idx,
1117                          bool secure, V8M_SAttributes *sattrs);
1118 
1119 /* Cacheability and shareability attributes for a memory access */
1120 typedef struct ARMCacheAttrs {
1121     /*
1122      * If is_s2_format is true, attrs is the S2 descriptor bits [5:2]
1123      * Otherwise, attrs is the same as the MAIR_EL1 8-bit format
1124      */
1125     unsigned int attrs:8;
1126     unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
1127     bool is_s2_format:1;
1128     bool guarded:1;              /* guarded bit of the v8-64 PTE */
1129 } ARMCacheAttrs;
1130 
1131 /* Fields that are valid upon success. */
1132 typedef struct GetPhysAddrResult {
1133     CPUTLBEntryFull f;
1134     ARMCacheAttrs cacheattrs;
1135 } GetPhysAddrResult;
1136 
1137 /**
1138  * get_phys_addr_with_secure: get the physical address for a virtual address
1139  * @env: CPUARMState
1140  * @address: virtual address to get physical address for
1141  * @access_type: 0 for read, 1 for write, 2 for execute
1142  * @mmu_idx: MMU index indicating required translation regime
1143  * @is_secure: security state for the access
1144  * @result: set on translation success.
1145  * @fi: set to fault info if the translation fails
1146  *
1147  * Find the physical address corresponding to the given virtual address,
1148  * by doing a translation table walk on MMU based systems or using the
1149  * MPU state on MPU based systems.
1150  *
1151  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
1152  * prot and page_size may not be filled in, and the populated fsr value provides
1153  * information on why the translation aborted, in the format of a
1154  * DFSR/IFSR fault register, with the following caveats:
1155  *  * we honour the short vs long DFSR format differences.
1156  *  * the WnR bit is never set (the caller must do this).
1157  *  * for PSMAv5 based systems we don't bother to return a full FSR format
1158  *    value.
1159  */
1160 bool get_phys_addr_with_secure(CPUARMState *env, target_ulong address,
1161                                MMUAccessType access_type,
1162                                ARMMMUIdx mmu_idx, bool is_secure,
1163                                GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1164     __attribute__((nonnull));
1165 
1166 /**
1167  * get_phys_addr: get the physical address for a virtual address
1168  * @env: CPUARMState
1169  * @address: virtual address to get physical address for
1170  * @access_type: 0 for read, 1 for write, 2 for execute
1171  * @mmu_idx: MMU index indicating required translation regime
1172  * @result: set on translation success.
1173  * @fi: set to fault info if the translation fails
1174  *
1175  * Similarly, but use the security regime of @mmu_idx.
1176  */
1177 bool get_phys_addr(CPUARMState *env, target_ulong address,
1178                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
1179                    GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1180     __attribute__((nonnull));
1181 
1182 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
1183                        MMUAccessType access_type, ARMMMUIdx mmu_idx,
1184                        bool is_secure, GetPhysAddrResult *result,
1185                        ARMMMUFaultInfo *fi, uint32_t *mregion);
1186 
1187 void arm_log_exception(CPUState *cs);
1188 
1189 #endif /* !CONFIG_USER_ONLY */
1190 
1191 /*
1192  * The log2 of the words in the tag block, for GMID_EL1.BS.
1193  * The is the maximum, 256 bytes, which manipulates 64-bits of tags.
1194  */
1195 #define GMID_EL1_BS  6
1196 
1197 /*
1198  * SVE predicates are 1/8 the size of SVE vectors, and cannot use
1199  * the same simd_desc() encoding due to restrictions on size.
1200  * Use these instead.
1201  */
1202 FIELD(PREDDESC, OPRSZ, 0, 6)
1203 FIELD(PREDDESC, ESZ, 6, 2)
1204 FIELD(PREDDESC, DATA, 8, 24)
1205 
1206 /*
1207  * The SVE simd_data field, for memory ops, contains either
1208  * rd (5 bits) or a shift count (2 bits).
1209  */
1210 #define SVE_MTEDESC_SHIFT 5
1211 
1212 /* Bits within a descriptor passed to the helper_mte_check* functions. */
1213 FIELD(MTEDESC, MIDX,  0, 4)
1214 FIELD(MTEDESC, TBI,   4, 2)
1215 FIELD(MTEDESC, TCMA,  6, 2)
1216 FIELD(MTEDESC, WRITE, 8, 1)
1217 FIELD(MTEDESC, SIZEM1, 9, SIMD_DATA_BITS - 9)  /* size - 1 */
1218 
1219 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr);
1220 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra);
1221 
1222 static inline int allocation_tag_from_addr(uint64_t ptr)
1223 {
1224     return extract64(ptr, 56, 4);
1225 }
1226 
1227 static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag)
1228 {
1229     return deposit64(ptr, 56, 4, rtag);
1230 }
1231 
1232 /* Return true if tbi bits mean that the access is checked.  */
1233 static inline bool tbi_check(uint32_t desc, int bit55)
1234 {
1235     return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1;
1236 }
1237 
1238 /* Return true if tcma bits mean that the access is unchecked.  */
1239 static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag)
1240 {
1241     /*
1242      * We had extracted bit55 and ptr_tag for other reasons, so fold
1243      * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test.
1244      */
1245     bool match = ((ptr_tag + bit55) & 0xf) == 0;
1246     bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1;
1247     return tcma && match;
1248 }
1249 
1250 /*
1251  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
1252  * for the tag to be present in the FAR_ELx register.  But for user-only
1253  * mode, we do not have a TLB with which to implement this, so we must
1254  * remove the top byte.
1255  */
1256 static inline uint64_t useronly_clean_ptr(uint64_t ptr)
1257 {
1258 #ifdef CONFIG_USER_ONLY
1259     /* TBI0 is known to be enabled, while TBI1 is disabled. */
1260     ptr &= sextract64(ptr, 0, 56);
1261 #endif
1262     return ptr;
1263 }
1264 
1265 static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr)
1266 {
1267 #ifdef CONFIG_USER_ONLY
1268     int64_t clean_ptr = sextract64(ptr, 0, 56);
1269     if (tbi_check(desc, clean_ptr < 0)) {
1270         ptr = clean_ptr;
1271     }
1272 #endif
1273     return ptr;
1274 }
1275 
1276 /* Values for M-profile PSR.ECI for MVE insns */
1277 enum MVEECIState {
1278     ECI_NONE = 0, /* No completed beats */
1279     ECI_A0 = 1, /* Completed: A0 */
1280     ECI_A0A1 = 2, /* Completed: A0, A1 */
1281     /* 3 is reserved */
1282     ECI_A0A1A2 = 4, /* Completed: A0, A1, A2 */
1283     ECI_A0A1A2B0 = 5, /* Completed: A0, A1, A2, B0 */
1284     /* All other values reserved */
1285 };
1286 
1287 /* Definitions for the PMU registers */
1288 #define PMCRN_MASK  0xf800
1289 #define PMCRN_SHIFT 11
1290 #define PMCRLP  0x80
1291 #define PMCRLC  0x40
1292 #define PMCRDP  0x20
1293 #define PMCRX   0x10
1294 #define PMCRD   0x8
1295 #define PMCRC   0x4
1296 #define PMCRP   0x2
1297 #define PMCRE   0x1
1298 /*
1299  * Mask of PMCR bits writable by guest (not including WO bits like C, P,
1300  * which can be written as 1 to trigger behaviour but which stay RAZ).
1301  */
1302 #define PMCR_WRITABLE_MASK (PMCRLP | PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
1303 
1304 #define PMXEVTYPER_P          0x80000000
1305 #define PMXEVTYPER_U          0x40000000
1306 #define PMXEVTYPER_NSK        0x20000000
1307 #define PMXEVTYPER_NSU        0x10000000
1308 #define PMXEVTYPER_NSH        0x08000000
1309 #define PMXEVTYPER_M          0x04000000
1310 #define PMXEVTYPER_MT         0x02000000
1311 #define PMXEVTYPER_EVTCOUNT   0x0000ffff
1312 #define PMXEVTYPER_MASK       (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1313                                PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1314                                PMXEVTYPER_M | PMXEVTYPER_MT | \
1315                                PMXEVTYPER_EVTCOUNT)
1316 
1317 #define PMCCFILTR             0xf8000000
1318 #define PMCCFILTR_M           PMXEVTYPER_M
1319 #define PMCCFILTR_EL0         (PMCCFILTR | PMCCFILTR_M)
1320 
1321 static inline uint32_t pmu_num_counters(CPUARMState *env)
1322 {
1323     ARMCPU *cpu = env_archcpu(env);
1324 
1325     return (cpu->isar.reset_pmcr_el0 & PMCRN_MASK) >> PMCRN_SHIFT;
1326 }
1327 
1328 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1329 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1330 {
1331   return (1ULL << 31) | ((1ULL << pmu_num_counters(env)) - 1);
1332 }
1333 
1334 #ifdef TARGET_AARCH64
1335 int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg);
1336 int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg);
1337 int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg);
1338 int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg);
1339 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
1340 void arm_cpu_sme_finalize(ARMCPU *cpu, Error **errp);
1341 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp);
1342 void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp);
1343 #endif
1344 
1345 #ifdef CONFIG_USER_ONLY
1346 static inline void define_cortex_a72_a57_a53_cp_reginfo(ARMCPU *cpu) { }
1347 #else
1348 void define_cortex_a72_a57_a53_cp_reginfo(ARMCPU *cpu);
1349 #endif
1350 
1351 bool el_is_in_host(CPUARMState *env, int el);
1352 
1353 void aa32_max_features(ARMCPU *cpu);
1354 int exception_target_el(CPUARMState *env);
1355 bool arm_singlestep_active(CPUARMState *env);
1356 bool arm_generate_debug_exceptions(CPUARMState *env);
1357 
1358 /* Add the cpreg definitions for debug related system registers */
1359 void define_debug_regs(ARMCPU *cpu);
1360 
1361 /* Effective value of MDCR_EL2 */
1362 static inline uint64_t arm_mdcr_el2_eff(CPUARMState *env)
1363 {
1364     return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0;
1365 }
1366 
1367 /* Powers of 2 for sve_vq_map et al. */
1368 #define SVE_VQ_POW2_MAP                                 \
1369     ((1 << (1 - 1)) | (1 << (2 - 1)) |                  \
1370      (1 << (4 - 1)) | (1 << (8 - 1)) | (1 << (16 - 1)))
1371 
1372 #endif
1373